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Chapter 1

Introduction

The three-body problem arises in the area of classical mechanics. It describes

three masses which interact under the gravitational force. The problem was orig-

inated from the motion of the Moon under the gravitational force acting between

the Sun and the Earth [31]. The three-body problem is considered to be one of

the Hamiltonian systems. The Hamiltonian of the system of n body is denoted by

H(p,q) = H(p1, . . . , pn, q1, . . . , qn).

The corresponding system of differential equations is given by

dpi
dt

= −∂H
∂t

dqi
dt

=
∂H

∂t
, i = 1, 2, . . . , n

where pi is the generalized momenta and qi is the generalized coordinates.

The three-body problem was first discovered in 1687 by Sir Isaac Newton. He

formulated a system of differential equations to describe the motion of the Moon

around the Earth. The study revealed that the Moon and Earth influence on

each other by a gravitational force and use the initial conditions associated to

the equations to predict the motion of two bodies moving in orbit. When another

variable is added to generate the three-body system, the relationship of the motion

of the Moon under the influence of the Earth and Sun is considered [23, 24, 28].

Later in 1772, Euler established a lunar theory through the study of the restricted

three-body problem. About the same time, Lagrange, who followed Euler’s lead,

introduced a method for describing periodic orbits of general three-body problem.

1
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He discovered the five Lagrange points (equilibrium points) and the Lagrangian

equilateral triangle. [24, 26, 31]

In 1836, Jacobi continued to study the restricted system with more variables

[26, 31]. Later in 1858, Dirichlet claimed that he had discovered a general method

for treating the problem. In addition, he claimed that he had succeeded in proving

the stability of the planetary system. However, he died without leaving a proof

of his work. Yet, it was presented by his students, Kovalevski and Mittag-leffler

[22]. In 1883, Poincaré authored a book about the three-body problem based

on the Mean Value Theorem in order to prove that the three-body problem has a

relativistic periodic solution. Nevertheless, the analytic solution to the three-body

problem still has not been found [3, 4].

Later, Alexey Lapshin revealed a numerical solution to the problem using the

fourth order of Runge-Kutta method. He showed the method of solving the re-

stricted problem when one of the masses of the three-body problem is considered

to be very small (close to zero) compared to the other two masses. He, moreover,

found that the orbit of an object with a small mass moves around the two ob-

jects in shape of the eight and ellipses [21]. Feng Kang afterwards offered a new

method to determine the numerical solution of such differential equations called

the symplectic methods, which preserve the area and, thus, reduce variability in

solutions [17, 30].

In 2011, Kanyamee and Zhang considered the Hamiltonian of the Earth-Moon-

Satellite system. They described the motion of a satellite around the Earth and

Moon by setting the Earth and Moon on the x−axis, while the coordinates (x, y)

represented the satellite coordinate in the orbit around the Earth and Moon.

They compared the spectral collocation methods with the first-order symplectic

method. The orbits obtained from the symplectic method seemed to be thicker

than the collocation methods, especially the left and right corner. Moreover, when

comparing the error in energy and CPU times, the spectral collocation methods

provide small error and less time than the symplectic method. However, the

convergence rate of the spectral collocation methods is of the first order, which
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could be improved. Additionally, they did not provide the set of appropriate initial

conditions for this problem [18].

After that, Zhang Hua et al. proved that the Symplectic Algebraic Dynamics

Algorithm (SADA) has high accuracy in finding solutions to describe the long term

behavior of the circular restricted three-body problem (CR3BP). They considered

the Hamiltonian of the Earth-Moon-Satellite system and compared the SADA of

the fourth order with the Runge-Kutta method of fourth order. They eventually

found that the SADA method gives better accuracy than Runge-Kutta method in

a long-term period [32].

As stated in the beginning of the chapter, the Hamiltonian systems are de-

scribed by a set of ordinary differential equations . The ordinary differential

equations occur mostly in problems in Science and Engineering. There are several

numerical methods to solve the initial value problems of the ordinary differential

equations. The classical methods such as the Euler method and explicit Runge-

Kutta methods are known to provide the numerical solutions with a low accuracy

[5] whereas the implicit Runge-Kutta methods give a high accuracy for the nu-

merical results [6, 7, 14]. There are some other high accuracy methods for the

ordinary differential equations proposed by Hairer et al. [9], Lambert [20] and

Stuart et al. [29].

Spectral methods have been successfully used to obtain the numerical solutions

of ordinary and partial differential equations. The solutions of the methods are

approximated in forms of the expansion of higher-order polynomials [8, 15, 16, 19].

The spectral collocation methods recently capture many researcher’s interests as

they give a spectral accuracy to the solutions. The smoother the exact solutions,

the smaller the numerical errors are [35].

The recent work for solving the ordinary differential equations using the spec-

tral methods are proposed by Guo et al. [2, 11, 12, 14, 33]. They developed

the Legendre-Gauss [14] and designed Laguerre-Gauss and Laguerre-Radau type

[2, 11] spectral collocation methods for the ordinary differential equations. Fur-

thermore, Kanyamee et al. [18] described the comparison of several spectral
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Galerkin and spectral collocation methods and symplectic methods for the Hamil-

tonian systems. Wang et al. [34, 35] developed the Chebyshev-Gauss spectral

collocation methods and developed the Legendre-Gauss collocation methods for

nonlinear delay differential equations. El–Baghdady et al. [10] designed a new

Chebyshev spectral collocation method for solving a class of one-dimensional lin-

ear parabolic partial integro-differential equations.

In this work, we are interested in finding a numerical solution of the ordi-

nary differential equations and, hence, the numerical solutions of the three-body

problem with the appropriate set of initial conditions to show the behavior of the

solution near the equilibrium points. We first propose the collocation method with

(N + 1) Chebyshev-Gauss points as the nodes. Then, we derive a new algorithm

for solving an ordinary differential equation and a system of ordinary differential

equations. A good method should preserve both energy of the system H and the

area (orbit).



Chapter 2

Preliminaries

In this chapter, we will discuss the three-body problem and the spectral collo-

cation methods.

2.1 The three-body problem

We consider the Hamiltonian, H, of the Earth-Moon-Satellite system given by

H(px, py, x, y) =
p2x + p2y

2
+ (ypx − xpy)−

(
1− µ

r1
+
µ

r2

)
where x and y are the displacements along the x− and y−axes, px and py are

the momenta in the x− and y− directions, respectively, r21 = (x + µ)2 + y2,

r22 = (x+ µ− 1)2 + y2 and µ is the mass of the Moon. In this paper, we choose µ

to be 0.01215 times the mass of the Earth [32]. The Hamiltonian H also represents

the energy of the system. The system are known to conserve energy, i.e., the energy

is constant along the trajectory [17].

This system describes the motion of the satellite around the Earth and Moon.

To formulate the equations, we locate the Earth and the Moon on the x−axis

where the origin is at the center of mass between the two objects. The position

of the satellite can be represented by the x− and y− coordinates or as the point

(x, y).

5
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The corresponding system is given by
dpx
dt

= py −
(1− µ)

r31
(x+ µ)− µ

r32
(x+ µ− 1)

dpy
dt

= −px −
y

r31
(1− µ)− µ

r32
(y)

dx

dt
= px + y

dy

dt
= py − x (2.1)

where p(0) = p0, q(0) = q0, x(0) = x0 and y(0) = y0. For simplicity, we let

px = p1, py = p2, x = q1 and y = q2.

As we discussed in Chapter 1, this system has the five Lagrangian equilibrium

points which are L1(0, 0.84, 0.84, 0), L2(0, 1.16, 1.16, 0), L3(0,−1.01,−1.01, 0),

L4(−0.87, 0.49, 0.49, 0.87) and L5(0.87, 0.49, 0.49,−0.87). The first three points

L1, L2 and L3 on the x−axis are the collinear equilibrium points. These three

points are called the unstable saddle points. The other two points L4 and L5 are

called the nonlinear stable points [32].

2.2 Spectral collocation methods

The spectral collocation methods are methods to determine a numerical so-

lution of ordinary differential equations and partial differential equations. The

collocation method is defined by considering the residual of the problem. The

method requires the residual to vanish at a certain set of grid points. These

grid points are called the collocation points. The collocation points denoted by

x0, . . . , xN are commonly the set of Gauss-type points [15, 16].

Consider the problem:

∂u(x, t)

∂t
= Lu(x, t), x ∈ [a, b], t ≥ 0

BLu = 0, t ≥ 0

BRu = 0, t ≥ 0

u(x, 0) = f(x), x ∈ [a, b]

(2.2)

where L is a leading spatial derivative operator, BL and BR are the boundary

operators at x = a and x = b, respectively.
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In the collocation method, we seek a solution uN(x, t) ∈ PN of the form

uN(x, t) =
N∑
j=0

aj(t)ϕj(x) (2.3)

where ϕj(x) is a polynomial taken from the space

PN = span
{
ϕj(x) ∈ Span

{
xk
}j
k=0

| BLϕj = 0, BRϕj = 0
}N

j=0
.

As discussed above, we require the residual to vanish at the collocation points

x0, . . . , xN . This yields the (N+1) equations to determine the unknown expansion

coefficients, aj(t), j = 0, . . . , N .

RN(xj, t) =
∂u(xj, t)

∂t
− Lu(xj, t) = 0, 0 ≤ j ≤ N.

Substituting (2.3) into (2.2), we obtain the corresponding (N + 1) equations for

(2.2) as 

∂uN(xj, t)

∂t
= LuN(xj, t), 0 ≤ j ≤ N

BLuN = 0,

BRuN = 0

uN(x, 0) = f(x)

We apply the collocation method to the three-body problem (3.1) using the

Gauss points as the collocation points for the problem. The Gauss points xj are the

zeros of polynomial on the interval [−1, 1]. These points xj are then transformed

to the Gauss points tj on the interval [a, b] by tj =
b+ a+ xj(b− a)

2
.

To find the solution of (3.1), we seek for p1N(t), p
2
N(t), q

1
N(t), q

2
N(t) ∈ PN of the

form

p1N(t) =
N∑
j=0

P 1
j ϕj(t), p

2
N(t) =

N∑
j=0

P 2
j ϕj(t), q

1
N(t) =

N∑
j=0

Q1
jϕj(t), q

2
N(t) =

N∑
j=0

Q2
jϕj(t)
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such that the residual is zero at the points t0, . . . , tN , i.e.,

dp1N(tj)

dt
= p2N(tj)−

(1− µ)

r31
(q1N(tj) + µ)− µ

r32
(q1N(tj) + µ− 1)

dp2N(tj)

dt
= −p1N(tj)−

q2N(tj)

r31
(1− µ)− µ

r32
(q2N(tj))

dq1N(tj)

dt
= p1N(tj) + q2N(tj)

dq2N(tj)

dt
= p2N(tj)− q1N(tj). (2.4)

In this work, we design a method to solve (2.4). The basis function ϕj is chosen

to be the Chebyshev polynomial, resulting a system of (N + 1) equation for each

set of unknown coefficients P 1
j , P

2
j , Q

1
j and Q2

j . We compare the results with the

Legendre-Gauss collocation method in [14], where ϕj is the Legendre polynomial,

the Chebyshev-Gauss spectral collocation method in [35], the symplectic method

and the Runge-Kutta method. The result of the three-body problem will be

discussed in Chapter 5 Section 5.3.



Chapter 3

Chebyshev-Gauss collocation
method

In this chapter, we describe the Chebyshev polynomials and their properties, in

Section 3.1 and 3.2. Then, we introduce the Chebyshev-Gauss collocation method

as well as the algorithm for soliving an ordinary differential equations in Section

3.3.

3.1 Chebyshev polynomials of the first kind

In this section, we consider Chebyshev polynomials of the first kind on the

interval [−1, 1] and the shifted Chebyshev polynomials on the interval [0, T ].

Chebyshev polynomials of the first kind, denoted Tn(x), are eigenfunctions of

the singular Sturm-Liouville equation of the form

(
1− x2

)
T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0, x ∈ [−1, 1].

An alternative representation of the Chebyshev polynomial of degree n is given by

Tn(x) = cos(n arccos(x)).

Let Tl(x) be the Chebyshev polynomial of degree l defined on the interval [−1, 1].

We define the shifted Chebyshev polynomials TT,l(t) on the interval [0, T ], with

the transformation x =
2t

T
− 1, by

TT,l(t) = Tl

(
2t

T
− 1

)
= cos

(
l cos−1

(
2t

T
− 1)

))
, l = 0, 1, 2, ...

9
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The first few polynomials are illustrated as follows:

TT,0(t) = cos
(
(0) cos−1

(
2t

T
− 1)

))
= 1,

TT,1(t) = cos
(
(1) cos−1

(
2t

T
− 1)

))
=

2t

T
− 1,

TT,2(t) = cos
(
(2) cos−1

(
2t

T
− 1)

))
=

8t2

T 2
− 8t

T
+ 1.

