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Chapter 1

Introduction

The three-body problem-arises in the area of classical mechanics. It describes
three masses which interact under the grayvitational force. The problem was orig-
inated from the motion of the Moon under the gravitational force acting between
the Sun and the Earth {31]. The three-body problem is considered to be one of

the Hamiltonian systems. The Hamiltonian of the system of n body is denoted by

H(paq) :H<p17"‘7pn7q17"'7Qn)-

The corresponding system of differential equations-is-given by

sy N
¥er O of
E—E, 2—1,2,...,n

where p; is the generalized momenta and ¢; is the generalized coordinates.

The three-body problem was first-discovered in 1687 by Sir Isaac Newton. He
formulated a system of differential equations to describe the motion of the Moon
around the Earth. The study revealed that the Moon and Earth influence on
each other by a gravitational force and use the initial conditions associated to
the equations to predict the motion of two bodies moving in orbit. When another
variable is added to generate the three-body system, the relationship of the motion
of the Moon under the influence of the Earth and Sun is considered [23, 24, 28].
Later in 1772, Euler established a lunar theory through the study of the restricted
three-body problem. About the same time, Lagrange, who followed Euler’s lead,

introduced a method for describing periodic orbits of general three-body problem.

1



He discovered the five Lagrange points (equilibrium points) and the Lagrangian
equilateral triangle. [24, 26, 31]

In 1836, Jacobi continued to study the restricted system with more variables
26, 31]. Later in 1858, Dirichlet claimed that he had discovered a general method
for treating the problem. In addition, he claimed that he had succeeded in proving
the stability of the planetary system. However, he died without leaving a proof
of his work. Yet, it was presented by his students, Kovalevski and Mittag-leffler
[22]. In 1883, Poincaré authored a book about the: three-body problem based
on the Mean Value Theorem in order to prove that the three-body problem has a
relativistic periodic solution.  Nevertheless, the analytic solution to the three-body
problem still has not been found {3, 4].

Later, Alexey Lapshin-revealed a numerical solution to the problem using the
fourth order of Runge-Kutta method. He showed the method of solving the re-
stricted problem when one of the masses of the three-body problem is considered
to be very small (close to zero) compared to the other two masses. He, moreover,
found that the orbit of an object with a small - mass moves around the two ob-
jects in shape of the eight-and ellipses-[21]. Feng Kang afterwards offered a new
method to determine the numerical solution of such differential equations called
the symplectic methods, which preserve the-area and, thus, reduce variability in
solutions [17, 30].

In 2011, Kanyamee and Zhang considered the Hamiltonian of the Earth-Moon-
Satellite system. They described the-motion of a satellite around the Earth and
Moon by setting the Earth and Moon on the x—axis, while the coordinates (x,y)
represented the satellite coordinate in the orbit around the Earth and Moon.
They compared the spectral collocation methods with the first-order symplectic
method. The orbits obtained from the symplectic method seemed to be thicker
than the collocation methods, especially the left and right corner. Moreover, when
comparing the error in energy and CPU times, the spectral collocation methods
provide small error and less time than the symplectic method. However, the

convergence rate of the spectral collocation methods is of the first order, which



could be improved. Additionally, they did not provide the set of appropriate initial
conditions for this problem [18].

After that, Zhang Hua et al. proved that the Symplectic Algebraic Dynamics
Algorithm (SADA) has high accuracy in finding solutions to describe the long term
behavior of the circular restricted three-body problem (CR3BP). They considered
the Hamiltonian of the Earth-Moon-Satellite system and compared the SADA of
the fourth order with the Runge-Kutta method of fourth order. They eventually
found that the SADA method gives better accuracy than Runge-Kutta method in
a long-term period [32].

As stated in the beginning of the.chapter, the Hamiltonian systems are de-
scribed by a set of ordinary differential equations .. The ordinary differential
equations occur mostly inproblems in Science and Engineering. There are several
numerical methods to solve the initial value problems of the ordinary differential
equations. The classical methods such as the Euler method and explicit Runge-
Kutta methods are known te provide the numerical solutions-with a low accuracy
[5] whereas the implicit Runge-Kutta methods give a high accuracy for the nu-
merical results [6,.7, 14].~There are ‘some other high accuracy methods for the
ordinary differential equations proposed by Hairer et al. [9]; Lambert [20] and
Stuart et al. [29].

Spectral methodshave beensuccessfully used to obtain the numerical solutions
of ordinary and partial-differential equations. "The solutions of the methods are
approximated in forms of the expansion-of higher-order polynomials [8, 15, 16, 19].
The spectral collocation methods recently capture many researcher’s interests as
they give a spectral accuracy to the solutions. The smoother the exact solutions,
the smaller the numerical errors are [35].

