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Chapter 1

Introduction

Let P be a polynomial of degree d. The Newton map induced by P is

. Let'N be the set of positive integers. For each

the function Ny(z) = z —
k €N, let N} denote the k-iteration of N, that is, N = N,, N2 = N, o N, and
Ny = Nf~'o N,. For a root a of P, we say that a set U C C, is the immediate
basin of a if U C C is the largest connected open set containing o and sz(z) — a,
as k — oo, for all z € U. Every immediate basin U is forward invariant, that is,
N,(U) = U, and is simply connected. (See [1], [2])

In 2002, Dierk Schleicher (See [3]) provided an upper bound for the
number of iterations of Newton’s method for complex polynomials of a fixed degree
with a prescribed precision.. More precisely, Schleicher proved that if all roots of
P are inside the unit dise and 0 < £ < 1, there is a constant n(d, ) such that for
every root « of P, there is a point z with |z| = 2 such that ‘N;(Z) — a| < ¢ for all

n > n(d,e). Schleicher showed that n(d,e) can be chosen so that

9rd* 2 N lloge| + log 13

d,e) <
n(d,e) < e2log2 log 2

+1 (1.1)

with

d*(d—1) (2d
fd:m(d) (1.2)



To obtain this eslimate, Schleicher employed several rough estimates
which cause the bound far from an efficient upper bound, The main point that
causes the extreme inefficiency is the way Schleicher used to obtain f; which arose
when he estimated an upper bound for the distance of a point z to a root «.
Schleicher showed that if z is in the immediate basin of a and |N,(z) — z| = 9,
then the distance between z and « is at most ¢ fj.

In 2011, Somjate Chaiya (See [4]) gave an algorithm to improve the
value of f;. Even though, it is not an explicit formula, it can be easily computed.

The following is the result established by Chaiya.

Theorem 1.1. Let P(z) be a polynomial of degree d > 3, and let y be a posi-
tive number larger than 4d — 3. If zy 1s in an immediate basin of a root o and

|Np(20) — 20| = €, then |z, — | < eM(d,y), where M(d,y) = max{y, Ag + %

and Aq can be derived from the following iterative algorithm.

Let b= %, and

_y(d=1)[2d(y — 2d +3) — 3y — 1]
< (y—1)(y —4d +3) ' (13)

Fork=2,...,d—1, setakzl—i-Z;:;ﬁ.
J

If 2A, < b then let

(ak—i-d—k)Ak—Fb(k—i—l—ak—d)
A=A ) 1.4
h k < Ak(ak + 1) — bak ( )
Otherwise let
ar +d—k
Apor = 4y <'f—> | (1.5)
ag



Note that the value of M(d,y) in the theorem depends only on the
constant y and the degree d. In this thesis, we first want to study the value of
M(d,y) as a function of y so that we can determine the best possible bound for
M (d,y) under this algorithm. Furthermore we want to find an explicit upper
bound for f,.

In chapter 2, we present definitions and some properties about dynamics
of rational functions.

In chapter 3, we will find an upper bound of M (d,y) in the cases of
d = 3 and d > 4 when the value y satisfies 245 > b. In the case d = 3, we choose
y = 12 ++/95, then M (d,y) < 12 ++/95 which is the best bound for this case. In

the case d > 4, we choose y'= 4d*> — 7d + 3, so that 24, > b. Then we obtain

Md,y) <200 =D ~7d+3)

A4d® —13d? +13d — 2
STAE —Td T - id+6) L7 18 +13d-2)

In chapter 4, instead of finding ¢, we find an upper bound of f; in a
different way. We obtain that the distance of a point 2z and a root a of a polynomial

of degree d > 4 is less than (My + 1)de, where

ld/2] d—1

2 — k2 4 3k — 2d — 2 Od — dkd — 24 — 3

My = (7T + V17 |

=T+ VID ] k—D(2d—Fk+2) I Fama—ais
k=3 n=[d/2]+1

In chapter 5, we will compare the upper bounds of the distance between
a point z € C and a root of «, derived in Chapter 3 and Chapter 4, to the upper

bound f4, given by D. Schleicher.



Chapter 2

Complex Dynamics of the Rational Functions

We denote CU{oo} by C, and call it the extended complex plane.

Theorem 2.1. [5] The function o : Coo X Coy — R, which is defined by

(

2|z—w| ; .
(1+|Z’2>1/2<1+|w|2)1/27 Zf Z) w € C?

2

o (z,w) if ze Candw = oo;

0, if z2=w= o0,
\

1s a metric on Cy.

The metric o is called the chordal metric on C,,. Note that the

chordal metric on Cg is bounded.

2.1 Rational Functions

Definition 2.2. We say that P is a polynomial function or a polynomial
map if P is of the form
P(z) =ag+ a1z +as2® + ...+ ap_12" " + a,2"

when n € NU{0}, a,, #0and a; € C, for all: = 0,1,...,n. We call n the degree
of the polynomial of P, denoted by deg P. We call 0 the zero polynomial

function.



Definition 2.3. Let P and ) be polynomial functions. A function R which is

defined by

is called a rational function. If P is a zero function, R is then also a zero
function. If @ is a zero function but P is not a zero function, R is a constant
function co. We define R (00) as the limit of R(z) as z — oo. The degree of R is

defined by deg R = max {deg P,deg @Q}. If R = 0.or R = oo, we define deg R = 0.

Definition 2.4. Let D C C. A function f : D — C is holomorphic in D if f'(x)

exists for all x € D.

Definition 2.5. Let D € C. A function f : D — C., is meromorphic in D if

1
each point of z € D has a neighborhood in which either f or — is holomorphic.

f
Definition 2.6. Let D; and Dy be subsets of C. A function f : D; — Dy is

analytic in Dy if f is holomorphic or meromorphic in Dy

In fact, if R is-a rational map with deg R = d, then the number of the

solutions of the equation f(z) = w is exactly d (counting multiplicities).

Theorem 2.7. [5] Let D C C and let R and S be the finite degree rational functions

on the domain D. Then
(i) deg(RS) = deg(R) deg(95),

(ii) deg(R") = (deg(R))".



Theorem 2.8. [5] The rational functions of degree one are Mobius transforma-

tions.

Definition 2.9. Let R and S be rational functions. We say that R and S are

conjugate if there exists a Mobius transformation g such that S = gRg™*

Theorem 2.10. [5] Let R and S be rational functions. If R and S are conjugate

with a Mobius transformation g, i.e. S = gRg™ ', then
(i) deg(R) = deg(5),
(ii) S™ = gR"g~",
(iii) g(z) is a fized point of S if and only if z is a fived point of R.