By following a property of Chebyshev polynomials, we have the three-term recur-

rence relation for shifted Chebyshev polynomials

TT,l+1(t)− 2

(
2t

T
− 1

)
TT,l(t) + TT,l−1(t) = 0, l ≥ 1. (3.1)

The shifted Chebyshev polynomials are also orthogonal on the interval [0, T ] ( see

Appendix A.1 ), i.e.∫ T

0

TT,l(t)TT,m(t)ω
− 1

2 (t)dt =
1

2
πclδl,m, l ≥ 0 (3.2)

where ω(t) = t(T − t), c0 = 2, cl = 1 and δl,m is the Kronecker symbol.

Consider any function u ∈ L2

ω− 1
2
(0, T ).A Chebyshev expansion of a function u is

u(t) =
∞∑
l=0

ûlTT,l(t). (3.3a)

where the expansion coefficients, ûl, are constants. Multiplying both sides of (3.3a)

by TT,l(t) and ω− 1
2 (t) and integrating with respect to t over [0, T ] gives∫ T

0

TT,l(t)u(t)ω
− 1

2 (t)dt =

∫ T

0

TT,l(t)

(
∞∑
l=0

ûlTT,l(t)

)
ω− 1

2 (t)dt

=
∞∑
l=0

∫ T

0

TT,l(t)ûlTT,l(t)ω
− 1

2 (t)dt

=

∫ T

0

TT,0(t)TT,0(t)û0ω
− 1

2 (t)dt+

∫ T

0

TT,1(t)TT,1(t)û1ω
− 1

2 (t)dt+ . . .

=

∫ T

0

TT,l(t)TT,l(t)ω
− 1

2 (t)ûldt

=
1

2
πclûl

∴ ûl =
2

πcl

∫ T

0

u(t)TT,l(t)√
t(T − t)

dt. (3.3b)
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Next, for any positive integer N , we consider the Chebyshev-Gauss quadrature.

Let
{(
xNj , ω

N
j

)}N
j=0

be the Chebyshev nodes (where x are the zeros of TN+1(x)) and

corresponding weights on the interval (−1, 1). We define the shifted Chebyshev-

Gauss nodes and the corresponding weights on (0, T ) as

tNT,j =
T

2
(xNj + 1), 0 ≤ j ≤ N and ωN

T,j =
T

2
ωN
j , 0 ≤ j ≤ N.

Let PN(0, T ) be the set of polynomials of degree at most N on [a, b]. According

to the Gauss-type quadrature rule. The Gaussian quadrature is exact for all

polynomials p(x) ∈ P2N+1. As a results, for any ϕ ∈ P2N+1(−1, 1),∫ 1

−1

ϕ(x)√
1− x2

dx =
π

N + 1

N∑
j=0

ϕ(xNj ).

Hence, for any ϕ ∈ P2N+1(0, T ), we have∫ T

0

ϕ(t)√
t(T − t)

dt =

∫ 1

−1

ϕ

(
T

2
(x+ 1)

)(
1

T
2

√
1− x2

)
T

2
dx

=

∫ 1

−1

ϕ
(
T
2
(x+ 1)

)
√
1− x2

dx

=
π

N + 1

N∑
j=0

ϕ

(
T

2
(xNj + 1)

)
(by Gaussian quadrature [16])

=
π

N + 1

N∑
j=0

ϕ(tNT,j). (3.4)

3.2 Discrete Chebyshev-Gauss expansion [15]

In the continuous L2

ω− 1
2
(0, T ) space, we define the inner product and

L2

ω− 1
2
-norm as

(u, v)T =

∫ T

0

u(t)v(t)dt and ∥u∥T = (u, u)
1/2
T for u, v ∈ L2

ω− 1
2
(0, T ).

For the discrete expansion, using the Chebyshev-Gauss quadrature formula, the

discrete inner product and norm on (0, T ) is defined by

(u, v)T,N =
π

N + 1

N∑
j=0

u(tNT,j)v(t
N
T,j) and ∥u∥T,N = (u, u)

1/2
T,N (3.5)
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where u, v ∈ L2

ω− 1
2
(0, T ).

It follows from (3.4) that for any ϕψ ∈ P2N+1(0, T ) and φ ∈ PN(0, T ),

(ϕ, ψ)T =

∫ T

0

ϕ(t)ψ(t)ω− 1
2 (t)dt =

π

N + 1

N∑
j=0

ϕ(tNT,j)ψ(t
N
T,j) = (ϕ, ψ)T,N (3.6a)

and the two norms ∥φ∥2T and ∥φ∥2T,N coincide, i.e.

∥φ∥2T =

∫ T

0

φ(t)φ(t)ω− 1
2 (t)dt =

π

N + 1

N∑
j=0

φ(tNT,j)φ(t
N
T,j) = ∥φ∥2T,N . (3.6b)

Recall the Chebyshev expansion in (3.3a), the truncated continuous expansion of

u is considered as the projection of u on the finite dimensional space B(N+1) of the

form

u(t) =
N+1∑
l=0

ûNl TT,l(t). (3.7)

where B(N+1) = span
{
tk : 0 ≤ k ≤ N + 1

}
with the coefficients

ûNl =
2

πcl
(u, TT,l)T =

2

πcl
(u, TT,l)T,N , 0 ≤ l ≤ N and ûNN+1 =

2

πcN+1

(u, TT,N+1)T .

Let IT,Nu be the discrete Chebyshev-Gauss expansion of any u in L2

ω− 1
2
(0, T ).

Using the Chebyshev-Gauss quadrature, we define the discrete approximation of u

IT,Nu(t) =
N∑
l=0

ũNl TT,l(t) (3.8)

where the discrete expansion coefficients are

ũNl =
2

(N + 1)cl

N∑
j=0

u(tNT,j)TT,l(t
N
T,j), 0 ≤ l ≤ N.

This IT,Nu ∈ PN(0, T ) and it interpolates u at all the Gaussian quadrature points

[15].

IT,Nu(t
N
T,j) =

N∑
l=0

ũNl TT,l(t
N
T,j) =

N∑
l=0

u(tNT,j)Ll(t
N
T,j) = u(tNT,j), 0 ≤ j ≤ N. (3.9)

where Ll(t) is the Lagrange polynomials based on the Chebyshev-Gauss nodes.

From (3.6a) and (3.9) , we have

(u, ϕ)T,N
(3.9)
= (IT,Nu, ϕ)T

(3.6a)
= (IT,Nu, ϕ)T,N , ∀ϕ ∈ PN+1(0, T ). (3.10)
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Using (3.10) and the above statement that TT,l(t) ∈ PN(0, T ), the discrete expan-

sion coefficients ũNl in (3.8) can be written as

TT,l(t)IT,Nu(t)ω
− 1

2 (t) = TT,l(t)

(
N∑
l=0

ũNl TT,l(t)

)
ω− 1

2 (t)

∫ T

0

TT,l(t)IT,Nu(t)ω
− 1

2 (t)dt =

∫ T

0

TT,l(t)

(
N∑
l=0

ũNl TT,l(t)

)
ω− 1

2 (t)dt∫ T

0

TT,l(t)IT,Nu(t)ω
− 1

2 (t)dt =

∫ T

0

TT,l(t)TT,0(t)ũ
N
0 ω

− 1
2 (t)dt+ . . .

+

∫ T

0

TT,l(t)TT,n(t)ũ
N
l ω

− 1
2 (t)dt

(IT,Nu, TT,l)T =
1

2
πclũ

N
l

ũNl =
2

πcl
(IT,Nu, TT,l)T

∴ ũNl =
2

πcl
(IT,Nu, TT,l)T =

2

πcl
(IT,Nu, TT,l)T,N , 0 ≤ l ≤ N. (3.11)

Next, we consider the relationship between the coefficients of the truncated con-

tinuous Chebyshev expansion in (3.7) and the discrete expansion in (3.8). For any

u ∈ PN+1(0, T ), the coefficients ûNl and ũNl determined in (3.7) and (3.11) gives

ũNl =
2

πcl
(IT,Nu, TT,l)T,N

(3.9)
=

2

πcl
(u, TT,l)T,N

(3.6a)
=

2

πcl
(u, TT,l)T , 0 ≤ l ≤ N.

Therefore, for any u ∈ PN+1(0, T ),

ûNl = ũNl , 0 ≤ l ≤ N. (3.12)

The result from (3.12) gives the comparison of the discrete norm and the L2

ω− 1
2
−norm

of u ∈ PN+1(0, T ) as follows:

∥u∥2T,N
(3.5)
= (u, u)T,N

=
π

N + 1

N∑
j=0

u(tNT,j)u(t
N
T,j)

(3.9)
=

π

N + 1

N∑
j=0

IT,Nu(t
N
T,j)IT,Nu(t

N
T,j)

(3.5)
= (IT,Nu, IT,Nu)T,N

= ∥IT,Nu∥2T,N
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(3.6b)
= ∥IT,Nu∥2T

(3.8)
=

(
N∑
l=0

ũNl TT,l,
N∑
l=0

ũNl TT,l

)
T

=

∫ T

0

(
N∑
l=0

ũNl TT,l(t)

)(
N∑
l=0

ũNl TT,l(t)

)
ω− 1

2 (t)dt

=

∫ T

0

(
N∑
l=0

(ũNl )
2TT,l(t)TT,l(t)

)
ω− 1

2 (t)dt

=
N∑
l=0

(
(ũNl )

2

∫ T

0

TT,l(t)TT,l(t)ω
− 1

2 (t)dt

)

=
N∑
l=0

(ũNl )
2

∫ T

0

T 2
T,l(t)ω

− 1
2 (t)dt

(3.12)
=

N∑
l=0

(ûNl )
2

∫ T

0

T 2
T,l(t)ω

− 1
2 (t)dt

≤
N+1∑
l=0

(ûNl )
2

∫ T

0

T 2
T,l(t)ω

− 1
2 (t)dt

=

∫ T

0

N+1∑
l=0

(
ûNl TT,l(t)

)2
ω− 1

2 (t)dt

(3.7)
=

∫ T

0

(u(t))2 ω− 1
2 (t)dt

∴ ∥u∥2T,N ≤ ∥u∥2T . (3.13)

3.3 Chebyshev-Gauss collocation method

In this section, we introduce a Chebyshev-Gauss collocation method to obtain

a numerical solution of ordinary differential equations. Consider the first-order

ordinary differential equation on the interval [0, T ] of the form
d

dt
X(t) = f(X(t), t), 0 < t ≤ T

X(0) = X0.

(3.14)

For the spectral collocation method, we find XN(t) ∈ PN+1(0, T ) such that
d

dt
XN(tNT,j) = f(XN(tNT,j), t

N
T,j), 0 ≤ j ≤ N

XN(0) = X0.

(3.15)
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which implies the residual error vanishes at the collocation points tNT,j, j = 0, . . . , N

or

RN(X
N(tNT,j), t

N
T,j) =

d

dt
XN(tNT,j)− f(XN(tNT,j), t

N
T,j) = 0.

In the Chebyshev collocation, we seek a solution XN(t) ∈ PN+1(0, T ) of the form

XN(t) =
N+1∑
l=0

X̂N
l TT,l(t), 0 < t ≤ T. (3.16)

As a result, we have that XN(t)TT,l(t) ∈ P2N+1(0, T ) for 0 ≤ l ≤ N. Multiplying

(3.16) by TT,l(t)ω
− 1

2 (t) and integrating the result over the interval [0, T ] together

with (3.7), we obtain∫ T

0

TT,l(t)X
N(t)ω− 1

2 (t)dt =

∫ T

0

TT,l(t)

(
N+1∑
l=0

X̂N
l TT,l(t)

)
ω− 1

2 (t)dt

(XN , TT,l)T
(3.2)
=

1

2
πclX̂

N
l

X̂N
l =

2

πcl
(XN , TT,l)T

(3.6a)
=

2

πcl
(XN , TT,l)T,N

(3.5)
=

(
2

πcl

)(
π

N + 1

) N∑
j=0

XN(tNT,j)TT,l(t
N
T,j)

∴ X̂N
l =

2

cl(N + 1)

N∑
j=0

XN(tNT,j)TT,l(t
N
T,j), 0 ≤ l ≤ N. (3.17)

So far, we only obtain the coefficients X̂N
l for 0 ≤ l ≤ N. We still need to find

the last coefficient X̂N
N+1. Considering t = 0 in (3.16), X0 =

N+1∑
l=0

X̂N
l TT,l(0). By

using the property TT,l(0) = (−1)l and (3.17), we obtain

XN(t) = X̂N
N+1TT,N+1(t) +

N∑
l=0

X̂N
l TT,l(t)

XN(0) = X̂N
N+1TT,N+1(0) +

N∑
l=0

X̂N
l TT,l(0)

TT,N+1(0)X
N(0) = TT,N+1(0)X̂

N
N+1TT,N+1(0) + TT,N+1(0)

N∑
l=0

X̂N
l TT,l(0)
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(−1)N+1X0 = (−1)2N+2X̂N
N+1 + (−1)N+1

N∑
l=0

X̂N
l (−1)l

X̂N
N+1 = (−1)N+1X0 +

N∑
l=0

(−1)N+lX̂N
l

= (−1)N+1X0 +
N∑
l=0

(−1)N+l

(
N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j))

)

∴ X̂N
T,N+1 = (−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j). (3.18)

To derive the derivative term, d
dt
XN , for the equation, we consider the recurrence

relation
d

dt
TT,l(t) =

(
l

l − 2

)
d

dt
TT,l−2(t) +

4(l)

T
TT,l−1(t).