The recent work for solving the ordinary differential equations using the spec-
tral methods are proposed by Guo et al. [2, 11, 12, 14, 33]. They developed
the Legendre-Gauss [14] and designed Laguerre-Gauss and Laguerre-Radau type
[2, 11] spectral collocation methods for the ordinary differential equations. Fur-

thermore, Kanyamee et al. [18] described the comparison of several spectral



Galerkin and spectral collocation methods and symplectic methods for the Hamil-
tonian systems. Wang et al. [34, 35] developed the Chebyshev-Gauss spectral
collocation methods and developed the Legendre-Gauss collocation methods for
nonlinear delay differential equations. El-Baghdady et al. [10] designed a new
Chebyshev spectral collocation method for solving a class of one-dimensional lin-
ear parabolic partial integro-differential equations.

In this work, we are interested in/finding a numerical solution of the ordi-
nary differential equations and, hence, the numerical solutions of the three-body
problem with the appropriate set of initial conditions to show the behavior of the
solution near the equilibrium points. We fitst propose the collocation method with
(N + 1) Chebyshev-Gauss points-as the nodes. Then, we derive a new algorithm
for solving an ordinary differential equation and a system of ordinary differential
equations. A good method should preserve both energy of the system H and the

area (orbit).



Chapter 2

Preliminaries

In this chapter, we will discuss the three-body problem and the spectral collo-

cation methods.

2.1 The three-body problem

We consider the Hamiltonian, H, of the Earth-Moon-Satellite system given by

2 2
N YN N\
H(pxapy7$7y) = 9 . i) (ypz _$py) iy < rl W
1 T2

where x and y are the displacements-along the x— and y—axes, p, and p, are
the momenta in the x— and y~ directions, respectively, r? = (v + p)* + v?,
r3 = (x + p = 1) + y* and p-is the mass of the Moon. Tn this paper, we choose p
to be 0.01215 times the mass of the Earth [32]. The Hamiltonian# also represents
the energy of the system. The systemare known to conserve energy, i.e., the energy
is constant along the trajectory [17]:

This system describes the motion of the satellite around the Earth and Moon.
To formulate the equations, we locate the Earth and the Moon on the x—axis
where the origin is at the center of mass between the two objects. The position

of the satellite can be represented by the x— and y— coordinates or as the point

(z,9).



The corresponding system is given by

dps (1—p)

(a4 ) — %

= - = —1
dt Y r% rg(H“ )

— =Py T (2.1)
where p(0) = po, ¢(0) = qo, x(0) = @g and y(0) = yo. For simplicity, we let
Pz =D1, Py =D2, ©=q and y =

As we discussed in Chapter 1, this system has the five Lagrangian equilibrium
points which are L;(0,0.84,0.84,0); L(0, 1:16, 116, 0),.L3(0, =1.01, —1.01, 0),
L4(—0.87,0.49,0.49,0.87) and L5(0:87,0.49,0.49, —=0.87).- The first three points
Ly, Ly and Lz on the z—axis are the collinear equilibrium points. These three
points are called the unstable saddle points. The other two points L, and Lj are

called the nonlinear stable points [32].

2.2 Spectral collocation methods

The spectral collocation methods are methods to determine a numerical so-
lution of ordinary differential equations and partial differential equations. The
collocation method is defined by.considering the residual of the problem. The
method requires the residual to vanish at a certain set of grid points. These
grid points are called the collocation peints. The collocation points denoted by
xg, ..., xy are commonly the set of Gauss-type points [15, 16].

Consider the problem:

Qo) putyt), welabl, t20
ot
Bru =0, t20
(2.2)
Bru =0, t=20
(u(e,0) = f@),  welod

where £ is a leading spatial derivative operator, B; and Br are the boundary

operators at * = a and x = b, respectively.



In the collocation method, we seek a solution uy(z,t) € Py of the form

N
un(z,t) =Y a;(t)é;(x) (2.3)
§=0
where ¢;(z) is a polynomial taken from the space
Py = span {qu(x) € Span {xk}izo | BLp; =0, Bgro, = O}J .
As discussed above, we require the residual to vanish at the collocation points
Zg,...,xy. This yields the (N + 1) equations to determine the unknown expansion
coefficients, a;(t),7 =0,... V.

Qu(z;;t)

Ry (xyﬁ t) = ot

+ Lu(x;pt)y =003 IN.

Substituting (2.3) into (2.2), we obtain the corresponding (N + 1) equations for
(2.2) as

( .