Theorem 2.11. [5] Let R be rational function. Then R is a polynomial if and
only if R™! {oo} = {o0}. In general, a non-constant rational R is conjugate to a

polynomial if and only.if there exists w € Cy such that R™' {w} = {w}.

Theorem 2.12. [5] A non-constant rational function of degree d has precisely d+1

fized points in C.
Next, let (X7, d;) and (X3, dy) be metric spaces.

Definition 2.13. A family F of maps from (X;,d;) into (X, ds) is equicontin-
uous at x if for every positive real number ¢, there exists a positive real number

0 such that

dy (f (x0), [ (2))) <e

for all x € X, dy (zg,x) < 9, and for all f € F.



Definition 2.14. A sequence {f,} of maps from (X, d) into (X;,d;) converges
locally uniformly on X to some function f if for each point x € X has a neigh-

borhood on which f,, converges uniformly to f.

Definition 2.15. A family F of maps from (X;,d;) into (X3, ds) is normal in
Xj if for every sequence of functions in F contains a subsequence which converges

locally uniformly on Xj.

Theorem 2.16 (Arzela-Ascoli Theorem). [5] Let D be an open connected subset
of the complex sphere, and let F be a family of continuous maps on D into the

sphere. Then F is equicontinuous in D if and only if it is @ normal family in D.

Theorem 2.17 (Vitali’s Theorem). [5] Let D be a sub-domain of the complex
sphere, and a sequence of analytic functions {f,} be normal in D. If f, converge
pointwise to some function f on some non-empty open subset W of D, then there

exists an analytic F' . on D such that f, converge locally uniformly to F' on D and

f=FonW.

Let € be the class of continuous functions of C,, into itself and let R

be the subclass of rational functions.

Theorem 2.18. [5] Let f, be the sequence of analytic functions in a domain D of

Cuo. If f,, converges uniformly on D to f with respect to o. Then f is analytic in

D

Theorem 2.19. [5] The map deg : R — Ny is continuous. In particular, if the
rational functions R, converge uniformly on the complex sphere to a function R,

then R 1is rational and for all sufficiently large n, deg R,, = deg R.



2.2 Fatou Sets and Julia Sets

In this section, let X be a set and g : X — X be a map.
Definition 2.20. Let £ C X. We say that E is
(i) forward invariant under g if g (E) = E;
(i) backward invariant under g if g~ (F) = F;
(iii) completely invariant under g if g is both forward and backward invariant.

Note that if g is surjective then g (¢! (E)) = E. So if E is backward

invariant under g, F is completely invariant under g¢.

Theorem 2.21. [5] Let R be a rational map of degree at least two. If a finite set

E is completely invariant under R, then E has at most two elements.

Lemma 2.22. [5] Let E be a subset of X and g,h: X — X be functions. Suppose
that g is surjective and h is bijective. If E is completely invariant under g, then

h(E) is completely mvariant under hgh='.

Lemma 2.23. [5] Let g : X — X be surjective. The intersection of a family of

completely invariant sets under g is completely invariant under g.

Let Ey be a subset of X. By lemma 2.23, we have that
E = ﬂ {F C X : F is completely invariant and Ey C F'}

is completely invariant. In the other words, F is the smallest completely invariant

set that contains Ey. We say that E, generates E.



Next, we define the relation ~ on X by x ~ y if and only if there exist

non-negative integers m and n such that

g"(z) = 9" (). (2.1)

Theorem 2.24. [5] The relation ~ that is defined by the relation (2.1) is an

equivalence relation.

In Theorem 2.24. We call the equivalence class containing x ”orbit of

x”, denoted by [z].

Theorem 2.25. [5] Let x be a point in X. If g be surjective, then [z] is the

completely invariant set generated by {z}.

By Theorem 2.25, we have that a set F is completely invariant if and

only if F is a union of equivalence classes [z].

Theorem 2.26. [5/ Let g be a continuous and open map of a topological space X
onto itself. If E is completely invariant, then the complement (X — E), the interior

(Int E), the boundary (OF) and the closure (E) of E are completely invariant.

Next, let R be a rational map. We consider the equivalence class [z].
By Theorem 2.25, the equivalence class [z] is the smallest completely invariant set

that contains z.

Definition 2.27. A point z is said to be an exceptional point for R if [2] is

finite, and the set of all exceptional points for R is denoted by E (R).

Theorem 2.28. [5] If deg (R) > 2, then R has at most two exceptional points.

Moreover,
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(i) if E(R) = {(}, then R is conjugate to a polynomial with ¢ corresponding to

oo,

(ii) if E(R) = {1, ¢} and ¢ # (o, then R is conjugate to a map z — 24, for

some integer d, where (; and (y correspond to 0 and oo.

Definition 2.29. For each z, the backward orbit of z, denoted by O~(z), is
the set

O (z) ={w:3n € Ny, R*(w) = z} = U R {z}.

n€eNp

We call the points in O~ (z) the predecessors of z.
Remark 2.30. /5] For eachz € X, O™ (z) C [z].

Theorem 2.31. [5] The backward orbit O (z) of z is finite if and only if z is an

exceptional point.

Theorem 2.32. [5] Let (Xi,d;) and (Xa,dy) be metric spaces and let F be a
family of maps of (X1, dy) into (Xa,ds). Then there is a mazximal open subset of
X1 on which F is equicontinuous. In particular, if f maps a metric space (X,d)
into itself, then there is a maximal open subset of X on the the family of iterates

{f™} is equicontinuous.

Definition 2.33. Let R be a non-constant rational function. The Fatou set of
R is the maximal open subset of C., on which { R"} is equicontinuous, denoted by
F (R). And the Julia set of R is the complement of the Fatou set of R in C,,

denoted by J (R).
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By the definition of the Fatou set and the Julia set, we have that the
Fatou set is open and the Julia set is closed. Moreover, the Julia set is compact

under the chordal metric.

Theorem 2.34. [5] Let R be a non-constant rational function, let g be a Mébius

map, and let S = gRg™". Then F (S) =g (F(R)) and J (S) = g(J (5)).

Theorem 2.35. [5] Let R be a non-constant rational function and p € N. Then

F (RP) =F(R) and J (R?) = J (R).
Next, let R be a rational function of degree greater than or equal to 2.

Theorem 2.36. [5] Let R be a rational function. Then F(R) and J(R) are

complete tnvariant under R.

Theorem 2.37. [5] Let P-be a polynomial map such that deg P > 2. Then oo €

F (P) and the component of ¥ (P) that contains oo is complete invariant under P.
Corollary 2.38. /5] If deg (R) > 2, then the exceptional points of R lie in F(R).