Due to the nature the Chebyshev polynomial, we divide l into two different cases.

Case I l is even,

d

dt
TT,2(t) = 2

(
4

T

)
TT,1(t)

d

dt
TT,4(t) = (2)TT,2(t) + 4

(
4

T

)
TT,3(t)

=

[
4

(
4

T

)
TT,1(t)

]
+

[
4

(
4

T

)
TT,3(t)

]
d

dt
TT,6(t) =

(
6

4

)
TT,4(t) + 6

(
4

T

)
TT,5(t)

=
6

4

[
4

(
4

T

)
TT,1(t) + 4

(
4

T

)
TT,3(t)

]
+

[
6

(
4

T

)
TT,5(t)

]
=

[
6

(
4

T

)
TT,1(t)

]
+

[
6

(
4

T

)
TT,3(t)

]
+

[
6

(
4

T

)
TT,5(t)

]
d

dt
TT,8(t) =

(
8

6

)
TT,6(t) + 8

(
4

T

)
TT,7(t)

=
8

6

[
6

(
4

T

)
TT,1(t) + 6

(
4

T

)
TT,3(t) + 6

(
4

T

)
TT,5(t)

]
+

[
8

(
4

T

)
TT,7(t)

]
=

[
8

(
4

T

)
TT,1(t)

]
+

[
8

(
4

T

)
TT,3(t)

]
+

[
8

(
4

T

)
TT,5(t)

]
+

[
8

(
4

T

)
TT,7(t)

]
d

dt
TT,10(t) =

(
10

8

)
TT,8(t) + 10

(
4

T

)
TT,9(t)
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=
10

8

[
8

(
4

T

)
TT,1(t) + 8

(
4

T

)
TT,3(t) + 8

(
4

T

)
TT,5(t) + 8

(
4

T

)
TT,7(t)

]
+

[
10

(
4

T

)
TT,9(t)

]
=

[
10

(
4

T

)
TT,1(t)

]
+

[
10

(
4

T

)
TT,3(t)

]
+

[
10

(
4

T

)
TT,5(t)

]
+

[
10

(
4

T

)
TT,7(t)

]
+

[
10

(
4

T

)
TT,9(t)

]

∴ d

dt
TT,l(t) =

l
2∑

m=1

(l)

(
4

T

)
TT,l−(2m−1)(t), l = 2, 4, 6, . . . .

Case II We consider l is odd,

d

dt
TT,1(t) =

(
2

T

)
TT,0(t)

d

dt
TT,3(t) = (3)TT,1(t) +

[
3

(
4

T

)
TT,2(t)

]
=

[
3

(
2

T

)
TT,0(t)

]
+

[
3

(
4

T

)
TT,2(t)

]
d

dt
TT,5(t) =

(
5

3

)
TT,3(t) +

[
5

(
4

T

)
TT,4(t)

]
=

5

3

[
3

(
2

T

)
TT,0(t) + 3

(
4

T

)
TT,2(t)

]
+

[
5

(
4

T

)
TT,4(t)

]
=

[
5

(
2

T

)
TT,0(t)

]
+

[
5

(
4

T

)
TT,2(t)

]
+

[
5

(
4

T

)
TT,4(t)

]
d

dt
TT,7(t) =

(
7

5

)
TT,5(t) +

[
7

(
4

T

)
TT,6(t)

]
=

7

5

[
5

(
2

T

)
TT,0(t) + 5

(
4

T

)
TT,2(t) + 5

(
4

T

)
TT,4(t)

]
+

[
7

(
4

T

)
TT,6(t)

]
=

[
7

(
2

T

)
TT,0(t)

]
+

[
7

(
4

T

)
TT,2(t)

]
+

[
7

(
4

T

)
TT,4(t)

]
+

[
7

(
4

T

)
TT,6(t)

]
d

dt
TT,9(t) =

(
9

7

)
TT,7(t) +

[
9

(
4

T

)
TT,8(t)

]
=

9

7

[
7

(
2

T

)
TT,0(t) + 7

(
4

T

)
TT,2(t) + 7

(
4

T

)
TT,4(t) + 7

(
4

T

)
TT,6(t)

]
+

[
9

(
4

T

)
TT,8(t)

]
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=

[
9

(
2

T

)
TT,0(t)

]
+

[
9

(
4

T

)
TT,2(t)

]
+

[
9

(
4

T

)
TT,4(t)

]
+

[
9

(
4

T

)
TT,6(t)

]
+

[
9

(
4

T

)
TT,8(t)

]

∴ d

dt
TT,l(t) =

 l−1
2∑

m=1

(l)

(
4

T

)
TT,l−(2m−1)(t)

+
2(l)

T
, l = 1, 3, 5, . . . .

Hence, we use (3.17) and (3.18) to obtain

d

dt
XN(t) =

N+1∑
l=1

X̂N
l

d

dt
TT,l(t)

= X̂N
N+1

d

dt
TT,N+1(t) +

N∑
l=1

X̂N
l

d

dt
TT,l(t)

=

(
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)
d

dt
TT,N+1(t)

+

(
N∑
l=1

N∑
j=0

2

(N + 1)cl
XN(tNT,j)TT,l(t

N
T,j)

)
d

dt
TT,l(t)

= (−1)N+1X0
d

dt
TT,N+1(t) +

(
N∑
l=1

N∑
j=0

2

(N + 1)cl
XN(tNT,j)TT,l(t

N
T,j)

)
d

dt
TT,l(t)

+
2

N + 1

(
N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)
d

dt
TT,N+1(t).

We consider N into two different cases,

Case N is odd and l is even

d

dt
XN(t) =

N+1∑
l=1

X̂N
l

d

dt
TT,l(t) = X̂N

N+1

d

dt
TT,N+1(t) +

N∑
l=1

X̂N
l

d

dt
TT,l(t)

=

(
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

N+1
2∑

m=1

(N + 1)TT,N−(2m−2)(t
N
T,k)

+

(
N∑
l=1

N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

l
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)


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=

4(−1)N+1X0(N + 1)

T

N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k)


+

8

T

 N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k)


+

8

T (N + 1)

 N∑
l=1

N∑
j=0

1

cl
XN(tNT,j)TT,l(t

N
T,j)

 l
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)


Case N is odd and l is odd

d

dt
XN(t) =

N+1∑
l=1

X̂N
l

d

dt
TT,l(t) = X̂N

N+1

d

dt
TT,N+1(t) +

N∑
l=1

X̂N
l

d

dt
TT,l(t)

=

(
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

N+1
2∑

m=1

(N + 1)TT,N−(2m−2)(t
N
T,k)

+

(
N∑
l=1

N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

l−1
2∑

m=1

(l)TT,N−(2m−2)(t
N
T,k)

+
2(l)

T


=

4(−1)N+1X0(N + 1)

T

N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k)


+

8

T

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k)


+

8

T (N + 1)

N∑
l=1

N∑
j=0

1

cl
XN(tNT,j)TT,l(t

N
T,j)

 l−1
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)

+
l

2

 .

Case N is even and l is even
d

dt
XN(t) =

N+1∑
l=1

X̂N
l

d

dt
TT,l(t) = X̂N

N+1

d

dt
TT,N+1(t)

N∑
l=1

X̂N
l

d

dt
TT,l(t)

=

(
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

N
2∑

m=1

(N + 1)TT,N−(2m−2)(t
N
T,k)

+
2(N + 1)

T


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+

(
N∑
l=1

N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j)

)
×

 4

T

l
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)


=

4(−1)N+1X0(N + 1)

T

 N
2∑

m=1

TT,N−(2m−2)(t
N
T,k)

+
1

2


+

8

T

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

 N
2∑

m=1

TT,N−(2m−2)(t
N
T,k)

+
1

2


+

8

T (N + 1)

N∑
l=1

N∑
j=0

1

cl
XN(tNT,j)TT,l(t

N
T,j)

 l
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)

 .

Case N is even and l is odd

d

dt
XN(t) =

N+1∑
l=1

X̂N
l

d

dt
TT,l(t) = X̂N

N+1

d

dt
TT,N+1(t) +

N∑
l=1

X̂N
l

d

dt
TT,l(t)

=

(
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

N
2∑

m=1

(N + 1)TT,N−(2m−2)(t
N
T,k)

+
2(N + 1)

T


+

(
N∑
l=1

N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j)

)

×

 4

T

l−1
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)

+
2(l)

T


=

4(−1)N+1X0(N + 1)

T

 N
2∑

m=1

TT,N−(2m−2)(t
N
T,k)

+
1

2


+

8

T

N∑
l=0

N∑
j=0

(−1)N+l

cl
XN(tNT,j)TT,l(t

N
T,j)

 N
2∑

m=1

TT,N−(2m−2)(t
N
T,k)

+
1

2


+

8

T (N + 1)

N∑
l=1

N∑
j=0

1

cl
XN(tNT,j)TT,l(t

N
T,j)

 l−1
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)

+
l

2

 .
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For simplicity, we let

aNk,j =
8

N + 1

(
N∑
l=1

1

cl
TT,l(t

N
T,j)

)
×



l
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k), l is even

 l−1
2∑

m=1

(l)TT,l−(2m−1)(t
N
T,k)

+
l

2
, l is odd

+ 8

(
N∑
l=0

(−1)N+l

cl
TT,l(t

N
T,j)

)
×



N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k), N is odd

 N
2∑

m=1

TT,N−(2m−2)t
N
T,k)

+
1

2
, N is even

(3.19a)

and

bNk = (4(N + 1)(−1)N+1)×



N+1
2∑

m=1

TT,N−(2m−2)(t
N
T,k), N is odd

 N
2∑

m=1

TT,N−(2m−2)(t
N
T,k)

+
1

2
, N is even.

(3.19b)

Therefore,

d

dt
XN(tT,k) =

1

T

N∑
j=0

aNk,jX
N(tNT,j) +

X0

T
bNk , 0 ≤ k ≤ N. (3.20)

Substituting (3.20) into the left hand side of (3.15) yields the following matrix

equation of (3.20)

ANXN = (T )FN(XN)−X0b
N . (3.21)

where AN is the matrix with the entries aNk,j, 0 ≤ j, k ≤ N , given in (3.19a),

XN =
(
XN(tNT,0), X

N(tNT,1), . . . , X
N(tNT,N)

)T
,

FN(XN) =
(
f(XN(tNT,0), t

N
T,0), f(X

N(tNT,1), t
N
T,1), . . . , f(X

N(tNT,N), t
N
T,N)

)T
,

bN =
(
bN0 , b

N
1 , . . . , b

N
N

)T
.
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We solve this system for the solution XN =
(
XN(tNT,0), X

N(tNT,1), . . . , X
N(tNT,N)

)T
.

The last step of our algorithm is to determine XN(t) at the right end (or

XN(T )). This value will be used as the initial value of the consecutive interval

when considering a domain decomposition. To compute XN(t), we use the values

of
{
XN(tNT,k)

}N
k=0

which are obtained from (3.21) together with (3.18). Since

TT,l(T ) = 1, we get

XN(T ) =
N+1∑
l=0

X̂l

= X̂N+1 +
N∑
l=0

X̂l

=

[
(−1)N+1X0 +

2

N + 1

N∑
l=0

N∑
j=0

(−1)N+1

cl
XN(tNT,j)TT,l(t

N
T,j)

]

+

[
N∑
l=0

N∑
j=0

2

cl(N + 1)
XN(tNT,j)TT,l(t

N
T,j)

]

= (−1)N+1X0 +

[
2

N + 1

N∑
l=0

N∑
j=0

(
(−1)N+l + 1

)
cl

XN(tNT,j)TT,l(t
N
T,j)

]
.