022 XNV A3 1) v
ot

BLUN — 0’

BRUN 770

We apply the eollocation. method-to-the-three-body problem (3.1) using the
Gauss points as the collocation points forthe problem. The Gauss points z; are the

zeros of polynomial on the interval [—1, 1]. These points z; are then transformed
b+a+z;(b—a)

5 .
To find the solution of (3.1), we seek for pk(t), pa(t),qn(t),q%(t) € Py of the

to the Gauss points ¢; on the interval [a,b] by t; =

form

N N N

ph(E) =D Ple(t), pi(t) =Y Pios(t), Z@l@ = " Q%;(t)

Jj=0 Jj=0 Jj=0



such that the residual is zero at the points tg,...,ty, i.e.,

dpy (t; 1—p f

) )~ S )+ ) — Bkt - )
T Ty

dpi (t;) 1 an(t)) B oo

= —p\(t;) — 1—p) — Lg%t
S = ki) - P - ) - B

dqy(t;)

W) _ e + i)

dgi (1)

L) — 32 () — a4, (2.4

In this work, we design/a method to'solve (2.4). The basis function ¢; is chosen
to be the Chebyshev polynomial, resulting a system of (N + 1) equation for each
set of unknown coefficients le, Pj2, Q; and QJZ We compare the results with the
Legendre-Gauss collocation method in/[14], where ¢; is the Legendre polynomial,
the Chebyshev-Gauss spectral collocation method in [35]; the symplectic method
and the Runge-Kutta method.  The result of the three-body problem will be
discussed in Chapter 5 Section 5.3.



Chapter 3

Chebyshev-Gauss collocation
method

In this chapter, we describe the Chebyshev polynomials and their properties, in
Section 3.1 and 3.2. Then, we introduce the Chebyshev-Gauss-collocation method
as well as the algorithm for soliving an ordinary differential equations in Section

3.3.

3.1 Chebyshev polynomials of the first kind

In this section;.we consider Chebyshev polynomials of the first kind on the
interval [—1, 1] and the shifted Chebyshev polynomials on the interval [0, 7.
Chebyshev polynomials of the-first kind, denoted 7,(«), are eigenfunctions of

the singular Sturm-Liouville equation of the form
(1—2°) T,/ (x)y=aT,(z) + n°Tp(z) =0, =z €[-1,1].
An alternative representation of the Chebyshev polynomial of degree n is given by
Tn(x) = cos(narccos(z)).

Let 7;(x) be the Chebyshev polynomial of degree ! defined on the interval [—1, 1].
We define the shifted Chebyshev polynomials 77,(t) on the interval [0,77], with

the transformation z = T 1, by

_r (2 _ (2t _
%’l(t)_ﬁ(T 1)—Cos(lcos (T 1))), [1=0,1,2,...
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The first few polynomials are illustrated as follows:

Tr0(t) = cos ((0) cos ! (% — 1))) =1,

Tra1(t) = cos ((l)cos_1 (% — 1))) = % —1,

2
Tra(t) = cos ((2) cos™! (% _ 1))) _ % B % ey

By following a property of Chebyshev polynomials, we have the three-term recur-

rence relation for shifted Chebyshey polynomials

2t

7}71_,_1(75) -2 <T — 1> 7}11(15) + 7},1_1(15) =0, [>1. (3.1)

The shifted Chebyshev polynomials are also orthegonal on the interval [0, T ( see
Appendix A.1), i.e.

1

T
/ T T ()™ 2 (E)dt = §7T0151,m, [>0 (3.2)
0

where w(t) = t(T.=t), Co-=2, ¢y = 1 and 0y, is the Kronecker symbol.

Consider any functionu € L2 1 (0,T). A Chebyshev expansion of a function w is

u(ty= N7 i Tr(t). (3.3a)

where the expansion coefficients, 1, are constants..-Multiplying both sides of (3.3a)

by Tr.(t) and w™z () and integrating with respect to ¢ over [0, 7] gives

/o Tra(t)u(®) ™ (t)dt :/0 Tra(t) (Z szTT,l(t)> w2 (t)dt
- Z/o TT,l@)ﬁﬂ-T,z(t)w*%(t)dt

T T
= / T () Tro (£ itow™ 2 (t)dt + / Toa(t)Tra(t)iqw ™2 (t)dt + . ..
0 0

T
= / T () Tra (w2 (¢t
0
1

= —7'['61121

2
P T u()Tr(t) "

7w o VHT —t)

(3.3b)
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Next, for any positive integer N, we consider the Chebyshev-Gauss quadrature.
Let { (¥, wl) }j.v:o be the Chebyshev nodes (where x are the zeros of Ty1(z)) and
corresponding weights on the interval (—1,1). We define the shifted Chebyshev-

Gauss nodes and the corresponding weights on (0,7") as

N T

T .
t%j = E(xév"‘ 1), 0<j<N and wp; = Ww¥ 0<j<N.