Theorem 2.39. [5] Let [ be continuous map of a topological space X onto itself,
and suppose that X has only a finite number of components X;. Then for some

integer m, each X;j is completely invariant under f™.
Theorem 2.40. [5/ J (R) is infinite.

Theorem 2.41. [5] Let E be a closed, completely invariant subset of complex

sphere. Then either:

(i) E has at most two elements and E C E(R) C F (R); or
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(i1) E is infinite and J (R) C E.

By Theorem 2.41, we conclude that J(R) is the smallest closed and

completely invariant set with at least three points.
Theorem 2.42. [5] Either J (R) = Cy or IntJ (R) = ¢.
Theorem 2.43. [5] J(R) is a perfect set and uncountable.

Theorem 2.44. [5] Let W be a non-empty open set such that W N J(R) # ¢.

Then:
(i) Coo — B(R) C Uy R (1) and
(i) J(R) C R" (W), for all sufficiently large integers n.

Definition 2.45. Let ( € C. We said to be ( is a periodic point of R if there

is an integer n such that ¢ is a fixed point of R".

Theorem 2.46. [5] J (R) is contained in the closure of the set of periodic points

of R.

Theorem 2.47. [5] Let z € C..
(i) if z is not exceptional, then J (R) is contained in the closure of O~ (2),
(i1) if z € J(R), then J(R) is the closure of O~ (z).

Theorem 2.48. [5] Let E be a compact subset of the complex sphere with the
property that for all z € F (R), the sequence {R" (z) : n € N} does not accumulate
at any point of E. Then given for any open set U which contains J (R), R™™ (E) C

U for all sufficiently large n.
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Theorem 2.49. [5] Let R and S be are rational maps such that the degree of R

and S are at least two. If R and S commute, then J (R) = J (5).

2.3 Dynamics of Newton’s Method

In 1669, Newton investigates a method to approximate a real root ( of the equation

2 — 23 —5=0. (2.2)

He started with an approximation ry = 2, and wrote x = 2 4+ y. If x is a real root

of the equation, then the original equation becomes

yP + 632 +10y =1 =0.

Neglecting the non-linear terms, he then got y = % and so took x; = 2.1 as his

next approximation to ¢. He then substituted x = 2.1 + ¢ into the equation (2.2)

and obtained the equation

63 , 1123 - 61
= g — o =0

3
"1 10071000

Again neglecting the non-linear terms, he then got ¢ = —%130 and took xy =

r1+q = % = 2.0946... as his next approximation to (. By repeat the pro-
cess, he got a better approximation for the actual root ( = 2.09455148.... His
method was systematicllly discussed by Joseph Raphson in 1690. Raphson de-
scribed the method in terms of the successive approximations x, instead of the

more complicated sequence of polynomials used by Newton. However, both New-

ton and Raphson used purely an algebraic method to derive the method and they
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restricted its use to polynomials.

In 1740, Thomas Simpson described Nemton’s method as an iterative method for
solving general nonlinear equation by using fluxional calculus. Simpson’s method
is now known as the Newton-Raphson method or Newton’s method [5, 6, 7]. New-

ton’s method is the iterative algorithm

T T )
n

(2.3)

for n < 1, where f is a differentiable real function. If we choose a real number
xo well enough, the sequence z, will converge to a real root ( of the equation
f(z)=0.

In 1879, Cayley [8, 9] ignored the restriction of reality of the function f
in Newton’s method and used Newton’s Method to find complex roots of complex
functions. He called this method the Newton-Fourier method. So the problem
concerning to the area of the initial points xg such that the sequence z, will
converge to a root of the equation f(z) = 0 falls into the scope of the study of the
Fatou set of the function

Fz)y=g== ]]:/((Z)) (2.4)

when f is a meromorphic or non-constant entire function.

Let f be a meromorphic or non-constant entire function. We define

Nf:Coo—>Cooby

(2.5)

for all z € C. The function Ny is called the Newton map induced by f.
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We will denote Ny by N if there is no need to specify functions. Given
a zero « of f it is clear that « is a fixed point of N. From Lemma 2.52, it follows
that o € F (N). If U, is the component of F (V) containing «, then every point z
in U, will converge to o under the iteration of N, i.e. kh_g)lo N*(2) = a.. Moreover,
every point z € U2 N~F(U,) converges to a under the iteration of N, where
N=*(U,) denotes the inverse image of U, under N*.

Now, let f denote a polynomial of degree £k > 2, and let N be the

Newton map induced by f. From the definition, we easily derive the following

results:

Lemma 2.50. We have deg N = k if all roots of f are simple, and deg N < k if

the polynomial f has at least one multiple root.
By Theorem 2.12; we have the following remark.

Remark 2.51. A point  is a fized point of N if and only if either { is a root of

for(=o00. Ifdeg N = k, then N has k + 1 fixed points counting multiplicities

in C.
Lemma 2.52. If  is a fized point of N, then ( is
(i) a superattracting fized point if ¢ is a simple root of f;
(i1) an attracting fived point if ¢ is a multiple root of f; or
(7ii) a repelling fixved point if ( = oco.

The Julia set J (Ny) of a Newton map induced by a polynomial has a

special structure. Shishikura [10] proved that J (Ny) is connected.
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Theorem 2.53 (Shishikura’s Theorem). [11] For every Newton map induced by a

polynomial, the Julia set s connected.

Definition 2.54. For every root ( of a function f, the basin of attraction of
( is the open set of points z € C such that N*¥ — ( as k — oo. The immediate

basin of ( is the component of the Fatou set F (V) containing (.

Theorem 2.55. (Mayer-Schleicher’s Theorem) [12] Let f be a nonlinear entire
function, and let { be a root of f. Then the immediate basin of C for the Newton

map Ny 1s simply connected and unbounded.

Corollary 2.56. [12] Every immediate basin for-the Newton map induced by a
polynomial of degree at least two 1is simply connected and unbounded. Moreover,

every component of a basin of attraction is simply connected.



Chapter 3

The Upper Bound of M(d,y)

In 2011, Chaiya gave an algorithm to improve the value of f; which was
initially introdued by Schleicher. Even though, it is not an explicit formula, it can

be easily computed. The following is the result established by Chaiya.

Theorem 3.1. [4] Let P(z) be a polynomial of degree d > 3, and let y be a
positive number larger than 4d — 3. If zy is in an immediate basin of a root o and

|Np(20) — 20| = €, then |zo—a| < M(d,y)e, where M(d,y) = maz{y, Aq + %}

and Ay can be derived from the following iterative algorithm.

Let b= %, and

y(d—=1)[2d(y—2d+3) — 3y = 1].