(3.22)

3.3.1 Single interval Domain

For the domain containing only one interval, we apply the algorithm in (3.21)

directly. The scheme (3.21) is an implicit scheme. We apply an iterative method

to solve the system.

3.3.2 Multi-interval Domain

For the domain decomposition, we break the domain [0, T ] into M subintervals

where each of which is of length τ =
T

M
. We first evaluate the solution XN

1 (t) on

the first subinterval [0, τ ] with the given initial condition X(0) = X0. Then, we

compute the end point value of XN
1 (τ) and set it as the initial condition for the

next subinterval. By continuing the process, the solution on the i-th interval can
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be evaluated by finding XN
i (t) ∈ P2N+1(0, τ), 2 ≤ i ≤M such that

d

dt
XN

i (tNτ,k) = f(XN
i (tNτ,k), τ(i− 1) + tNτ,k), 0 ≤ k ≤ N, 2 ≤ i ≤M

XN
i (0) = XN

i−1(τ).

(3.23)

The value of XN
i (tNτ,k) is the local value for each subinterval. Patching all the

solutions together with the global notation XN
i

(
tNτ,k + τ(i− 1)

)
, we finally arrive

the numerical solution for the equation. The following example demonstrates the

solution of an initial value problem with single and multi-interval domains.



Chapter 4

Error analysis of the
Chebyshev-Gauss collocation
method

In this chapter, we analyze the error of the solution obtained from scheme

(3.15). The error analysis has been completed by Yang et al. in [35]. We will

follow there proof in detail in this chapter. We first compare the numerical solution

XN(t) with the Chebyshev-Gauss interpolation IT,NX(t). Let

GN
1 (t) = IT,N

d

dt
X(t)− d

dt
IT,NX(t).

Then,
d

dt
IT,NX(t) = IT,N

d

dt
X(t)−GN

1 (t).

At t = tNT,j,

d

dt
IT,NX(tNT,j) = IT,N

d

dt
X(tNT,j)−GN

1 (t
N
T,j)

(3.15)
= IT,Nf(X(tNT,j), t

N
T,j)−GN

1 (t
N
T,j)

(3.9)
= f(IT,NX(tNT,j), t

N
T,j)−GN

1 (t
N
T,j), 0 ≤ j ≤ N. (4.1)

Let EN(t) = XN(t)− IT,NX(t). Then d

dt
EN(t) =

d

dt
XN(t)− d

dt
IT,NX(t).

∴ d

dt
EN(tNT,j) =

d

dt
XN(tNT,j)−

d

dt
IT,NX(tNT,j).

Using (3.15) and (4.1),

d

dt
EN(tNT,j) = f(X(tNT,j), t

N
T,j)−

(
f(IT,NX(tNT,j), t

N
T,j)−GN

1 (t
N
T,j)
)

= f(X(tNT,j), t
N
T,j)− f(IT,NX(tNT,j), t

N
T,j) +GN

1 (t
N
T,j).

24
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Moreover, we let GN
2 (t

N
T,j) = f(XN(tNT,j), t

N
T,j)− f(IT,NX(tNT,j), t

N
T,j). The equation

(3.15) becomes
d

dt
EN(tNT,j) = GN

1 (t
N
T,j) +GN

2 (t
N
T,j), 0 ≤ j ≤ N

EN(0) = X0 − IT,NX(0).

(4.2)

We define RN(t) = t−1
(
EN(t)− EN(0)

)
. Obviously, tRN(t) ∈ PN(0, T ),

tRN(t) = EN(t)− EN(0)

EN(t) = tRN(t) + EN(0)

d

dt
EN(t) =

d

dt
(tRN(t)) +

d

dt
EN(0)

∴ d

dt
EN(t) =

d

dt
(tRN(t)) .

Multiplying (4.2) by 2(T − t)

(
π

N + 1

)
RN(t

N
T,j) and sum from j = 0 to N , we

have
N∑
j=0

2(T − t)

(
π

N + 1

)
RN(t

N
T,j)

d

dt
EN(tNT,j) =

N∑
j=0

2(T − t)

(
π

N + 1

)
RN(t

N
T,j)G

N
1 (t

N
T,j)

+
N∑
j=0

2(T − t)

(
π

N + 1

)
RN(t

N
T,j)G

N
2 (t

N
T,j)

2

(
π

N + 1

) N∑
j=0

(T − t)RN(t
N
T,j)

d

dt
EN(tNT,j) = 2

(
π

N + 1

) N∑
j=0

(T − t)RN(t
N
T,j)G

N
1 (t

N
T,j)

+ 2

(
π

N + 1

) N∑
j=0

(T − t)RN(t
N
T,j)G

N
2 (t

N
T,j)

∴ 2

(
(T − t)RN ,

d

dt
EN

)
T,N

= AN
1 + AN

2 (4.3)

where AN
1 = 2(GN

1 , (T − t)RN)T,N and AN
2 = 2(GN

2 , (T − t)RN)T,N .

From (3.6a),

2

(
(T − t)RN ,

d

dt
EN

)
T,N

= 2

(
(T − t)RN ,

d

dt
(tRN(t))

)
T,N

2

(
(T − t)RN ,

d

dt
(tRN(t))

)
T,N

(3.6a)
= 2

(
(T − t)RN ,

d

dt
(tRN(t))

)
T

= 2

∫ T

0

(T − t)RN(t)

(
d

dt
(tRN(t))

)(
1√

t(T − T )

)
dt
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= 2

∫ T

0

(T − t)RN(t)

(
t
d

dt
RN(t) +RN(t)

)(
1√

t(T − T )

)
dt

= 2

∫ T

0

RN(t)

(
t(T − t)√
t(T − t)

)
d

dt
RN(t)dt+ 2

∫ T

0

R2
N(t)

(
T − t√
t(T − T )

)
dt

= 2

∫ T

0

RN(t)
(√

t(T − t)
) d

dt
RN(t)dt+ 2

∫ T

0

R2
N(t)

(
T − t√
t(T − t)

)
dt.

By integrating by parts, we have

2

(
(T − t)RN ,

d

dt
EN

)
T,N

= 2

([
R2

N(t)

2

(√
t(T − t)

)]N
0

−
∫ T

0

R2
N(t)

2

(
T − 2t

2
√
t(T − t)

)
dt

)

+ 2

∫ T

0

R2
N(t)

(
T − t√
t(T − t)

)
dt

= 2

∫ T

0

R2
N(t)

(
T − t√
t(T − t)

)
dt−

∫ T

0

R2
N(t)

(
T − 2t

2
√
t(T − t)

)
dt

=

∫ T

0

R2
N(t)

(
1√

t(T − t)

)(
2T − 2t− T

2
+ t

)
dt

=

∫ T

0

R2
N(t)

(
1√

t(T − t)

)(
3

2
T − t

)
dt

=
3

2

∫ T

0

R2
N(t)

(
T√

t(T − t)

)
dt−

∫ T

0

R2
N(t)

(
t√

t(T − t)

)
dt

≥ 3

2

∫ T

0

R2
N(t)

(
T√

t(T − t)

)
dt−

∫ T

0

R2
N(t)

(
T√

t(T − t)

)
dt

=

(
3T

2
− T

)∫ T

0

R2
N(t)

(
1√

t(T − t)

)
dt

=
T

2

∫ T

0

R2
N(t)

(
1√

t(T − t)

)
dt

=
T

2
∥RN∥2T .

Therefore,

2

(
(T − t)RN ,

d

dt
EN

)
T,N

≥ T

2
∥RN∥2T . (4.4)

Because of GN
1 (t) ∈ PN(0, T ) and (3.6a), it follows that, for any ϵ > 0,∣∣AN

1

∣∣ = ∣∣2(GN
1 , (T − t)RN)T,N

∣∣
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(3.6a)
=
∣∣2(GN

1 , (T − t)RN)T
∣∣

≤ 2

∫ T

0

∣∣GN
1 (T − t)RN

∣∣ dt
≤ 2

∥∥GN
1

∥∥
T
∥(T − t)RN∥T ( by Cauchy-Schwarz Inequality [8, 25] )

≤ 2

(
ϵ

2T
∥(T − t)RN∥2T +

T

2ϵ

∥∥GN
1

∥∥2
T

)
( by Peter-Paul Inequality [25] )

=
ϵ

T
∥(T − t)RN∥2T +

T

ϵ

∥∥GN
1

∥∥2
T

≤ ϵ

T
∥TRN∥2T +

T

ϵ

∥∥GN
1

∥∥2
T

= ϵT ∥RN∥2T +
T

ϵ

∥∥GN
1

∥∥2
T

∴
∣∣AN

1

∣∣ ≤ ϵT
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
+
T

ϵ

∥∥GN
1

∥∥2
T
. (4.5)

The above together with (4.3) and (4.4) leads to

T

2
∥RN∥2T

(4.4)

≤ 2

(
(T − t)RN ,

d

dt
EN

)
T,N

T

2

∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T
≤ 2

(
(T − t)RN ,

d

dt
EN

)
T,N

T

2

∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T

(4.3)

≤ AN
1 + AN

2

T

2

∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T

(4.5)

≤ ϵT
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
+
T

ϵ

∥∥GN
1

∥∥2
T
+ AN

2(
T

2
− ϵT

)∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T
≤ T

ϵ

∥∥GN
1

∥∥2
T
+ AN

2

∴
(
1

2
− ϵ

)
T
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
≤ T

ϵ

∥∥GN
1

∥∥2
T
+ AN

2 . (4.6)

We would like to estimate the error of X at the end point t = T. We start with

the estimation of
∥∥GN

1

∥∥
T
. Let IN be the Chebyshev-Gauss interpolation on the

interval (−1, 1) and χ(t) = 1− t2. According to a standard interpolation error [13]

with α = β = γ = δ = −1

2
, for any v ∈ Hr

χr− 1
2
(−1, 1) and integer 1 ≤ r ≤ N + 1,

∥INv − v∥2L2

χ
− 1

2

(−1,1) ≤ cN−2r

∫ 1

−1

χr− 1
2

(
dr

dtr
v(t)

)2

dt.

Furthermore, by a standard interpolation error [13] with α = β = −1

2
, for any

v ∈ Hr

χr− 3
2
(−1, 1) and integer 2 ≤ r ≤ N + 1,
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∥∥∥∥ ddt (INv − v)

∥∥∥∥2
L2

χ
− 1

2

(−1,1)

≤ cN4−2r

∫ 1

−1

χr− 3
2

(
dr

dtr
v(t)

)2

dt.

where c is a generic positive constant independent of T,N and any function.

For the shift Chebyshev polynomial on [0, T ], we have

∥IT,Nv − v∥2T ≤ cN−2r

∫ T

0

ωr− 1
2 (t)

(
dr

dtr
v(t)

)2

dt. (4.7)

∥∥∥∥ ddt(IT,Nv − v)

∥∥∥∥2
T

≤ cN4−2r

∫ T

0

ωr− 3
2 (t)

(
dr

dtr
v(t)

)2

dt. (4.8)

Furthermore, by (4.7) with v =
d

dt
X(t) and r = r − 1, for 2 ≤ r ≤ N + 2, we

obtain∥∥∥∥IT,N
d

dt
X − d

dt
X

∥∥∥∥2
T

≤ cN−2(r−1)

∫ T

0

ω(r− 1
2
)−1(t)

(
dr−1

dtr−1

(
d

dt
X(t)

))2

dt

≤ cN−2r−2

∫ T

0

ωr− 3
2 (t)

(
dr

dtr
X(t)

)2

dt. (4.9)

Therefore,∥∥GN
1

∥∥2
T
=

∫ T

0

∣∣∣∣IT,N
d

dt
X − d

dt
IT,NX

∣∣∣∣2 dt
=

∫ T

0

∣∣∣∣IT,N
d

dt
X − d

dt
IT,NX +

d

dt
X − d

dt
X

∣∣∣∣2 dt
=

∫ T

0

∣∣∣∣(IT,N
d

dt
X − d

dt
X

)
+

(
− d

dt
IT,NX +

d

dt
X

)∣∣∣∣2 dt
=

∥∥∥∥(IT,N
d

dt
X − d

dt
X

)
+

(
− d

dt
IT,NX +

d

dt
X

)∥∥∥∥2
T

≤
∥∥∥∥IT,N

d

dt
X − d

dt
X

∥∥∥∥2
T

+

∥∥∥∥ ddtIT,NX − d

dt
X

∥∥∥∥2
T

(4.8),(4.9)

≤ cN−2r−2

∫ T

0

ωr− 3
2 (t)

(
dr

dtr
X(t)

)2

dt+ cN4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴
∥∥GN

1

∥∥2
T
≤ cN4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt. (4.10)

Substituting (4.10) into (4.6),(
1

2
− ϵ

)
T
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
≤ cϵ−1TN4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ AN
2 .