2%
Let Py (0,T) be the set of polynomials of degree at most N on [a, b]. According

to the Gauss-type quadrature rule; The Gaussian:quadrature is exact for all

polynomials p(x) € Pany1- As a results, forany ¢ € Poy1(—1,1),

o)
CAIRY N+1Z¢

Hence, for any ¢ € Pany1(0,T), we have

/OT\/thT& Edt:/_llqb(%(x—l—l)) <—z\/11_7x2) %d:p
/ gb x—}—l
1—x2

( x +1) ) (by Gaussian-quadrature [16])

. NZ 1 Z¢<t¥,j>. (3.4)

3.2 Discrete Chebyshev-Gauss expansion [15]

In the continuous L? 1 (0,T) space, we define the inner product and
w

L? |-norm as

wo3

K\J

T
(u,v)p = / u(t)v(t)dt and ||lul|; = (u,u)lT/2 for u,v € Lg_%(O,T).
0 w

For the discrete expansion, using the Chebyshev-Gauss quadrature formula, the

discrete inner product and norm on (0,7T) is defined by

=2

Yooy and Jul;y = (wu)ix  (3.5)

(U7U)T,N: N 114
7=0
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where u, v € in%(O, T).
It follows from (3.4) that for any ¢ € Pany1(0,7) and ¢ € Py (0,7),

N

(6, )r = /0 SOV H Ot = T 3 X W) = (6. 0)nw (3.60)

J=0

and the two norms ||¢||% and [|¢|[3. , coincide, i.e.

el = | eeuio = st )e ) = lellin - G

Recall the Chebyshev expansion in (3:3a); the truncated continuous expansion of
u is considered as the projection of u on the finite dimensional space B(y1) of the

form

N+1

= > iy Tra(t): (3.7)

where B(y1) = span {tk A< kELS N+ 1} with the coefficients

2 2 2
N _ N
U = P — (u, Trp) = r%z (s 7T,l)T7Na 0 < LN and iy, = —WCNH (u, TrN+1) g

Let Zr yu be the discrete Chiebyshev-Gauss expansion of any « in L* 1 (0,7).

Using the Chebyshev-Gauss quadrature; we define the discrete approximation of u

Trwu(t) =" i Taa(t) (3.8)

where the discrete expansion coefficients are

N

2
~N N N
TN L1~ tr)Tra(tr 0<I<N.
" (N +1)q = ulty;) Tra(tr), SUs

This Zr yu € Pn(0,T) and it interpolates u at all the Gaussian quadrature points
[15].

N
Tryu(ty ) Zul Tra(t),;) = > ultf Li(Y,) = u(t);), 0<j<N. (3.9)
=0

where £;(t) is the Lagrange polynomials based on the Chebyshev-Gauss nodes.
From (3.6a) and (3.9) , we have

(3. Ga)

(1, 0)pn B (Trnw, )y 2 (Trwu, )p s V6 € Pyan(0,T).  (3.10)
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Using (3.10) and the above statement that 77,;(t) € Pn(0,T), the discrete expan-

sion coefficients @' in (3.8) can be written as

T () Zrvu()w™ 2 (t) = Tru(t) (Zulm> i (t)

/ 7}[ ITNU w 2 dt / 7}1 (Zul 7}[ >w 2() t

/ 7}1 ITNU,( )w 2 dt / 7-Tl 7~TO( )uow 2()dt+

/ T (DT (05w (1)t

(IT,NU, TT,l) 3 iﬂCzUl

- B
va —J —(IT,NU, 7},1)T
ey

5 2 2
ulN = —(IT,N%TT,I)T » —(IT,N% 7'T,l)T,Nv 0<I<N. (3.11)
e ey

Next, we consider the relationship between the coefficients of the truncated con-
tinuous Chebyshev expansion in (3.7) and the discrete expansion in (3.8). For any
u € Pn41(0,T), the.coefficients @' and " determined in-(3:7) and (3.11) gives

. 2 9) 2 3:6a). 2
i = —(Zrnu,Tri)r.N S —(w, Tri)on - —(w, Tr)r, 0<I<N.
™ ey ™

Therefore, for any u € Pyy1(0,T),
)¢ i =02 et/ (3.12)

The result from (3.12) gives the comparison of the discrete norm and the L? , —norm

w3

N

of u € Pny1(0,7T) as follows:

- N +1 Z u(t%j)u@ily,j)

j*O

= N 1 ZITNU tTJ)ITNu(tTJ)

(3 5) (IT NU, IT NU) TN

= HIT,NUHT,N
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iy <l (3.13)
3.3 Chebyshev-Gauss collocation method

In this section, we introduce a Chebyshev-Gauss collocation method to obtain
a numerical solution of ordinary differential equations. Consider the first-order

ordinary differential equation on the interval [0, 7] of the form

d
ZX(B)=f(X(0).), 0<t<T (3.14)
X(0) = X,

For the spectral collocation method, we find X (t) € Py1(0,T) such that

d
LXNEN Y = (XN )N ), 0<j< N
X () = fF(XT () try), 05 < (3.15)
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which implies the residual error vanishes at the collocation points t% 5J=0,...,N

or

d
RN(XN(t%j%t%]) = EXN(tT,j) - f(XN(tC]ZV‘,j>7tC]ZV‘,j) = 0.