P S (y=1)(y —4d —3)

Fork=223,...,d—1, setakzl—kzgtg A:_‘fA, If 2A;, < b then let
J

A=A (ap +d—k)Ax — (ap +d —k —1)b
E+1 = Ak (ax + DA, — arh .
Otherwise
Aoy = A <W) .
ag

In the theorem, M (d,y)e, an upper bound for the distance of a point zg
to the a root «, depends on y > 4d — 3. In this chapter, we will find the value y

to optimize the upper bound of M(d,y) for some easy cases.
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3.1 Some properties of A, and ay
Here, we study some properties of Ay and a; appearing in Theorem 3.1

Lemma 3.2. Let d be a positive integer greater than 3. For eachk =2,3,...,d—1,

let Ag, a and Ay satisfy the algorithm in Theorem 3.1. We have that
(i) A >0 forallk =2,3,...,d,

(i) a, > 1 for allk =2,3,...,d =1,

(iii) Ay < A3 < ... < Ay,

(v) ag < a3 <...<aq1,

(v) ap <k for each k =2,3,...,d—1.

Proof. We will prove first that the statements (1) and (2) are true. Since y > 4d—3,

we have that

M2 y(d —1)[2d(y —2d + 3) =3y —1]
N\ (y=1)(y — 4d —3)
Y d—1)[a= 3y 4d? £ 6d 1]
B (y—1)(y—4d=3)
_ y(d=1)[(2d = 3)(4d — 3) — 4 + 6 — 1]

(y—1)(y —4d - 3)

B dy(d — 1)2(d— 2)
D43 "

It clear that a; =1 > 1.
Assume that there exists k = 2,3,...,d—2 such that A; > 0 and a; > 1

for all [ < k. we will prove that Ax,; > 0 and axy; > 0. If 24, > b, we have that
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Apir = Ay <M> = A, (1—1—%) > 0. If 24, < b, we get

(ak—i—d—k)Ak—(ak—i—d—k—l)b)
(ak + 1)Ak - akb .

B (d—Fk—=1)(b— Ag)
= A; <1+ . (b_ (1+i)Ak)
+

Since a > 1, then 1 < 1 i < 2. Tt implies that b — Ay > b — (1 + i)AQ >

ag

b—2A5>0. So Apyq > 0. Since A; >0 foralll=2,3,... . k+1,

a:1+§ A > 1
? j:2Ak+Aj_ '

Next, we will prove that Ay > 0. 1f 24,1 > b, we have that A; = Ay_1 (ad‘—1+1> =

ad—1

Ad—l <1 + —1> > 0. If 2Ad_1 < b, we get

1
aqg—

(ad71 H3 1)Ak Y / ad;lb
(ad_l =t 1)Ak = ad_lb

Ad = Ad—l ( ) = Ad—l > 0.

Hence, the statements (1) and (2) are true.
Next, we will prove that the statement (3) is true. If 245 < b, we have

that

Az — Ay = Ay <(d _b?f(;’;z A2)> > 0.

If 2A5 > b, we have that
A3 — Ay = (d—2)Ay > 0.

For each k =3,4,5,...,d — 1. If 2A; < b, we have that

(d—k—1)(b— Ay)

Ak+l_”4k::ak(b-(1+-éﬁfu)

Ap > 0.
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If 2A;. > b, we have that

d—k

Qg

Apy1 — A = Ap > 0.

From both cases, we conclude that A;,; > A for all k£ = 2,3,4,...,d — 1.
Next, we will prove that the statement (5) is true. Since (1) is true,

we have that

for each k =2,3,...,d— 1.
Finally, we will prove that the statement (4) is true. For each k =
2,3,...,d—1, since (3) is true, Ay < Ayy1. By (1), we have that Ay A; < Ap1 4,

which yields that A Agi1 + ArA; < ApAkir + Ag 1 A;. Hence,

Ay, ” Ars
A+ A 7 Appa + A

forall k=2,3,...,d—1and forall [ =2,3,...,k Foreachk=23,...,d—1,

The proof is complete. n
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3.2 An upper bound of M(d,y) in the case of d =3

In this section, we find the best upper bound of M (d,y) in the case of d = 3. Note

that y > 4d — 3 = 9. First we see that

dyBy —19) _ yly—3)

M- Ty
4(3y — 19)
w-m

& 12y —76> (y —3)(y — 9)

& 0> 9% — 24y +49.

This implies that if 9 < y < 12+ /95, then 24, >b.
Next, we find an upper bound of M(d,y) in the algorithm in Theorem

3.1 in the case of d = 3. If 9 < y < 12 4+ v/95, we have that 24, > b. This means

that
-2 4 —1
(a2+3 > Ay 24, = y(3y — 19) '
(y—1Dy—9)
Since A3+ =24, + Ll >b+ Ll = y, it follows that M (3,y) = A3 + # —

ﬁ% We now consider the function f(y) = % n (9,124 +v/95). Since

fly) = —% = —% < 0 for all y € (9,12 + V95), f is
decreasing on (9,12 + v/95). We choose 3o = 12 + /95, and then we have that
M(3,yo) ~ 16.25804146.

Next, we consider the case when 24, < b, which means y > 12 + v/95.

We have that

. (a2+3—2)A2—(a2+3—2—1)b o 2A2—b o
A3 B < (CLQ + 1)142 - bCLQ A2 n 2A2 —-b A2 n AQ.
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Since Ag—i—% :A2+% < 2A2+% < b+% =y, we have that M(3,y) = y.
So min{M (3,y) : y > 12+ v/95} > 12 + \/95.

We conclude that if we choose y = 1241/95, then we get the least upper
bound for the algorithm in Theorem 3.1 in the case d = 3 and it is 16.25804146.
In the case d = 3, we conclude that we choose y = 12 4+ /95, then we get the best

upper bound of M (d,y), that is 12 + v/95.

3.3 An upper bound of M(d,y) in the case of 24, > b and

d>4

In this section, we consider only the case of 245 > b and d > 4.

Lemma 3.3. Let Ay, ai and Ag be as in the algorithm in Theorem 3.1, for each

k=23,....,d—1.If2A5 > b, then
(7’) (12:1,

(”) a3:%¢_17

(iii) a > T2 for > 4,

Proof. Suppose that 24, > b. By the definition in the algorithm, a; = 1, hence

(1) follows. By Lemma 3.2 (3), we have that Ay < A3 < ... < A, Hence, we get

1< ﬁ—z < ﬁ—;‘ <...< ﬁ—;. Since 24, > b, we obtain
d—2
Ay = (L) Ay = (d — 1) As.
a2
So
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We have that a3 = 1 + A‘ffh =1+ ﬁ =1+ 1+1# = 21 Hence (2) is true.
3 d—1
Az

For each k =4,5,...,d — 1, we have by Lemma 3.2 (3) that

k—1

R
_2(2d=1)+ (k- 3)d
( 2d
(b+1)d -2

2

This proves (3). O
Lemma 3.4. Let Ay, ai and Ay be as in the algorithm in Theorem 3.1, for all
k=23,...,d—1. If2A5 > b, then Ay > b.