(4.11)
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Proposition 4.1. [35] If f(z, t) satisfies the following Lipschitz condition:
|f(z1, t)− f(z2, t)| ≤ γ |z1 − z2| , γ > 0 (4.12)

and 0 < γT ≤ β <
1

4
, where β is a certain constant. Then the system (3.15) has

a unique solution.
Theorem 4.1. [35] Assume that f(z, t) fulfills the Lipschitz condition (4.12).
Then for any X ∈ Hr

ωr− 3
2
(0, T ) with integers 2 ≤ r ≤ N + 1, we have

∥∥X −XN
∥∥2
L2(0,T )

≤ T

2

∥∥X −XN
∥∥2
T
≤ cβT

2N4−2r

∫ T

0

ωr− 3
2 (t)

(
dr

dtr
X(t)

)2

dt,

(4.13)

∣∣X(T )−XN(T )
∣∣2 ≤ cβT

2N4−2r

∫ T

0

ωr− 3
2 (t)

(
dr

dtr
X(t)

)2

dt (4.14)

where cβ is a positive constant depending only on β.

Proof [35] We can prove Thorem 4.1 by (4.12), (3.13) and

AN
2 = 2(GN

2 , (T−t)RN)T,N whereGN
2 (t

N
T,j) = f(XN(tNT,j), t

N
T,j)−f(IT,NX(tNT,j), t

N
T,j),∥∥GN

2

∥∥2
T,N

=
π

N + 1

N∑
j=0

∣∣f(XN(tNT,j), t
N
T,j)− f(IT,NX(tNT,j), t

N
T,j)
∣∣2

(4.12)

≤ π

N + 1

N∑
j=0

γ2
∣∣X(tNT,j)− IT,NX(tNT,j)

∣∣2
= γ2 ∥X − IT,NX∥2T,N
(3.13)

≤ γ2 ∥X − IT,NX∥2T

= γ2
∥∥EN

∥∥2
T

∴
∥∥GN

2

∥∥2
T,N

≤ γ2
∥∥EN

∥∥2
T
. (4.15)

Since GN
2 ∈ PN(0, T ) and (3.6a) and (4.15), for any γ > 0,

AN
2 = 2(GN

2 , (T − t)RN)T,N

(3.6a)
= 2(GN

2 , (T − t)RN)T

≤ 2

∫ T

0

∣∣GN
2 (T − t)RN

∣∣ dt
≤ 2

∥∥GN
2

∥∥
T
∥(T − t)RN∥T ( by Cauchy-Schwarz Inequality [8, 25] )

≤ 2

(
γ

2
∥(T − t)RN∥2T +

1

2γ

∥∥GN
2

∥∥2
T

)
( by Peter-Paul Inequality [25] )

= γ ∥(T − t)RN∥2T +
1

γ

∥∥GN
2

∥∥2
T
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≤ γ ∥TRN∥2T +
1

γ

∥∥GN
2

∥∥2
T
, t ∈ [0, T ]

= γT 2 ∥RN∥2N +
1

γ

∥∥GN
2

∥∥2
T

∴ AN
2

(4.15)

≤ γT 2
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
+ γ

∥∥EN
∥∥2
T
. (4.16)

Substituting (4.16) into (4.11),(
1

2
− ϵ

)
T
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
≤ γT 2

∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T
+ γ

∥∥EN
∥∥2
T

+ cϵ−1TN4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt(
1

2
− ϵ− γT

)
T
∥∥t−1

(
EN(t)− EN(0)

)∥∥2
T
≤ cT

ϵ
N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ γ
∥∥EN

∥∥2
T
.

(4.17)

Consider,∥∥EN
∥∥2
T
=
∥∥EN(t)− EN(0) + EN(0)

∥∥2
T

=

∫ T

0

[(
EN(t)− EN(0)

)
+ EN(0)

]
dt

≤
∥∥EN(t)− EN(0)

∥∥
T

∥∥EN(0)
∥∥
T

( by Cauchy-Schwarz Inequality [8, 25] )

≤ ϵ

2

∥∥EN(t)− EN(0)
∥∥2
T
+

1

2ϵ

∥∥EN(0)
∥∥2
T

( by Peter-Paul Inequality [25] )

≤ ϵ
∥∥EN(t)− EN(0)

∥∥2
T
+ ϵ−1

∥∥EN(0)
∥∥2
T

≤ (1 + ϵ)
∥∥EN(t)− EN(0)

∥∥2
T
+
(
1 + ϵ−1

) ∥∥EN(0)
∥∥2
T

≤ (1 + ϵ)
∥∥(Tt−1)

(
EN(t)− EN(0)

)∥∥2
T

+
(
1 + ϵ−1

) ∣∣EN(0)
∣∣2 , (

∵ T

t
≥ 1, ∀t ∈ [0, T ]

)
≤ (1 + ϵ)

∥∥(Tt−1)
(
EN(t)− EN(0)

)∥∥2
T
+ π

(
1 + ϵ−1

) ∣∣EN(0)
∣∣2

∴
∥∥EN

∥∥T
2
≤ (1 + ϵ)T 2

∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T
+ π

(
1 + ϵ−1

) ∣∣EN(0)
∣∣2 . (4.18)

For small ϵ > 0 such that ϵ + γT ≤ 1

2
or
(
1

2
− ϵ− γT

)
≥ 0, we multiply both

sides of (4.18) by
(
1

2
− ϵ− γT

)
, inequality become(

1

2
− ϵ− γT

)∥∥EN
∥∥T
2
≤ (1 + ϵ)T 2

(
1

2
− ϵ− γT

)∥∥t−1
(
EN(t)− EN(0)

)∥∥2
T

+ π
(
1 + ϵ−1

)(1

2
− ϵ− γT

) ∣∣EN(0)
∣∣2
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(
1

2
− ϵ− γT

)∥∥EN
∥∥T
2

(4.17)

≤ (1 + ϵ)T

(
γ
∥∥EN

∥∥2
T
+
CTN4−2r

ϵ

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

)

+ π
(
1 + ϵ−1

)(1

2
− ϵ− γT

) ∣∣EN(0)
∣∣2(

1

2
− ϵ− 2γT − ϵγT

)∥∥EN
∥∥T
2
≤ (1 + ϵ) cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

+ π
(
1 + ϵ−1

)(1

2
− ϵ− γT

) ∣∣EN(0)
∣∣2

Since c is a generic positive constant independent of T,N and any function, we

define a new constant to be (1 + ϵ)c. Then(
1

2
− ϵ− 2γT − ϵγT

)∥∥EN
∥∥T
2
≤ cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

+ π
(
1 + ϵ−1

)(1

2
− ϵ− γT

) ∣∣EN(0)
∣∣2 . (4.19)

On the other hand, for any v ∈ H1

ω− 1
2
(0, T ) ( see Appendix of [35] ),

max
t∈[0,T ]

|v(t)|2 ≤ π

4

(
∥v∥2T + T 2

∥∥∥∥dvdt
∥∥∥∥2
T

)
. (4.20)

From (4.2), (4.7), (4.8) and (4.20), we obtain∣∣EN(0)
∣∣2 (4.2)

= |IT,NX(0)−X(0)|2

(4.20)

≤ π

4

(
∥IT,NX(0)−X(0)∥2T +

∥∥∥∥ ddt (IT,NX(0)−X(0))

∥∥∥∥2
T

)

≤ ∥IT,NX(0)−X(0)∥2T +

∥∥∥∥ ddt (IT,NX(0)−X(0))

∥∥∥∥2
T

(4.7),(4.8)

≤ cN−2r

∫ T

0

ωr− 1
2

(
dr

dtr
X(t)

)2

dt+ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt.

Consider

0 ≤ t(T − t) ≤ T 2

4
( maximum value of function f(t) = t(T − t), ∀t ∈ [0, T ] )

∴ t(T − t) < T 2.

For ω = t(T − t),

ωr− 3
2 (t(T − t)) ≤ ωr− 3

2T 2, ∀t ∈ [0, T ]

ωr− 3
2
+1 ≤ ωr− 3

2T 2

ωr− 1
2 ≤ ωr− 3

2T 2
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ωr− 1
2

(
dr

dtr
X(t)

)2

≤ ωr− 3
2T 2

(
dr

dtr
X(t)

)2

.

Since ωr− 1
2

(
dr

dtr
X(t)

)2

≤ ωr− 3
2T 2

(
dr

dtr
X(t)

)2

and ωr− 1
2

(
dr

dtr
X(t)

)2

and

ωr− 3
2T 2

(
dr

dtr
X(t)

)2

are integrable on [0, T ]. By properties of the integral [27], we

have ∫ T

0

ωr− 1
2

(
dr

dtr
X(t)

)2

≤
∫ T

0

ωr− 3
2T 2

(
dr

dtr
X(t)

)2

. (4.21)

Thus,

∣∣EN(0)
∣∣2 ≤ cN−2r

∫ T

0

ωr− 3
2T 2

(
dr

dtr
X(t)

)2

dt+ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

= cT 2N−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴
∣∣EN(0)

∣∣2 ≤ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt. (4.22)

Substituting (4.22) into (4.19), we give that(
1

2
− ϵ− 2γT − ϵγT

)∥∥EN
∥∥2
T
≤ cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ π
(
1 + ϵ−1

)
×
(
1

2
− ϵ− γT

)
cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

≤
(
1 +

(
ϵπ
(
1 + ϵ−1

)(1

2
− ϵ− γT

)))
×

(
cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

)
.

From, page 30, we choose ϵ+ γT ≤ 1

2
, it follows that(

1

2
− ϵ− 2γT − ϵγT

)∥∥EN
∥∥2
T
≤
(
1 +

(
ϵπ
(
1 + ϵ−1

)(1

2
− 1

2

)))
×

(
cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

)

∴
(
1

2
− ϵ− 2γT − ϵγT

)∥∥EN
∥∥2
T
≤ cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt.

(4.23)
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Claim : 1

2
− ϵ− 2γT − ϵγT ≥ 1

4
− β and, hence, 1

1
2
− ϵ− 2γT − ϵγT

≤ 1
1
4
− β

.

Since 0 < γT ≤ β <
1

4
, then 1

4
− γT ≥ 1

4
− β > 0.

We consider

1

2
− ϵ− 2γT − ϵγT =

(
1

4
− γT

)
+

(
1

4
− γT

)
− ϵ (1 + γT )

=
1

4
− γT,

(
∵ let

(
1

4
− γT

)
− ϵ (1 + γT ) = 0

)
≥ 1

4
− β

∴ 1
1
2
− ϵ− 2γT − ϵγT

≤ 1
1
4
− β

. (4.24)

Let ϵ =
1
4
− γT

1 + γT
. Then by (4.24), we have that

∥∥EN
∥∥2
T
≤
(

1
1
2
− ϵ− 2γT − ϵγT

)
cϵ−1T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

(4.24)

≤
(

1
1
4
− β

)
cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴
∥∥EN

∥∥2
T
≤ cβT

2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt (4.25)

where cβ is a positive constant depending only on β.

Consider ∥∥X −XN
∥∥2
T
=
∥∥X − IT,NX + IT,NX −XN

∥∥2
T

≤ ∥X − IT,NX∥2T +
∥∥XN − IT,NX

∥∥2
T
.

Using (4.7), (4.25) and (4.21), we have∥∥X −XN
∥∥2
T

(4.7),4.25)

≤ cN−2r

∫ T

0

ωr− 1
2

(
dr

dtr
X(t)

)2

dt+ cβT
2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

(4.21)

≤ cT 2N−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ cβT
2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴
∥∥X −XN

∥∥2
T
≤ cβT

2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt (4.26)

where cβ is a positive constant depending only on β.

Next, we consider∫ T

0

(
X(t)−XN(t)

)2
dt =

∫ T

0

(
X(t)−XN(t)

)2
ω

1
2 (t)ω− 1

2 (t)dt.
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Since t(T − t) ≤ T 2

4
or
√
t(T − t) ≤ T

2
and ω = t(T − t), then 0 ≤ ω

1
2 (t) ≤ T

2
and ω− 1

2 (t) ≥ 0 for t ∈ [0, T ]. Thus,∫ T

0

(
X(t)−XN(t)

)2
dt ≤ T

2

∫ T

0

(
X(t)−XN(t)

)2
ω− 1

2 (t)dt

=
T

2

∥∥X −XN
∥∥2
T

∴
∫ T

0

(
X(t)−XN(t)

)2
dt ≤ T

2

∥∥X −XN
∥∥2
T
. (4.27)

By applying the inequality (4.27), we then arrive the inequality (4.13) in Theorem 4.1.