In the Chebyshev collocation, we seek a solution X (t) € Py1(0,T) of the form

N+1

=Y XNTp(t), 0<t<T. (3.16)

As a result, we have that X (¢)77,(t) € Pan+1(0,T) for 0 < I < N. Multiplying
(3.16) by Tr.(t)w™2(t) and integrating the result over the interval [0, 7] together
with (3.7), we obtain

/OT%J(t)X tydt = /7}1 (fol 7},) 3 (t)dt

1 -
(X 7}1) 3:2 Eﬂ'CleN
o 2
X =—(X%Tr.)w
O
3.6a 2
( ) (XN 7}0
¢
35y (2 e
N 2
P S N, 0<I<N. (317
l Cl(N+ 1) Jgo ( T,])%,l( T,])? —= v = ( )
So far, we only obtain the coefficients X lN for 0 <! < N. We still need to find
N+1
the last coefficient X]]\\[+1 Considering ¢ = 0 in (3.16), Z XZN7}Z

using the property 77;(0) = (—1)" and (3.17), we obtain

N
XN(t) = XV e () + Y XN Tra(t)

=0

N
XN(0) = XN Trvea (0) + ) XN T7,(0)

Trn+1(0) X7 (0) :%,N+1(O)X]]\\77+17},N+1( )+ Trn+1(0 ZX Tr(0
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= (=DMXp+ Y ()N (Z ﬁﬂ(%m,z(t%»)

J=0

N. N
XNy = (=D)VH X + 2z > Y (_1>N+lXN(tN VTra(tY). (3.18)

d
To derive the derivative term, EX N for the equation, we consider the recurrence

relation
d [ d 4(1
%%,l(t) = <l——2> %%,l—ﬂt) \ %7},1—1(15)-

Due to the nature the Chebyshev polynomial, we divide [ into two different cases.

Case I [is even,

%7}72@) =2 (%) Tni(t)

(7) 7m0+ s (;T) Tralt)|+ |8 (7) Trato)| |3 (7 ) 7ot



17

1
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I~ N— -
= SN =
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0 T SN—
= <t |~ N = = ,.(MA M7 <
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o0 = N ~ = 4 TN Ny o~ — " ——
E T ~ 9 e [/ Py + - + + . o
Z = = = Zm A e T S e = B
& ~— ~— — N o + [~ < +— ~ TN =% ey
= & & [ NLENTWIRNS/O LS A/ g =T g 3
—~ K = = o s = pa\ /0 v/ = F SR %
s~ -~ =T F & = ) oy = —~ 5 = o0k
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5 € g S = S
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d (A 21
%%,l(t) = ( (1) (?) 7:.F,l(2m1)(t)) + %, [=1,3,5,....

d L d

%XN() > XN Tra()

e 2 e DR vo) d
= ( 1) X0—|— ZZ X (tTJ),E“,l(tT,j) dt,]},NJrl(t)

a

+ (ZZ W%UCZXN@%WTJ(#JQ )

d M E d
— (_1)N+1X0dt7'TN+1 (ZZ Nt e tT])TTl(tTJ)> ETT”@

l=1.4=0

N N AN
+ - 2 (ZZ( 1) XN@%)E,(t%)) %TT,NH(t).

Cl

We consider N inte two different cases,

Case N is odd and [ is'even

d N+1 d d N R d
EXN ZXl dt%l() X]]\\f[+1dt7:./’N+1(t)+ZXl]V£7}»l(t)

X % D N+ 1)7},N(2m2)(t¥7k)) + (Z > CZ(NLH)X N(tﬁj)TT,l(tﬁj))
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N
Il
_
<
Il
o
&
I
—

d

o d
SN = 3 X S Tale) ERN T +ZXz STl

= =1

_ (_1>N+1X0_|_ LZZ (_1)N+ZXN(t§V‘,j)%J(t§V‘,j)>

Cl

1=0 j=0
4 ML N N
X fZ(N—}—]‘),]}N (2m— 2)(tTk ) + (ZZCZ N+1 tTj)%l(tT]))
m=1 (=1 3=0
%
4
X (Tml( )T N—(2m—2) tTk ) (T

B N+1

A(—1)NHG (N 1) &
X M Trow <o (t7 )

m=1

Case N is even and [ is even
N+1
d

N

d A d on d

%XN E Xl dt%l() X]]¥+1£7-7‘,N+1(t)§ ,XlNaer,l(t)
=1
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3
l
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For simplicity, we let

l

3
Z( )Tr—(2m-1) (tTk) [ is even
m=1

5
l
Z 75“[ (2m-1) Zka) +§, [ is odd

( +

Z Tz.N—(2m<2) (tT,k)a N is odd
m=1

1=0 m
1
%,N7(2m72)t:]zvyk) + 37 N is even
N m=1
(3.19a)
and
(Nt
E-
Z T N=2m—2) (tﬁk)a N is odd
m=1

by = (4(N + 1)(=1)M™)x 1

N
B
1
7},N—(2m—2)(t¥7k) + 37 N is even.
& m=1
(3.19Db)
Therefore,
d == b
N 0, N
EX (trg) = Za SN )+ 0, 0< k<N, (3.20)