Proof. Suppose that 245 > b. By Lemma 3.2 (3), we have that Ay < A3 < ... <

Ag. So, b <24, <2A3<...<2A4.4.Foreach k =3,4,5,...,d, we have

ar_1+d—(k—1
Ak:< ol ( ))Ak_l.

Ag—1

Let By, = %t9=k for cach k = 2,3,4,...,d — 1. Then

ag

Ad = Bd*lefQ oo B4BgBQA2. (31)

For each k =2,3,4,...,d — 1, by Lemma 3.2 (5), we get

ap+d—k d—k d—k d
By=—+1"_"— >14— =,
F (053 + ap + k k
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Thus, the equation (3.1) and d > 4,

b= Bt mms () (25 (2) (2) ()«
= (i71) (722) - () (5) (2) -5

42
> A2>2A2>b

The proof is now complete. O

By Lemma 3.4, we have that if 24, > b, then Ay + % > y. This

_ (d—1)
means that M(d,y) = Aq + 7.

Lemma 3.5. Let Ay, ai and Ay be as in the algorithm-in Theorem 3.1, for each

k=23,...,d—1. If2A5 >'b, then

2 — (h—1)d — 2
AdSAz(d_l)kll( (k+1)d~2 )

Proof. Suppose that 24, > b. We let B, = %, foreach k =2,3,4,...,d — 1.

By Lemma 3.3, we get By = %‘3_2 =d—=1and

ap +d —k d—Ek
By = —X%9=1
g Qg A ay
14 d—k - (k+1)d—2+2d(d— k) 2d*— (k—1)d—2
= (k)2 (k+1)d—2  (k+1)d-2

2d

for each d = 3,4,...,d — 1. From the equation (3.1), we have that

Ad = Bd_le_Q e B4BgBQA2

(i)

d—1

2d% — (k — 1)d — 2
< Ay(d H( (k+1)d—2 )

k=3

The proof is now complete. O
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Theorem 3.6. Let Ay, ap and Ay be as in the algorithm in Theorem 3.1, for each

k=23,...,d—1. Then there exists y > 4d — 3 such that

20(d — 1)(4d? — 7d + 3)(4d® — 13d? + 13d — 2)

M(d,y) <
(dy) < (42 — 7d + 2)(4d? — 11d + 6) ’

d—1 (2d?—(k—1)d—2
where C' = (d — 1) [], 5 (W) :

Proof. We can see that 24, > b if and only if

2y(d —1)[(2d = 3)y —(4d* —6d + 1)] _ y(y —d)

(y =1)(y - 4d +3) —oy—1
2(d — 1)[(2d = 3)y = (4d> = 6d + 1)]
(y —4d + 3) > (y—d)

2(d —1)(2d — 3)y = 2(d = 1)(4d* = 6d +1) > (y— d)(y — 4d + 3)

y? — (4d® — 5d + 3)y =+ (84> = 16d* + 11d — 2) < 0.

| (4d2=5d+3)+4/(4d?~5d+3)2—4(8d3 —16d2+11d—2
. 2

So if 4d — 3 < y < yT, when y ),then

2A5 > b. Note that

(4d® — 5d + 3)* — 4(8d° — 164> + 11d — 2)
= 16d"* = 72d* +113d* — T4d + 16
= (4d®> = 9d+3)” + 8d* — 20d + 8
= (4d® — 9d + 3)* + 4d(2d — 5) + 8
> (4d® — 9d + 3)* + 4(4)(2(4) — 5) + 8
> (4d* — 9d + 3)*.

(4d?—5d+3)++/ (4d2—9d+3)2

Choose yy = Y = 4d? — 7d + 3. Tt is clear that

4d—3<4d(d—Z)—3<4d2—7d—3<4d2—7d+3,
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and that

(4d® — 5d + 3) + /(4d? — 9d + 3)2
2

<yt

Ad?> —7d — 3 =

Hence 4d — 3 < yy < y*. By choosing y = 9, we get 245 > b.

By Lemma 3.5 and the result of the Lemma 3.4, we have

M(d,y) = Aa+ y(yd__ll)

<CA2+y(d_1)

< 1

_ Cy(d—1)[(2d —3)y — (4d> —6d + 1)] 3 y(d —1)

- (y — Dy — 4d +3) y—1

_ (d—1)y T \ / 2 e

= D413 [(20d — 3C + 1)y + (=40d” + 6Cd — C — 4d + 3)]

(d—1)y 2

< D473 [(2Cd = 3C + C)y + (—4Cd* 4+ 6Cd — C + 3C)]

_ (d—1)y B 7. 2

=G DG [((20d = 2C)y 4+ (—=4Cd> + 6Cd + 20)]
2C(d—=1)y

= D=1 [(d=1)y + (=2d* +3d + 1)]

20 (d— 1)(4d> = 7d + 3)
= (A2 = 7d +2)(4d® —11d +6)
2C(d = 1)(4d? — 7d +3)

(4d2_7d+2)<4d2_11d+6)( d 3d° 4+ 13d )

[(d—1)(4d> =7d +3)+ (—2d* +3d + 1)]

The proof is now complete. O]

In the proof of Theorem 3.6, we conclude that if we choose y = 4d? —

. _ 2_
7d + 3, then M(d,y) is less than (4§§f§dj)2()%id2fﬁ;j6) (4d® — 13d* + 13d — 2) when

C=(d-1) Z;:la <2d2—(k—1)d—2> .

(k+1)d—2




Chapter 4

The Main Result

In Chapter 3, we found some upper bounds of M (d, y) with some restric-
tion. We never consider the case where 24, < b in Chapter 3 because there were
several cases that have to be considered. To avoid unpleasant and tedious work,
we have to take a new look into the algorithm, and find a new way for deriving an

upper bound of |zy — «f.

4.1 Preliminary Results

Lemma 4.1. [/ Let P be a polynomial. Let 5 be a complex number and r > 0.
Suppose that Re(%) > 1 whenever |z— 3| =1 and P(z) # 0. Let U be an

immediate basin of a root a of P. If UN B(B,r) # 3, theno € B(B,1).

Remark 4.2. From Lemma 4.1, if p-is a root of P and Re(%) > 1 for all

|z — B| > r, then the closed ball B(B,r) is contained in the immediate basin of 3.