We next prove the inequality (4.14). We first estimate
∣∣X(T )−XN(T )

∣∣2 .
Consider∣∣X(T )−XN(T )

∣∣2 = ∣∣X(T )− IT,NX(T ) + IT,NX(T )−XN(T )
∣∣2

≤ |X(T )− IT,NX(T )|2 +
∣∣XN(T )− IT,NX(T )

∣∣2 . (4.28)

Using (4.20), (4.7), (4.8) and (4.21), we have

|X(T )− IT,NX(T )|2
(4.20)

≤ π

4

(
∥X − IT,NX∥2T + T 2

∥∥∥∥ ddt (X − IT,NX)

∥∥∥∥2
T

)

≤ ∥X − IT,NX∥2T + T 2

∥∥∥∥ ddt (X − IT,NX)

∥∥∥∥2
T

(4.7),(4.8)

≤ cN−2r

∫ T

0

ωr− 1
2

(
dr

dtr
X(t)

)2

dt

+ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

(4.21)

≤ cT 2N−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

+ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴ |X(T )− IT,NX(T )|2 ≤ cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt. (4.29)

Next, we estimate
∣∣IT,NX(T )−XN(T )

∣∣2 . By (4.20) give that

∣∣IT,NX(T )−XN(T )
∣∣2 (4.20)

≤ π

4

(∥∥IT,NX −XN
∥∥2
T
+ T 2

∥∥∥∥ ddt (IT,NX −XN
)∥∥∥∥2

T

)

=
π

4

(∥∥EN
∥∥2
T
+ T 2

∥∥∥∥ ddtEN

∥∥∥∥2
T

)
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∴
∣∣IT,NX(T )−XN(T )

∣∣2 ≤ π

4

(∥∥EN
∥∥2
T
+ T 2

∥∥∥∥ ddtEN

∥∥∥∥2
T

)
. (4.30)

Since d

dt
EN ∈ PN(0, T ) and (3.5), (3.6b) and (4.2), we get that

∥∥∥∥ ddtEN

∥∥∥∥2
T

(3.6b)
=

∥∥∥∥ ddtEN

∥∥∥∥2
T,N

(3.5)
=

(
d

dt
EN ,

d

dt
EN

)
T,N

(4.2)
=

(
GN

1 +GN
2 ,

d

dt
EN

)
T,N

≤
∥∥∥∥(GN

1 +GN
2

) d
dt
EN

∥∥∥∥
T,N

≤
∥∥GN

1 +GN
2

∥∥
T,N

∥∥∥∥ ddtEN

∥∥∥∥
T,N

≤
(∥∥GN

1

∥∥
T,N

+
∥∥GN

2

∥∥
T,N

)∥∥∥∥ ddtEN

∥∥∥∥
T,N

(3.6b)
=
(∥∥GN

1

∥∥
T
+
∥∥GN

2

∥∥
T,N

)∥∥∥∥ ddtEN

∥∥∥∥
T

∴
∥∥∥∥ ddtEN

∥∥∥∥
T

≤
∥∥GN

1

∥∥
T
+
∥∥GN

2

∥∥
T,N

. (4.31)

Substituting (4.10), (4.15) and (4.25) into (4.31), we have∥∥∥∥ ddtEN

∥∥∥∥2
T

≤ cN4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt+ cβγ
2T 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt.

(4.32)

Since 0 < γT ≤ β <
1

4
and substituting (4.32) and (4.25) into (4.30),

∣∣IT,NX(T )−XN(T )
∣∣2 ≤ π

4

(
cβT

2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

)

+
π

4

(
cT 2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

)

+ cβT
4N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

∴
∣∣IT,NX(T )−XN(T )

∣∣2 ≤ cβT
2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt. (4.33)
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Moreover, by (4.28), (4.29) and (4.33), we obtain

∣∣X(T )−XN(T )
∣∣2 ≤ (c+ cβ)T

2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt

= cβT
2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt.

Hence,

∣∣X(T )−XN(T )
∣∣2 ≤ cβT

2N4−2r

∫ T

0

ωr− 3
2

(
dr

dtr
X(t)

)2

dt. (4.34)

�



Chapter 5

Numerical Results

In this chapter, we present some numerical results to support the method in

(3.21) . We consider two errors, the discrete L2 error and the point-wise absolute

error, in order to compare the results obtained from the Chebyshev–Gauss colloca-

tion method, the Legendre–Gauss collocation method in [14] and the Chebyshev–

Gauss collocation method in [35]. For the systems of differential equations, we

compare the error in the total energy of the systems and CPU times of those three

collocation methods.

For the three-body problem, we present the numerical solutions, the maximum

error in energy and CPU times and consider some sets of initial conditions of this

problem to examine the behavior of the solution near the equilibrium points. We

compare the result from the three collocation methods with the symplectic method

and the Runge-Kutta method. The symplectic method is known to preserve the

area (or orbit). However, it may not preserve the energy of the system. The

Runge-Kutta method is a traditional method. It preserves the area when the time

is not large, but there may be a phase shift when t increases.

The numerical results are obtained by using an Intel(R) Core(TM) i5-2410

CPU @ 2.30GHz RAM 4.00 GB computer.

For simplicity, we use the following notations,

• CGC : Chebyshev-Gauss collocation method (3.21).

• LGC : Legendre-Gauss collocation method in [14].

• CGC-Yang : Chebyshev-Gauss spectral collocation method in [35].

37
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• Symp1 : The first-order symplectic method.

• RK4 : The fourth-order Runge-Kutta method.

• The point-wise absolute error

ET,p =
∣∣X(T )−XN(T )

∣∣ .
• The discrete L2 error

ET,d =
∥∥X −XN

∥∥
T,N

.

• The point-wise absolute error for systems of differential equations

EN(t) =

√
(pN(t)− P (t))2 + (qN(t)−Q(t))2.

• The maximum error in energy for systems of differential equations

EH(τ) = |H(P (0), Q(0))−H(P (τ), Q(τ))| .

5.1 Single interval Domain

Example 5.1.1. We use scheme (3.21) to solve the problem
d

dt
X(t) = f(X(t), t), 0 < t ≤ T

X(0) = 1.

(5.1)

with

f(X(t), t) = exp
(
1

5
sin(X(t))

)
+
3

2
(t+1)

1
2+10 cos(2t)−exp

(
1

5
sin((t+ 1)

3
2 + 5 sin(2t))

)
.

The exact solution of this problem is

X(t) = (t+ 1)
3
2 + 5 sin(2t)

which oscillates and grows to infinity as t increases. The corresponding function

on right side, f(X(t), t), satisfies the Lipschitz condition as follows. Consider

f(X1(t), t)− f(X2(t), t) = exp
(
1

5
sin(X1(t))

)
− exp

(
1

5
sin(X2(t))

)
.
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By Mean Value Theorem [1], we have

exp
(
1

5
sin(X1(t))

)
− exp

(
1

5
sin(X2(t))

)
X1(t)−X2(t)

=
1

5
exp

(
1

5
sin(Xc(t))

)
cos(Xc(t))

for some Xc(t) between X1(t) and X2(t).

Since | sin(Xc(t))| ≤ 1 and | cos(Xc(t))| ≤ 1, we get∣∣∣∣∣∣∣∣
exp

(
1

5
sin(X1(t))

)
− exp

(
1

5
sin(X2(t))

)
X1(t)−X2(t)

∣∣∣∣∣∣∣∣ ≤
1

5
e

1
5

∣∣∣∣exp
(
1

5
sin(X1(t))

)
− exp

(
1

5
sin(X2(t))

)∣∣∣∣ ≤ 1

5
e

1
5 |X1(t)−X2(t)|.

Thus, |f(X(t), t)| fulfills the Lipschitz condition with γ =
1

5
e

1
5 . It follows from

Proposition 4.1 and Theorem 4.1 that the equation (5.1) has a unique solution

and has the error estimates in (4.13) and (4.14).

We implement the algorithm by using this function f(X(t), t). The figures

below illustrate the errors by the spectral collocation methods defined at the be-

ginning of the section. In Figure 5.1, we plot the point-wise absolute error at

T = 0.5, 0.8 and 1 with different value of N . We observe that the point-wise

absolute error decreases as N increases and T decreases. Furthermore, The errors

oscillates between odd and even N . The rate of convergence when N is even is

faster than the rate when N is odd.
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Figure 5.1: Point-wise absolute error of scheme (3.21) when at T = 0.5, 0.8 and 1.



40

2 4 6 8 10 12 14
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

lo
g 10

E
T

,d
N

 

 

discrete L2 error log
10

E
0.5,d
N

discrete L2 error log
10

E
0.8,d
N

discrete L2 error log
10

E
1,d
N

Figure 5.2: Discrete L2 error of scheme (3.21) when at T = 0.5, 0.8 and 1.

Figure 5.2, we present the discrete L2 error at T = 0.5, 0.8 and 1 with various of

N . There is only slight oscillation for the discrete L2 errors. The error decreases as

N increases and T decreases. In Figures 5.3 and 5.4, we compare the Chebyshev–

Gauss collocation method in (3.21) and the Chebyshev–Gauss spectral collocation

method in [35]. The point-wise absolute error and the discrete L2 error of two

methods are nearly coincide. The rate from both methods are of the same order.
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Figure 5.3: Point-wise absolute error of scheme (3.21) versus the Chebyshev–Gauss spectral
collocation method.
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Figure 5.4: Discrete L2 error of scheme (3.21) versus the Chebyshev–Gauss spectral collocation
method.

The rate of convergence of the point-wise absolute errors and the discrete L2

errors from the Chebyshev–Gauss collocation in (3.21) and the Chebyshev–Gauss

spectral collocation method in [35] shown in Figures 5.5 and 5.6 demonstrate the

spectral accuracy. We plot the point-wise absolute errors of the two methods

and estimate them by comparing with the function in Figure 5.5. It follows that

convergence rate is of order O
(
e−3.1N

)
. Similarly, as shown in Figure 5.6, the

convergence rate of the discrete L2 error is of order O
(
N−4.33

√
N
)
.
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Figure 5.5: Point-wise absolute error of scheme (3.21) versus the Chebyshev–Gauss spectral
collocation method and the convergence rate when N varies.
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Figure 5.6: Discrete L2 error of scheme (3.21) versus the Chebyshev–Gauss spectral collocation
method and the convergence rate when N varies.
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Figure 5.7: Discrete L2 error of scheme (3.21) versus the Chebyshev–Gauss spectral collocation
method and the Legendre–Gauss collocation method.

In Figure 5.7, we compare the Chebyshev–Gauss collocation method in (3.21)

with the Legendre–Gauss collocation method and the Chebyshev–Gauss spectral

collocation method in [35]. We observe that the discrete L2 error of the Legen-

dre–Gauss collocation method decay slightly faster as N increases and the two

Chebyshev–Gauss collocation methods are of the same rate.
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Figure 5.8: Point-wise absolute error of scheme (3.21) when t = 2000, τ = 1 and N = 17.

Figure 5.8 shows the point-wise absolute error of the Chebyshev–Gauss col-

location method in (3.21). We observe that the point-wise absolute error grows

rapidly when the time is less than 200 seconds then it increases at a slower rate

and slightly oscillates as t increases.

5.2 System of differential equations

For the system of differential equations, we denote the vectors

X⃗(t) = (X1(t), X2(t), . . . , Xn(t))
T

F⃗
(

X⃗(t)
)
=
(
f1

(
X⃗(t), t

)
, f2

(
X⃗(t), t

)
, . . . , fn

(
X⃗(t), t

))T
.

We can apply the algorithm in (3.21) to the system of equations. The solution

can be determined in a similar way. Consider the system
d

dt
X⃗(t) = F⃗ (X⃗(t), t), 0 < t ≤ T

X⃗(0) = X⃗0.

(5.2)

In spectral collocation method, we approximate the solution of (5.2) as follows.

Find X⃗N(t) ∈ (PN+1(0, T ))
n such that

d

dt
X⃗(tNT,j) = F⃗ (X⃗(tNT,j), t

N
T,j), 0 ≤ j ≤ N, 0 < t ≤ T

X⃗(0) = X⃗0.

(5.3)
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We evaluate each Xi(t) by applying (3.21) together with an iterative method.

In the examples below, we presents the numerical solution of linear and non-

linear Hamiltonian systems. We are interested in the long-term behavior of the

system. A good algorithm should preserve both the area (orbit) and the energy

of the system [18].

Example 5.2.1. Consider the Hamiltonian system

p′(t) = −q(t) + 1, 0 < t ≤ τ

q′(t) = p(t), 0 < t ≤ τ (5.4)

p(0) = 1, q(0) = 1.

with the exact solution

p(t) = cos(t) + sin(t) and q(t) = sin2(t) + sin(t) + cos2(t)− cos(t).