]:O
Substituting (3.20) into the left hand side of (3.15) yields the following matrix

equation of (3.20)
ANXN = (T)FN(XM) — X", (3.21)
where A% is the matrix with the entries aﬁj, 0 <j,k <N, given in (3.19a),
XN = (XN (), XV ), XV )

T
FNXN) = (F(XN(t70), tro), SXN AR t70), - FXN (R ) 17 0))
oY = (b)Y, eN)T
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We solve this system for the solution X" = (XN (), XN (), . .. ,XN(t%N))T :

The last step of our algorithm is to determine X% (¢) at the right end (or
XN(T)). This value will be used as the initial value of the consecutive interval
when considering a domain decomposition. To compute X% (¢), we use the values
of {XN(tﬁk)}gzo which are obtained from (3.21) together with (3.18). Since
Tr,(T) =1, we get

=0

_ [(—1)N+1Xo pim o VA ﬂXN(%)TTJ(t%)]

N N
2 ¥ /
+ ;j; (N 4+ 1)X (tT])TTl(tT])]
) N ) ANTZA
_( 1)N+1X 2 N—HZZ (( )Cl )XN(téY’j)’]}J(té\{j)] .
1=0/ j=0

(3.22)

3.3.1 Single interval Domain

For the domain containing-only one interval, we apply the algorithm in (3.21)
directly. The scheme (3.21) is an implicit scheme. We apply an iterative method

to solve the system.

3.3.2 Multi-interval Domain

For the domain decomposition, we break the domain [0, T] into M subintervals
where each of which is of length 7 = % We first evaluate the solution X (¢) on
the first subinterval [0, 7] with the given initial condition X (0) = X,. Then, we
compute the end point value of X (7) and set it as the initial condition for the

next subinterval. By continuing the process, the solution on the i-th interval can
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be evaluated by finding X7V () € Pan+1(0,7), 2 <4 < M such that

d
—XN(N) = FXNEN), 7(i = 1) +tY), 0<k<N,2<i<M
dt ’ ’ ’ (3.23)
XN(0) = XN, (7).

(2

The value of X} (tivk) is the local value for each subinterval. Patching all the

(2

solutions together with the global notation X}V (t]TV i +7(i— 1)), we finally arrive
the numerical solution for the equation. The following example demonstrates the

solution of an initial value problem with single and multi-interval domains.



Chapter 4

Error analysis of the
Chebyshev-Gauss collocation
method

In this chapter, we analyze the error of the solution obtained from scheme
(3.15). The error analysis has been-completed by Yang et al. in [35]. We will
follow there proof in detail in this' chapter. We first compare the numerical solution

XN(t) with the Chebyshev-Gauss-interpolation Zy nX (t). Let

d d
N b - — g e
GO Ty 22X (1) A= T X (1)
Then,
g Xt) =1 J X (1)~ GY¥(t)
W PSANRY PR T/
At t =ty
d Ny _ S G5 0570 AN b
IrnX(tr,) = Irn— Xty ;) — G (tr )
dt dt
(3.15)
=" Irnf(X(t7)), t7;) — GY (t1;)
(3.9) )
= f(IT,NX<tTJY,j)7tJJY,j) - G]1V<t¥,j)7 0< J =< N. (4'1)
N N d N d N d
Let E (t) =X (t) — IT’NX(t). Then EE (t) = EX (t) — EIT,NX(t)-
d NN d NN d N
EE (tT,j) = EX (tT,j) - EIT,NX(tT,j)‘
Using (3.15) and (4.1),
d
SEN() = FX)6) = (F(Trw X (), 8) - 6Y ()

= f(X(t7,),t0 ;) — [(Trn X (t7,), 17 ) + GY (t7).

24
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Moreover, we let G5/ (ty ;) = f(XN(t} ), t7;) — f(Zrn X (t7;), 17 ;). The equation
(3.15) becomes

d n N (4N N (4N -
%E (tT,j) =Gy (tT,j) + G (tT,j)u 0<j<N (4.2)

EN(0) = Xo — Zrn X (0).