Lemma 4.3. Let P be a polynomial of degree d, and let zg be a point in the
immediate basin of a root of P. Let ay,...,aq be all roots of P such that oy 1s the

nearest root to zy, and |oq — ax| < |y — agya| for all k =2,3,...,d — 1. If zg is
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not in the immediate basin of o for all j =1,2,... k where 2 <k < g, then

24> — k> + 3k —2d — 2
(k—1)(2d — k + 2)

|O./1 — ak+1| < Aka (41)

where Ay is an upper bound of | — oy

Proof. For j = 2,3,...,d, let |a; — ;| = r;. We prove by induction on k. First
we show that it is true when k = 2. If r3 = 7y, then the inequality (4.1) holds for

k = 2. So suppose that r3 > ry. Let Ay € (12,73). For z € C with |z — ay| = As,

we have
P'(z) d 2 — o
- >1 -
Re((z al)P(z))_ +;Re(z—ak)
Ay As(d = 2) 1 As(d—2)
> O I A S
1+A2+7"2+ AQ—T3 _1+2 AQ—Tg

Note that if r3 > (d— 1)A,, then 1 —1— + Ajid TQ) & 5, and hence by Lemma 4.1,
zp is in the immediate basin of either a; or as, which is not the case. Therefore
r3 < (d — 1)Ay, and the inequality (4.1) holds for k= 2.

Next assume that for some 3 < n < g the statement holds for all

k <n—1. Here we let

2% — k2 + 3k — 2d — 2
(k—1)(2d—k+2)

Apyp1 = Ay

for each k = 2,...,n — 1. Notice that Ay < A3 < ... < A,. It can be shown

<—Whenk>2 So

directly that

A A A k-1
A+ Ay~ A+ A Ap + Apqr d =

We may also assume that r,.; > A, otherwise the inequality (4.1) is clearly true
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for k =n. For z € C with |z — a;| = A, we have
R ( _ )P/(z) >1—{—iR zZ— Q1
el (z—m P ) = 2 e .

"L A, An(d—n)
k=2 An + Tk An — Tn+1

> 1+

n—1
A, 1 A.(d—n)
> 1 e R e A 2}
= +;An+Ak+2+An—rnH

n—2
k 1 A.(d—n)
1 1— =) 4oy 7
g +;( d)+2+An_Tn+1

(W =D@d-n+2) 1 Ad-n)

2d 2 An_rn-‘rl.

2d?>—n?4+3n—2d—2 (n—1)(2d—n+2) 1 Ap(d—n) 1
If Tn+l Z mAn, then A % F £ + 5 + m 2 29 and hence by
Lemma 4.1, zp is in the immediate basin of «; for some 1 < j < n. Therefore if z,

is not in any immediate basin of «; for all j € {1,...,n}, then the inequality (4.1)

holds for k = n, as desired. The proof is now complete. O

Lemma 4.4. Let P be a polynomial of degree d, and let zy be a point in the
immediate basin of a root of P. Let ay,...,aq be all roots of P such that oy is the
nearest root to zy, and that oy — | < |ay =g forallk =2,3,...,d—1. If
2o s not in the immediate basin of a; for all j =1,2,..., k where %l <k<d-1,
then

942 — dkd — 2d — 3
B2+ dkd—2d—3 "

|Oz1 — Oék+1| < (42)

where Ay, is an upper bound of |ay — oy

Proof. For j =2,3,...,d, let |og — «j| = r;. From Theorem 4.3, we let

2 — 2 +3j—2d-2
(G—D@Ed—j+2)

A =
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for each 2 < j < g. For 2 <j < g, if Ay > A;, we obtain

Ay > Ajn :1_L>1_]’:'
At A, S A+ A A1 A d

We may also assume that ry,; > Ay, otherwise the inequality (4.2) clearly holds.

For z € C with |z — ay| = Ay, we have

Re ((z—al)];((;)) > 1—|—ZR€ (2:2)

Ar(d = k)
> 1+
ZAk+T] Ap = TEp1
[d/2]
1 Ap(d —k)
> 1 ! 9y LA
D3t (IR e
Ld/2J1 :

1 J ANy Ap(d — k)
> 14 ;1 (1 d>+2(k; Ld/2j)—|—Ak_Tk+1
UN@=N 1) $hd Adld =)

B 2d Ak—rk—i-l’

where N = |d/2], the greatest integer that is less than or equal to d/2. If 7441 >

<% + 1) Ay, then Re ((z — 041)1;'((;))) > —, and hence by Lemma 4.1,

29 is in the immediate basin of «; for some 1 < 5 < k. Therefore if 2j is not in any

immediate basin of «; for all j € {1,...,k}, then we must have

2d(d — k)
1) Ay
TRt < (N(d—N+1)+dk;—d+ ) ¢
Since N > ©L and N(d — N 4 1) increases as N increases on the interval [1, (d +

1)/2], we obtain, by substituting N by (d —1)/2,

2d(d — k) )Ak O —dkd =243

. 1
“1<(J\f(d—N+1)+dk:—d+ S P akd—2d -3

as needed. The proof is now complete. O
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Lemma 4.5. Let P be a polynomial of degree d, and let z € C such that |N,y(z) —
z| =€ > 0. If there at least d — 2 roots of P are outside the open ball B(zo,ye),

where y > d — 2, then there is a root o of P such that

2ye

—al < 222
12 CY|_y—d+2

Proof. Let ay,as,...,aq be all roots of P. Suppose that |z — ax| > ye for &k > 3

and that |z — ;| > y—QZirz for 7 = 1,2, then

-1
P'(2) \ d 1
M) e >
g Pl S\
<ﬂy—d+2) d—2>—1
F— g’
2ye ye
a contradiction. Thus the lemma holds. O

From the above lemma, if we choose y = d, the following corollary

follows.

Corollary 4.6. Let P be a polynomial of degree d, and let z € C. There exists a

root a of P such that |z — a| < d|N,(z) = z|.

Indeed, this lemma is a well-known result about Newton’s map of a

polynomial (see [3]).

Lemma 4.7. Let d > 4 The function

~ 2d+3c—3—\/4d? +4d(c — 3) + 92 — 14c+ 9

5(e) ST (13)

18 1ncreasing on ¢ > 1.
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Proof. Since

B(e) = 1 (3_ 2d +9c — 7 )
2(2d — 1) V92 + ded + 4d? — 14c — 12d + 9

and

; —(2d—1)(d—2) >0,

2d+9c—7\" 1
(9¢* + 4ed + 4d° — 14¢ — 12d + 9) — <M> = 96

we have that

g _ 2d +9c — 7 >0
V92 + ded + 4d? — 14¢ — 12d 4+ 9

So f'(¢) > 0 for all ¢ > 1. We conclude that [ is increasing on ¢ > 1. O

Lemma 4.8. Lety > d —2 and d > 4. The function

2cy
(y —d+2)B(c)

T(c) = (4.4)

18 1ncreasing on ¢ > 1.