The corresponding Hamiltonian function of this system is H(p, q) =
1

2
p2+

1

2
q2−q.

The total energy of the system is E =
1

2
p2(0) +

1

2
q2(0)− q(0) =

1

2
.
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Figure 5.9: Phase plot pN (t) versus qN (t) when M = 105, τ = 0.1 and N = 7.

Figure 5.9 represents the phase plots of pN(t) and qN(t) by using the Cheby-

shev–Gauss collocation method whenM = 105, τ = 0.1 andN = 7. The other two

collocation methods also present the same orbit. We see that the orbit preserves

the area as it does not shift from the exact solution when t is large.

In Figures 5.10(a) and 5.10(b), we compare the error in energy of the Chebyshev-

Gauss collocation method in (5.3) with the Legendre-Gauss collocation method
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and the Chebyshev–Gauss spectral collocation method in [35]. The error in en-

ergy from the Chebyshev–Gauss collocation method in (5.3) is smaller than the

error from the Legendre–Gauss collocation method. However, the errors are still

larger than that from the Chebyshev–Gauss spectral collocation method in [35].

The three methods show a constant growth (with respect to the log scale) of the

error, but the point-wise absolute error from [35] slightly oscillates as t increases.
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Figure 5.10: (a) Error in energy of scheme (5.3) versus the Legendre–Gauss collocation method
(b) the Chebyshev–Gauss spectral collocation method when M = 105, τ = 0.1 and N = 7.

N 7 9 11 13 17 21

τ 0.1 0.25 0.5 1 2 4

CGC 2.77e-11 1.77e-11 3.28e-11 2.48e-11 8.14e-11 2.62e-11

EN (t) LGC 3.70e-11 1.50e-11 3.44e-11 3.51e-11 5.05e-11 3.40e-11

CGC-Yang 1.15e-13 1.36e-13 2.33e-13 3.27e-12 3.27e-12 4.82e-12

CGC 3.92e-11 3.92e-11 5.06e-11 3.48e-11 9.22e-11 3.21e-11

EH(t) LGC 5.24e-11 2.12e-11 4.70e-11 4.32e-11 3.26e-11 4.81e-11

CGC-Yang 1.36e-13 8.30e-14 4.54e-14 3.71e-13 6.26e-14 4.00e-13

CPU
CGC 15.60 25.20 42.07 87.14 221.91 659.08

Times
LGC 19.04 31.14 56.20 124.27 379.50 743.33

CGC-Yang 33.32 70.70 197.68 539.41 1.35e3 2.15e3

Table 5.1: Comparison of the errors and CPU times from the three collocation methods for
the system (5.4).

Table 5.1 represents the point-wise absolute error EN(t), the maximum error
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of energy EH(τ) and the CPU times when M = 104 with different values of τ

and N of the system (5.4). We have the Chebyshev–Gauss spectral collocation

method in [35] preserves energy better and the point-wise absolute error less than

the other two methods. However, when we compared the CPU times, it takes

much longer than the time taken from the other two methods. The Chebyshev–

Gauss collocation method (5.3) gives the best CPU times.

Example 5.2.2. Consider the Henon–Heiles system

p′1(t) = −q1(t)− 2q1(t)q2(t), 0 < t ≤ τ

p′2(t) = −q2(t)− 2q21(t) + q22(t), 0 < t ≤ τ

q′1(t) = p1(t), 0 < t ≤ τ

q′2(t) = p2(t), 0 < t ≤ τ (5.5)

with initial conditions p1(0) = 0.011, p2(0) = 0, q1(0) = 0.013 and q2(0) = −0.4.

The corresponding Hamiltonian function of this system is

H(p1, p2, q1, q2) =
1

2

(
p21 + p22 + q21 + q22

)
+ q21q2 −

1

3
q32.

The total energy of the system with respect to the initial conditions is

E =
1

2

(
p21(0) + p22(0) + q21(0) + q22(0)

)
+ q1(0)

2q2(0)−
1

3
q32(0) = 0.1014.
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Figure 5.11: (a) Phase plot qN1 (t) versus pN1 (t) (b) Phase plot qN1 (t) versus qN2 (t) when
M = 104, τ = 0.1 and N = 7.
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Figures 5.11(a) and 5.11(b) illustrate the phase plots of pN1 (t) and qN1 (t) and

the phase plots of qN1 (t) and qN2 (t), respectively, by using the Chebyshev–Gauss

collocation method (5.3) when M = 104, τ = 0.1 and N = 7. The other two

collocation methods also present the same orbit.

N 7 9 11 13 17 21

τ 0.1 0.25 0.5 1 2 4

CGC 5.91e-12 1.10e-12 8.41e-12 9.30e-12 2.29e-11 1.85e-11

EH(t) LGC 3.45e-12 2.28e-11 9.48e-12 9.79e-12 4.19e-11 2.09e-11

CGC-Yang 1.21e-14 6.34e-15 2.39e-15 1.42e-14 2.73e-14 2.47e-12

CPU
CGC 10.69 158.19 290.49 54.59 221.91 659.08

Times
LGC 13.12 18.24 24.58 34.66 77.84 141.30

CGC-Yang 6.54 9.20 16.05 43.08 163.52 407.01

Table 5.2: Comparison of the errors and CPU times from the three collocation methods for
Henon Heiles (5.5).

Table 5.2 illustrates the maximum error of energy EH(τ) and CPU times when

M = 104 with different values of τ and N of the system (5.5). From the table,

the method (5.3) and the Legendre–Gauss collocation method provide the error

in energy of the same order. In this example, the Chebyshev–Gauss spectral

collocation method in [35] preserves energy better. However, when we compared

the CPU times, the time from the Chebyshev–Gauss spectral collocation method

in [35] grows as τ and N increases. The CPU times of the method (5.3) and the

Legendre–Gauss collocation method are close to each other when τ and N are

small.

5.3 The three-body problem

For the three-body problem, as shown in (2.4), apply the algorithm (3.21) to

the system
dp1N(tj)

dt
= p2N(tj)−

(1− µ)

r31
(q1N(tj) + µ)− µ

r32
(q1N(tj) + µ− 1)

dp2N(tj)

dt
= −p1N(tj)−

q2N(tj)

r31
(1− µ)− µ

r32
(q2N(tj))



48

dq1N(tj)

dt
= p1N(tj) + q2N(tj)

dq2N(tj)

dt
= p2N(tj)− q1N(tj).

In all the figures below, we used N = 18, τ = 0.02 on the interval [0, 360] and

M =
360

τ
for the collocation methods and h = 0.001 for the symplectic and the

Runge-Kutta methods.

According to the theoretical result of the three-body problem, the system has

three unstable saddle points. We first examine the orbital behavior of the satellite.

We choose the initial conditions to present the orbit around the center of mass.

Example 5.3.1. Orbital behavior

We consider the first set of initial conditions, p1(0) = 1.259185, p2(0) =

−1.259185, q1(0) = −0.25 and q2(0) = −0.25. With this set of initial conditions,

the phase plot of q1 and q2 illustrates an orbit.
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Figure 5.12: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.13: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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In Figures 5.12 and 5.13, we compare the phase plots of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbit from the sym-

plectic method is almost the same as the orbit from the Chebyshev-Gauss col-

location method, whereas the loop from the Runge-Kutta method spins out and

diverges as t increases. The other two collocation methods also present the similar

orbit to Figures 5.12(a) and 5.13(a).

Method Time Error in

(secs.) energy

CGC 209.912 6.92004e-10

LGC 180.254 1.34285e-9

CGC-Yang 168.261 3.68594e-14

Symp1 1115.715 9.48892e-5

RK4 345.514 1.56437

Table 5.3: Comparison of the errors and
CPU times between the five methods.

Method Time Error in

(secs.) energy

CGC 351.484 1.03391e-10

LGC 256.714 1.36782e-9

CGC-Yang 190.982 8.52651e-14

Table 5.4: Comparison of the errors and
CPU times between the three collocation
methods.

Table 5.3 illustrates the maximum error in energy and CPU times when N =

18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the

table, the collocation methods preserve energy better and give the better CPU

times than the symplectic method and the Runge-Kutta method. In Table 5.4,

we present the maximum error in energy and CPU times when M = 104, N = 20

and τ = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss

spectral collocation method preserves energy better and gives the best CPU times.

In Figure 5.14, we compare the errors in energy of the Chebyshev-Gauss collo-

cation method with the Legendre-Gauss collocation method and the Chebyshev-

Gauss spectral collocation method and the first-order symplectic method. The

errors from the three collocations are much smaller (lie at the bottom of Fig-

ure 5.14(a)) compared to the symplectic. If we compare among the collocation
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methods, we see that the Chebyshev-Gauss collocation method is better than the

Legendre-Gauss collocation method, but still has higher error than the Chebyshev-

Gauss spectral collocation method.
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Figure 5.14: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method (b) Comparison of the relative error in energy
between the three collocation methods.

Example 5.3.2. Chaotic behavior

In this example, we examine the chaotic behavior of the solution. We consider

the set of initial conditions close to L2. The set of initial conditions is p1(0) =

0, p2(0) = 1.22165, q1(0) = 1.1 and q2(0) = 0 [32].

In Figures 5.15 and 5.16, we compare the phase plots of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the phase plot from the

Chebyshev-Gauss collocation method is nested in an oval shape around the saddle

point L2. The orbit from the symplectic method starts from a point outside then

presents a nested in an oval shape. The orbit from the fourth-order Runge-Kutta

method is thick and grows as t increases. The other two collocation methods also

present the similar orbit to Figures 5.15(a) and 5.16(a).
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Figure 5.15: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method. (c) the fourth-order Runge-Kutta method.
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Figure 5.16: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) The first-order symplectic method (c) The fourth-order Runge-Kutta method.

Method Time (secs.) Error in energy

CGC 236.126 1.30388e-3

LGC 199.451 2.46555e-4

CGC-Yang 148.078 1.38244e-4

Symp1 1053.726 3.73057e-3

RK4 339.844 0.26926

Table 5.5: Comparison of the errors and CPU times between the five methods.

Table 5.5 illustrates the maximum error in energy and CPU times when N =

18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. For the

chaotic case, the errors in energy from the collocation methods and the symplectic

method are almost of the same order. The methods do not preserve energy well
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in this case.

Example 5.3.3. The solution near the stable points

In this example, we examine the behavior of the solution near the stable points.

We consider the set of initial conditions close to L4. The set of initial conditions

is p1(0) = −0.9, p2(0) = 0.4, q1(0) = 0.4 and q2(0) = 0.9.
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Figure 5.17: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.18: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figures 5.17 and 5.18, we compare the phase plots of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbits from the

Chebyshev-Gauss collocation method, the first-order symplectic method and the

fourth-order Runge-Kutta method present an oval loop which eventually converges

to the equilibrium point (q1, q2) = (0.49, 0.87). The other two collocation methods

also present the similar orbit to Figures 5.17(a), 5.18(a).

Table 5.6 represents the maximum error in energy and CPU times when N =
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18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the

table, the collocation methods preserve energy better and give the better CPU

times than the symplectic method and the Runge-Kutta method. In Table 5.7,

we present the maximum error in energy and CPU times when M = 104, N = 20

and τ = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss

spectral collocation method preserves energy better and gives the best CPU times.

Method Time Error in

(secs.) energy

CGC 287.781 4.59632e-13

LGC 260.260 8.19789e-13

CGC-Yang 149.774 1.33226e-15

Symp1 1237.280 2.25572e-7

RK4 353.667 1.79116e-4

Table 5.6: Comparison of the errors and
CPU times between the five methods.

Method Time Error in

(secs.) energy

CGC 210.539 8.06022e-14

LGC 168.366 4.48752e-13

CGC-Yang 73.670 8.88178e-16

Table 5.7: Comparison of the errors and
CPU times between the three collocation
methods.
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Figure 5.19: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method (b) Comparison of the relative error in energy
between the three collocation methods.

In Figure 5.19, we compare the errors in energy of the Chebyshev-Gauss collo-

cation method with the Legendre-Gauss collocation method, the Chebyshev-Gauss
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spectral collocation method and the first-order symplectic method. The error from

the symplectic method grows larger as t increases.

Example 5.3.4. Orbital behavior

In this example, we examine the case where the phase plots present an orbit

with an inner loop. We consider the set of initial conditions p1(0) = −0.16, p2(0) =

−0.7, q1(0) = 1.3 and q2(0) = −0.31.
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Figure 5.20: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.21: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figures 5.20 and 5.21, we compare the phase plots of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbits from the sym-

plectic method are similar to the orbit of the Chebyshev-Gauss collocation method.