We define Ry (t) =t~ (EN(t) — EN(0)) . Obviously, tRy(t) € Py(0,T),

tRy(t) = EN(t) ~ EN(0)
EN(t) = tRy(t)+ EN(0)

A d B,
aE (f )= o (tRn (1t ))+th (0)
d ety d

F %E (t) = 7 (tRy(1))-

Multiplying (4.2) by 2(T —) (Nj- 1) Ry(ty,) and sum from j = 0 to N, we

have

d N
2T —t) ( . ) RiltR,) 3 B y) £ AT,
7=0

N1
N

£ 2T

=0

N
N T
Q(N )Z —tRN(tT])th @)y =2 N+1)

J=
B

d
2 (( — )Ry, EEN) = AV + AY (4.3)
T,N

N

T
N+ )RN tTj)GN<tT])

—

/—\

Jj=0

T
)G )

/\

o)

T'— ¥Ry (t7)GY (1)

T — t)Ry(ty,;)GY ()

Mz@Mz

where Ai\f = 2<G{V, (T - t>RN)T,N and Aé\f = Q(Gév, (T - t)RN>T,N

From (3.6a),

) ((T )Ry, %EN> St <(T )Ry, C‘; (tRx(t )))M

2 <(T—t)RN,5 (tRy(t ))) (350 5 ((T—t)RN,j (tRy(t )))T

| :Q/OT@_t)RN(t) (i(tRN( ))) (ﬁ) !



T d 1
= 2/0 (T —t)Rn(t) (taRN(t) + RN(t)) ( T T)) dt

7 HT—t) \ d T, T—t
_ /ORN(t) <—t(T_t)> dtRN(t)dt+2/0 RN(t)< )
:2/0 RN(t)< t(T—t)) %RN(t)dtJrQ/o R%(t)( tT<T__t)>dt.
By integrating by parts, we have
d R%(t) NoOorTRY () [ T2t
2<(T—t)RN,£E )T,N:Q({ : (\/t(T—t))L—/O ; (2 t(T_t)>
T y T
+2/0 RN(t)<m>dt
TR D J T —2t
i /0 RN(t)( t(T—t))dt_/o Ryt (2 1T — 1)

Therefore,

d T 2

(- 0rw 58%) > Ty
dt N 2 T

Because of G (t) € Px(0,T) and (3.6a), it follows that, for any € > 0,

[AY| = |2(GY (T = ) Ry)zw|
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G2V 12(GN, (T — 1) Ry

T
< 2/ |GY(T — t)Ry| dt
0
<2 ||G]1VHT (T = t)Ry||p ( by Cauchy-Schwarz Inequality [8, 25] )

€ o T\ N2 .
<2 (ﬁ (T — t)Rnll7 + % ||G1 HT) ( by Peter-Paul Inequality [25] )

T
71T =Ry + —[l6Y)fs
T
< 7 TR+ = |61
T
= T | Ryliz + ZHE);
T

|AN] < eT ||t (EN(1) = EY(0)][5 + - GN[5. (4.5)

The above together with (4.3)-and (4.4) leads to

T (4.4) d
5 1Bxlp-<"2 (T —t)Ry, — BV
2 it )y

g [t BN =B O s 2 ((T P car 74 %EN>T,N

Lt s Top < A Ay
L T () e T P o) AR e[
(5 7) e Q=£ o <

. (% _ ) T (B — BN E 2 L o)y (4.6)

(G gt A2

o S

(@)

We would like to estimate the error of X at the end point ¢t = T. We start with
the estimation of HG{V HT Let Zy be the Chebyshev-Gauss interpolation on the
interval (—1,1) and x(¢) = 1 —t*. According to a standard interpolation error [13]
witha=p=~7v=0§= —%, for any v € H;P%(—l, 1) and integer 1 <r < N + 1,

1 . 2
2 —2r r—% d
v =l <N [ (o)

1
Furthermore, by a standard interpolation error [13] with a = 8 = —35 for any

vE H’“P%(—l, 1) and integer 2 <r < N + 1,
X
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Lo s (d 2
< cN4_2T/ X' "2 ( v(t)) dt.
27 (_171) —1 dt’f‘

where ¢ is a generic positive constant independent of T, N and any function

H— (Zyv —v)

[N

For the shift Chebyshev polynomial on [0, 7], we have

T dr 2
| Zr v — o3 < cN—2r/0 W2 (1) (dt’"v(t)) dt. (4.7)
? R ofd 2
H— (Zryv —0)| < cN4_2T/0 W (h) (dt v(t)) dt. (4.8)
4

Furthermore, by (4.7) with v = o

obtain
2 T r—1 2
‘ dy_dy < cN—W—l)/ Wl 2)7 1) (d - <1X(t))> dt
- 0 dtr—1 \ dt

d
X(@)yand r=7r—1, for 2 <r < N+ 2, we

e ~ @
7/ dar 2
<V / w2 (1) (—X(t)) dt. (4.9)
5 dtr
Therefore,
R d d 2
GV |2 = / Trw s X =T X i
0
T d d d dht
£ | 2NN 0] Rl
/0 S TR G U 7 A
X d d d d
= 74 8% X a3 LAt
/ (Tth dt)+(dtTN UV )
d d d 2
Iry g X — X S e X
| (i = S
d d > |d d |
<|Zry—X — =X IrnX — —X
—‘ PN@ T dt Hdt T
(4.8),(4.9) T dr 2 T ) dr 2
& N / u—%(t) (—X(t)) dt + N2 / W (—X(t)) dt
0 dtr 0 dtr
N2 T s [ d 2
|Gy HTSCN4_2T/ w2 <@X(t)) dt. (4.10)
0

Substituting (4.10) into (4.6),

T id 2
(1 )T||t—1 (EN(t) — EN(0) )HT < ce 'T'N* 2’”/ W (%X(t)) dt + AY.