Proof. Since

ooy = (2 = 1) (2 B = (A 2 = Te - 124 + )
v (y—d+ 2)M(2d—3c—3 M)’

Y

where M = v/9¢? + 4ed + 4d% — 14c — 12d + 9, and
(2d — 3)?M? — (4d* + 2de — Tc — 12d + 9)* = 16¢*(2d — 1)(d — 2) > 0,

we have that (2d — 3)M — (4d* + 2dc — 7c — 12d + 9) > 0. So T'(¢) > 0 for all

c¢ > 1. We conclude that § is increasing on ¢ > 1. O

Theorem 4.9. Let P be a polynomial of degree d, and let zy be a point in the

immediate basin of a root o of P. Suppose that |N(zo) — 20| = €. If z0 # «, then

either |zo — a| < %dé, or there are at least three roots of P lying inside the

open ball B(z, (6 +/17)de).
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Proof. Let aq,...,a4 be all roots of P such that a; is the nearest root to 2y, and
that |1 — ag| < Jog — agyq] for all & = 2,3,...,d — 1. Let y = (6 + v/17)d.

If |20 — ax| < ye for k € {1,2,3}, then the theorem is true. So suppose that

|20 — | > ye for all k =3,...,d. By Lemma 4.5, we have |2 — a1| < yoe, where
_ % (1242VINd 124217
Py —dye G+VIT)d+2  5+V1T
Then for £ > 3
a1 — | = |20 — | = |20 = au| > (y — wo) € = be, (4.5)

2
where b = (6+(‘gi)/%§£)d . Fork =2,3,...,d, let Jo; — ai| = r;. Note that

r, > be for all k > 3. Let r3 = ery for some ¢ greater than or equal to 1, and let r

be a positive number less than r,. For z € C with |z — o3| = 7, we have

o))

k=2
NSV SR )
r—"7r9 r—7Ts
S ] +r(d—2)

r—T9 T — Cro

Note that if » < fBry then 1+ ﬁ + =2 1 where

r—cro — 2

_ 2d+3c—3— \/4d?> + 4d(c — 3) + 9¢* — 14c + 9
B 2(2d — 1) '

8

As a consequence of Lemma 4.1, if |zg — a1| < frg, then zp is in the immediate

basin of o; and the theorem holds because from above

12 4+ 2v/17
——¢.
S+ V17

|ZO — CM1| < Yot <
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Next assume that z; is not in the immediate basin of «;. So we must
have

Bra < |zo — a1 < yoe,

which implies ry < 3987 'e. Let Ay = yoB3~!. By Lemma 4.7, 3 is an increasing
function with respect to ¢. Hence A, is a decreasing function with respect to c.
Since 87! = 2d — 1 when ¢ = 1, it follows that Ay < (2d — 1)yee. If 2 is in the

immediate basin of ay, then a@ = ap and

|20 — | < |20 = aa |+ Jon—as| < yoe + Ase < 2dyqe.

Hence the theorem is true for this case.

Finally suppose that z is neither in the immediate basin of a; nor in
the immediate basin of as. Since r3 > be > 2dyge, it follows that r3 > Ase. Let
d be a sufficiently small positive number such that r3 > (1 + §)ry. For z € C

satisfying |z — au) = (1 +J)r2, we have

Re <(Z_a1)P’(z)) Sy L AT )rad = 2)

P(2) 2 (L4 0 =15

If 75 > (d—1)(1+06)ry, then 14 {F2A2E2 > 0 and hence Re ((z - al)fl;’(%)) >

N

Then by Lemma 4.1 z; is in the immediate basin of either oy or as, which is not
the case. Hence 13 < (d — 1)(1 4 d)ry. Since ¢ is arbitrary small, it follows that
r3 < (d — 1)ry. Since r3 = crg, ¢ must be less than or equal to d — 1. By Lemma
4.8, we have that cAs is an increasing function with respect to c. By substituting
¢ by d — 1 into A,, we derive that

2u0(d — 1)(2d — 1)e
5d — 6 — /17d2 — 28d + 32

r3 = cro < cAge <
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2yo(d—1)(2d—1)
5d—6—+/17d2—28d+32

It can be easily shown that < b. This gives a contradiction to
the assumption that r3 > be.

Therefore if |zg — ax| > ye for all k = 3,...,d, then z; must be in the

immediate basin of either a; or s, and in either case we get |29 — a| < 2dyee =

%deas desired. The proof is now complete. O
The following corollary is a consequence of Corollary 4.6 and Theo-
rem 4.9.

Corollary 4.10. Let P be a polynomial of degree d > 3, and let zy be a point in
the immediate basin of a root of P. Let ay, ..., aq be all-roots of P such that oy s
the nearest root to zo, and that |y — ag| < |ag = ey for allk =2,3,...,d — 1.
If IN(20) — 20| = € > 0-and zy is not-in the immediate basin of a; for j = 1,2,

then oy — as| < (T++/17)de.

Proof. From Corollary 4.6, we have |2y —ay| < de. Combining with Theorem 4.9,

we obtain
o — as| < |20 — | |20 S| < (1 4 (64 \/ﬁ)) de = (7 + V1T)de.

we are done. O

4.2 Main Theorem

Now we are ready to prove our main theorem.

Main Theorem. Let P be a polynomial of degree d > 4, and let zy be a point in the

immediate basin of a root o of P. If |N(z0)—z0| = € > 0, then |zp—a| < (Mg+1)de,
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where
ld/2] 1o 2 d-1 2
2d* — k* + 3k — 2d — 2 9d* — 4kd — 2d — 3
My;=(7T+V17 .
=TV ] k—Dd—Fk+2) Il a2
k=3 n=[d/2|+1
Proof. Let aq,...,aq be all roots of P such that a; is the nearest root to z,

and that | — ag| < |ag — agyq| for all k£ =2,3,...,d—1. If a € {1, 9,3},
then by Theorem 4.9 the result follows. Next suppose that o ¢ {ay, o, a3}. Let
A3z = (T4 V/17)de. Then, by Corollary 4.10, Az is an upper bound of a3 — as|.

For k > 3, define A, inductively by

2d? —k243k=2d—2 :
her e Ak i k<) /2],

Apy1 =
e ] if |d/2)<k<d-1.
Notice that A3 < Ay < .o. < Ag = Myde. If o # o for j =1,2,... k, then by
Theorem 4.3 and Theorem 4.4 we have that Ay, is an upper bound of |ay — a1/

Hence in any case we must have |a=ay| < Ay. Since by Corollary 4.6 | —zo| < de,

we obtain that
|20 = a| < oy — 20| +]a —an| < Myde + de,

as desired. The proof is now complete. O

From Main Theorem, we conclude that if a point z is in the immediate

basin of a root «, then the distance between z and « is less than (My+1)de, where

Ld/2] d—1

2% — k% + 3k — 2d — 2 9d? — dkd — 2d — 3
My=(7+V17) || (k—1)(2d — k +2) 11 &> + 4kd — 2d — 3"
k=3 n=[d/2|+1

and € = |N(z) — z|.