The phase plot shows a circular orbit with an inner loop on left side where the

third mass moves around an object. The orbit of the fourth-order Runge-Kutta

method spins out as t increases. The other two collocation methods also present
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a similar orbit to Figures 5.20(a), 5.21(a).

Method Time Error

(secs.) energy

CGC 203.075 6.67316e-10

LGC 186.929 1.29832e-9

CGC-Yang 126.929 6.40987e-14

Symp1 1239.537 5.09196e-6

RK4 342.127 1.82939

Table 5.8: Comparison of the errors and
CPU times between the five methods.

Method Time Error

(secs.) energy

CGC 213.755 1.06250e-10

LGC 172.932 1.35033e-9

CGC-Yang 113.769 7.09432e-14

Table 5.9: Comparison of the errors and
CPU times between the three collocation
methods.

Table 5.8 represents the maximum error in energy and CPU times when N =

18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the

table, the collocation methods preserve energy better and give the better CPU

times than the symplectic method and the Runge-Kutta method. In Table 5.9,

we present the maximum error in energy and CPU times when M = 104, N = 20

and τ = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss

spectral collocation method preserves energy better and gives the best CPU times.

Example 5.3.5. The solution near the stable points

In this example, we examine the behavior of the solution near the stable points.

We consider the set of initial conditions close to L5. The set of initial conditions

is p1(0) = 0.83, p2(0) = 0.55, q1(0) = 0.55 and q2(0) = −0.83.

In Figures 5.22 and 5.23, we compare the phase plots of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbits from the

Chebyshev-Gauss collocation method, the first-order symplectic method and the

fourth-order Runge-Kutta method present an oval loop which eventually converges

to the equilibrium point (q1, q2) = (0.49,−0.87). The other two collocation meth-

ods also present the similar orbit to Figures 5.22(a), 5.23(a).
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Figure 5.22: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.23: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

Method Time Error in

(secs.) energy

CGC 323.575 2.10498e-13

LGC 293.721 4.00568e-13

CGC-Yang 148.077 6.66134e-16

Symp1 1214.538 3.98323e-8

RK4 1013.856 2.83977e-5

Table 5.10: Comparison of the errors and
CPU times between the five methods.

Method Time Error in

(secs.) energy

CGC 808.611 5.75096e-14

LGC 256.714 1.36782e-9

CGC-Yang 190.982 8.52651e-14

Table 5.11: Comparison of the errors and
CPU times between the three collocation
methods.

Table 5.10 illustrates the maximum error in energy and CPU times when N =

18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the
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table, the collocation methods preserve energy better and give the better CPU

times than the symplectic method and the Runge-Kutta method. In Table 5.11,

we present the maximum error in energy and CPU times when M = 104, N = 20

and τ = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss

spectral collocation method preserves energy better and gives the best CPU times.

Example 5.3.6. The solution near the unstable points

In this example, we examine the behavior of the solution near the unstable

points. We consider the set of initial conditions close to L1. The set of initial

conditions is p1(0) = 0, p2(0) = 0.9025, q1(0) = 0.78 and q2(0) = 0.
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Figure 5.24: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.25: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figures 5.24 and 5.25, we compare the phase plot of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbit from the sym-

plectic method is almost the same as the orbit from the Chebyshev-Gauss col-
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location method, whereas the loop from the Runge-Kutta method spins out and

diverges as t increases. The other two collocation methods also present the similar

orbit to Figures 5.24(a), 5.25(a).

Method Time (secs.) Error in energy

CGC 338.415 3.77642e-10

LGC 300.389 7.30468e-10

CGC-Yang 168.403 2.77556e-14

Symp1 1439.647 4.98448e-5

RK4 1116.041 0.21472

Table 5.12: Comparison of the errors and CPU times between the five methods.

Table 5.12 represents the maximum error in energy and CPU times when

N = 18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation

methods and when h = 0.001 for the symplectic and the Runge-Kutta methods.

From the table, the collocation methods preserve energy better and give the better

CPU times than the symplectic method and the Runge-Kutta method.
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Figure 5.26: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method (b) Comparison of the relative error in energy
between the three collocation methods.

In Figure 5.26, we compare the error in energy of the Chebyshev-Gauss colloca-

tion method with the Legendre-Gauss collocation method, the Chebyshev-Gauss

spectral collocation method and the first-order symplectic method. The error from
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the symplectic method grows larger as t increases.

Example 5.3.7. The solution near the unstable points

In this example, we examine the behavior of the solution near the unstable

points. We consider the set of initial conditions close to L3. The set of initial

condition is p1(0) = 0, p2(0) = −0.9617, q1(0) = −1.05 and q2(0) = 0.
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Figure 5.27: Phase plots of q2N versus q1N by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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Figure 5.28: Phase plots of q2N versus q1N and t by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figure 5.27 and 5.28, we compare the phase plot of q1N and q2N of the

Chebyshev-Gauss collocation method with the first-order symplectic method and

the fourth-order Runge-Kutta method. We observe that the orbits from the

Chebyshev-Gauss collocation method, the first-order symplectic method and the

Runge-Kutta method spin out and diverges as t increases. The other two colloca-

tion methods also present the similar orbit to Figure 5.27(a), 5.28(a).
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Method Time (secs.) Error in energy

CGC 319.861 1.65429e-7

LGC 294.403 1.766210e-8

CGC-Yang 141.078 1.65460e-7

Symp1 1344.604 8.08749e-3

RK4 1082.638 1.03653

Table 5.13: Comparison of the errors and CPU times between the five methods.

Table 5.13 illustrates the maximum error in energy and CPU times when N =

18, τ = 0.02 on the interval [0, 360] and M =
360

τ
for the collocation methods

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the

table, the collocation methods preserve energy better and give the better CPU

times than the symplectic method and the Runge-Kutta method.



Chapter 6

Conclusions

In this work, we proposed the Chebyshev–Gauss collocation method to solve to

the initial value problems of ordinary differential equations. We constructed the

algorithm for an ordinary differential equation as well as the system of ordinary

differential equations in both single and multi-interval domain. The numerical

results support the theoretical result discussed in Chapter 3. For a fixed T , the

error drops rapidly as N increases. This behavior is expected since we increase

the number of collocation points. We compare the results to show the order of

convergence of O
(
e−3.1N

)
and O

(
N−4.33

√
N
)

in Figure 5 and 6 respectively. It

shows that the method (3.21) possesses a spectral accuracy.

For a fixed τ and N , with the scheme for a multi-interval domain, the error

grows at a faster rate for a smaller t than a larger t. As t gets larger, the error

increases due to the accumulation of errors from the subintervals. These errors

may occur when we approximate the endpoint value of each subinterval and set

it as the initial condition for the next subinterval. For the systems of differential

equations, we have that the method (3.21) preserves both energy and the area.

The CPU times for the method (3.21) are the best for the linear systems and

are comparable to the Legendre–Gauss collocation method and the Chebyshev–

Gauss spectral collocation method in [35] for nonlinear systems. One may improve

the algorithm by designing the iterative methods for solving the implicit systems

(3.21), especially when the coefficient matrix has a large condition number.

For the three-body problem, we presents a comparison of the collocation meth-

ods, the symplectic method and the Runge-Kutta method for the three-body prob-
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lem. We choose appropriate sets of initial conditions to present the case of orbital

behavior, chaotic behavior, the case when the solution converges to the stable

point and the case when the solution converges to the unstable point.

For the case when the phase plots present an orbit (Example 5.3.1. and Ex-

ample 5.3.4.), the collocation methods give a thinner loop than the fourth-order

Runge-Kutta method and they preserves energy and CPU times much better than

the symplectic and the fourth-order Runge-Kutta methods.

For the chaotic case (Example 5.3.2.), the collocation methods still give a better

loop than the other two methods. However, the errors in energy for this case are

almost of the same order. They do not preserve energy well.

For the case when the solution converges to the stable point (Example 5.3.3.

and Example 5.3.5.), the collocation methods give a thinner loop than the fourth-

order Runge-Kutta method and they preserves energy and CPU times much better

than the symplectic and the fourth-order Runge-Kutta method.

For the case when the solution converges to the unstable point (Example 5.3.6.

and Example 5.3.7.), the collocation methods give a thinner loop than the fourth-

order Runge-Kutta method and they preserves energy and CPU times much better

than the symplectic and the fourth-order Runge-Kutta method.
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Appendix A

Appendix

A.1 Chebyshev polynomials

The Chebyshev polynomials, Tn(x), are defined as the solution to the Sturm–

Liouville problem with p(x) =
√
1− x2 and q(x) = 0 [8, 16],(√

1− x2T ′
n(x)

)′
+

n2

√
1− x2

Tn(x) = 0, x ∈ [−1, 1]

or (
1− x2

)
T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0, x ∈ [−1, 1].

An alternative representation of the Chebyshev polynomial of degree n is given by

Tn(x) = cos(n arccos(x)).

where Tn(x) is assumed bounded for x ∈ [−1, 1].

The Chebyshev polynomials are given as T0(x) = 1, T1(x) = x, T2(x) =

2x2−1, T3(x) = 4x3−3x and are orthogonal in L2

ω− 1
2

∈ [−1, 1] with ω(x) =

(1− x2), ∫ 1

−1

Tn(x)Tm(x)ω
− 1

2 (x)dx =
1

2
πcnδn,m, n ≥ 0.

where c0 = 2, cn = 1 and δn,m is the Kronecker symbol.

Some properties of Chebyshev polynomials are

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0, n ≥ 1. (A.1)

For the shift Chebyshev polynomial on [0, T ] with the transformation x =
2t

T
− 1,

x ∈ [0, T ] and dx

dt
=

2

T
. We defined the shifted Chebyshev polynomials TT,n(t) by

TT,n(t) = Tn

(
2t

T
− 1

)
= cos

(
n cos−1

(
2t

T
− 1)

))
, n = 0, 1, 2, ...
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Since

1− x2 = (1− x)(1 + x)

=

(
1− 2t

T
+ 1

)(
1 +

2t

T
− 1

)
=

(
2− 2t

T

)(
2t

T

)
∴

√
1− x2 =

√
4t

T 2
(T − t) =

2

T

√
t(T − t).

Therefore,
1√

1− x2
=
T

2

1√
t(T − t)

.

Consider∫ 1

−1

Tn(x)Tm(x)

(
1√

1− x2

)
dx =

∫ T

0

Tn(t)Tm(t)

(
T

2

1√
t(T − t)

)
d

(
2t

T
− 1

)

=

∫ T

0

Tn(t)Tm(t)

(
T

2

1√
t(T − t)

)
2

T
dt

∴
∫ 1

−1

Tn(x)Tm(x)

(
1√

1− x2

)
dx =

∫ T

0

Tn(t)Tm(t)

(
1√

t(T − t)

)
dt. (A.2)

So, the shifted Chebyshev polynomials are also orthogonal on the interval [0, T ],∫ T

0

TT,n(t)TT,m(t)ω
− 1

2 (t)dt =
1

2
πcnδn,m, n ≥ 0 (A.3)

where ω(t) = t(T − t), c0 = 2, cn = 1 and δn,m is the Kronecker symbol.

Some properties of Chebyshev polynomials on [0, T ] are

(Tn+1(x)− 2

(
2t

T
− 1

)
Tn(x) + Tn−1(x) = 0, n ≥ 1. (A.4)

A.2 Cauchy-Schwarz Inequality

Let X be a Hilbert space, endowed with the inner product (u, v) and the asso-

ciated norm ||u||. The Cauchy-Schwarz inequality states that |(u, v)| ≤ ||u|| ||v||

for all u, v ∈ X. Of particular importance in the analysis of numerical methods

for partial differential equations is the Cauchy-Schwarz inequality in the weighted
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Lebesgue spaces L2ω(Ω), where Ω is a domain in RN and ω = ω(x) is a weight

function. The previous inequality becomes [8] :∣∣∣∣∫
Ω

u(x)v(x)ω(x)dx

∣∣∣∣ ≤ (∫
Ω

u2(x)ω(x)dx

)1/2(∫
Ω

v2(x)ω(x)dx

)1/2

.

A.3 Peter-Paul Inequality

Let a, b be nonnegative real numbers and p, q ∈ (0,∞) such that 1

p
+

1

q
= 1.

Then

ab ≤ ap

p
+
bq

q
.

For p = q = 2, we have

ab ≤ a2

2
+
b2

2
(A.5)

which also gives rise to the so called Young’s inequality and for an ϵ > 0, we have

the so called Peter-Paul Inequality [25],

ab ≤ a2

2ϵ
+
ϵb2

2
. (A.6)

A.4 Properties of the integral

Since f(x) ≤ g(x) and f(x) and g(x) are integrable on [a, b], then [27]∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx. (A.7)
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