Chapter 5

Conclusions

In this chapter, we will present some computational results of the upper
bounds for the distant between a point z and a root « that were derived in Chapter
3, namely M (d,y), and in Chapter 4, namely M,. Here M(d,y) is computed, when

y is selected, as appeared in Chapter 3, to be 4d?> — 7d + 3. The value f; is the

d?(d—1)
2(2d—1)

upper bound given by D. Schleicher, that is f; = (2;1). We can see from the
following tables that the bound M (d,y) is better than f; at least d times when

d > 11. Furthermore, the bound My is better than fy at least 2°4¢d times if d > 10.



Table 1 : The values of M (d,y), My and f;.

d Ja M(d,y) M,

10 | 4.3758 x 10° | 4.6759 x 10° | 2.3145 x 10*
20 | 1.3431 x 10" | 4.0121 x 10" | 8.6733 x 10°
30 | 2.6159 x 10" | 3.5606 x 10'7 | 4.0491 x 10'3
40 | 4.2459 x 10% | 3.2766 x 10%* | 2.0426 x 10'®
50 | 6.2420 x 103" | 3.0908 x 10% | 1.0721 x 10%3
100 | 2.2523 x 1092 | 2.7817 x 10° | 5.4533 x 100
150 | 5.2563 x 1092 | 2.8727 x 10% | 3.2504 x 107
200 | 1.0269 x 103 | 3.1467 x 10'¥ | 2.0624 x 10%*
250 | 1.8205 % 1093 | 3.5612 x 10| 1.3535 x 108
300 |3.0349 x 103 4.1149 x 107 9.0728 x 104!
400 | 7.5122 x 1024 | 57137 x 10%% | 4.2411 x 10'®
500 | 1.6876 x 10°%| 8.1990 x 102%| 2.0490 x 10237
600" | 3.5656 x10%0* | 1.2013 x 1039 | 1.0107 x 10?%
700 | 7.2213 x 10%2* | 1.7855 x 10*2°| 5.0575 x 10332
800 | 1.4179 x 10 | 2.6819 x 10%° | 2.5571 x 1038
900 | 2.7190 x 10°% | 4.0606 x 10°% | 1.3033 x 10?3

1000

5.1178 x 1069°

6.1871 x 10690

6.6845 x 1047

38
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Table 2 : This table shows that M (d,y) is better than f; at least d times when d > 11.

d fa M(dy) | w
10 | 4.3758 x 10° | 4.6759 x 10° | 0.9358
11 2.0323 x 107 | 1.8360 x 10% | 1.0063
12 | 9.3117 x 107 | 7.1997 x 10% | 1.0778
20 | 1.3431 x 10'3 | 4.0121 x 10! | 1.6738
30 | 2.6159 x 10* | 3.5606 x 107 | 2.4489
40 | 4.2459 x 102 | 3.2766 x 10%* | 3.2396
50 | 6.2420 x 103 | 3.0908 x 10%° | 4.0390
100 | 2.2523 x 1052 | 2.7817 x 10° | 8.0970
150 | 5.2563 x 1092 | 2.8727 x 10% | 12.1981
200 | 1.0269 x 1023 | 3.1467 x 109 | 16.3178
250 | 1.8205 x 103 | 3.5612 x 109 | 20.4477
300 | 3.0349 x 108 | 4.1149 x 10'7? | 24.5843
400 | 7.5122 x 10%* | 5.7137 x10%? | 32.8699
500 | 1.6876 x 103% | 8.1990 x 10%% | 41.1660
600 | 3.5656 x 103%* | 1.2013 x 10350 | 49.4690
700 | 7.2213 x 1024 | 1.7855 x 10*20 | 57.7766
800 | 1.4179 x 10*5 | 2.6819 x 10*%° | 66.0876
900 | 2.7190 x 10°% | 4.0606 x 10°%° | 74.4013
1000 | 5.1178 x 1099 | 6.1871 x 10%%0 | 82.7170
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Table 3 : This table shows that My is better than f; at least 2°4?d times when d > 10.

d Ja My 2045—‘2%
10 | 4.3758 x 10° | 2.3145 x 10* | 1.1816 x 10°
20 | 1.3431 x 10" | 8.6733 x 10% | 3.0246 x 10°
30 | 2.6159 x 10" | 4.0491 x 10" | 5.2574 x 10°
40 | 4.2459 x 10%° | 2.0426 x 10'® | 7.9294 x 10°
50 | 6.2420 x 103 | 1.0721 x 10*® | 1.1105 x 10!
100 | 2.2523 x 1092 | 5.4533 x 10% | 3.7564 x 10!
150 | 5.2563 x 102 | 3.2504 x 107 | 9.3510 x 10!
200 | 1.0269 x 10'% | 2.0624 x 10% | 2.0594 x 10?
250 | 1.8205 x 103 | 1.3535 x 10M8 | 4.2440 x 102
300 | 3.0349 x 10'83.1.9.0728 x 10! | 8.3883 x 10?
400 | 7.5122 x 102*3| 4.2411 x 10'® | 3.0299 x 10°
500 | 1.6876 x 1034 | 2.0490 x 10237 | 1.0251 x 10*
600. |3.5656 % 10%6* | 1.0107 x 10%% | 3.3277 x 10*
700 | 7.2213 x 10*** | 5.0575 x 10%32-| 1.0500 x 10°
800 | 1.4179 x 10% | 2.5571 x 10%%0 | 3.2449 x 10°
900 | 2.7190 x 10°%® | 1.3033 x 10**® | 9.8701 x 10°
1000 | 5.1178 x 109 | 6.6845 x 10*™ | 2.9650 x 10°
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An Upper Bound for the Distance between
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Abstract

Newton’s method is one of the most popular root-finding al-
gorithms for meromorphic functions. In 2002, Dierk Schleicher estab-
lished an explicit upper bound for the number of iterations of Newton’s
method for complex polynomials with a prescribed precision. In his
work, Schleicher needed an upper bound, namely f;, for the distance
between a starting point zg to the root o, where z is in the immediate
basin of « and d is the degree of the polynomial. In 2011, Somjate
Chaiya gave an algorithm to improve the value of f;. In this research,

we establish a new explicit bound for f;.
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