3¢ i
(4.11)
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Proposition 4.1. [35] If f(z,t) satisfies the following Lipschitz condition:
|f(z1,t) — f(z2, )| < 7vler — 22|, 7>0 (4.12)

1
and 0 < ~yT < B < 7 where B is a certain constant. Then the system (3.15) has
a unique solution.

Theorem 4.1. [35] Assume that f(z,t) fulfills the Lipschitz condition (4.12).
Then for any X € HTT%(O,T) with integers 2 < r < N + 1, we have

2 T 2 —2r g r—3 dr ?
X = XY ooy < B) X = XM, S egT? N2 /0 W' () (%X(to di,
(4.13)
T r 2
]XHU—XNﬂUfgcﬂﬂN%%/mw“%ﬂ(%ﬂﬁw)dt (4.14)
0

where cg is a positive constant depending only on 3.

Proof [35] We can prove Thorem 4.1 by (4.12),(3.13) and

Aév = 2(Géva (T_t)RN)T,N where Gév(tijy,ﬂ » f(XN(tﬁj)a tév‘,j)_f(zﬂNX(téY,j)? té\{j)»

N
163 7 = Ay YA (E8,) y 7 F Tras X (18,). 85
§=0

(412"~

N
2
Ny D X (Y= Tu X (b25))
=0
= NS T X iy

(313) ", s
<X T X

2 2
Gy = B (4.15)
Since GY € Px(0,T) and (3.6a) and (4.15), for any v > 0,

AY =2(GY (T —t)Rn) 1N

B8 o (GN (T — t)Ry)7
T

< 2/ |GY (T — t)Ry| dt
0

<2 ||G’§[HT (T —t)Rn|| 7 ( by Cauchy-Schwarz Inequality [8, 25] )

1
<9 (% (T — t)Ry||% + > HGéVH2T> ( by Peter-Paul Inequality [25] )
g

1
=77 = O R + = 65
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1
m||TRN||§+;HG§V||§, te0,T]

=2T* | Ryly + - [|G¥]l7

|
v
N (4.15) 2 [|—1 N N 2 N2
AY < AT || (BN () — EN(0) |+ | BN - (4.16)
Substituting (4.16) into (4.11),

(5-) Tl @0 = BY O < 72 e (500 - EY O+ |

T 3 dr 2
+ce_1TN4_2T/ w2 (—X(t>> dt
; dr
T r 2
(5 m) Tl (e SO0 < TR o (X0 ) dea B
(4.17)

Consider,
1BV = [|BY (1) - EN(0) ¢ EX )],
= /OT (BN @)= BY(0)y+ EN(0)] dt
< ||EN(t)y=EY )|, [|1EY(0)]|, by Cauchy-Schwarz Inequality [8, 25] )
< % [BX ) =5 (0) |5 % LBY(0)|7. - by Peter-Paul nequality [25] )
< ¢ JENQ) = B0 HeHEXO));
< HIEY )= BYO)[, + (1 F HEYO);
< (1+ (@ Y (BN (0. — B 0)]
, < g >1, Vt e [O,T])

< (L+e) (Tt (EN(t) — EN(0)) Hi +r (14 |EV0)

BN, < Qo T (BN — EVO)|L + 7 (14 |[ENO)]. (4.18)
For small ¢ > 0 such that e + 7T < % or (% —e— VT) > 0, we multiply both
sides of (4.18) by (% . VT), inequality become

(% —e— 7T) HENHQT <(14¢)T? (% —e— VT) |t~ (EN(t) — EN(0)) Hi

+r(1+et) (% —e— 7T> BN )
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2 €

tr (4 (J-e-a1) PO

2
1 T T s (d" 2
(5 —e—29T — efyT) ||ENH2 <(l+e) 06_1T2N4_2’"/ w2 (%X(t)) dt
0

Fa(lee?) (% _G_VT) EV(0)]?

Since ¢ is a generic positive constant independent of 7, N and any function, we

define a new constant to be (1,+ €)c..Then

1 T dT‘ 2
<§ —€—279T — 67T> HENH;F = ce_lT2N4_2"/ W2 <%X(t)) dt
0

I (ERSS) (é —e—vT) IEY0))". (4.19)

On the other hand, for any v € H' , (0,7 ( see Appendix of [35] ),

2) : (4.20)

2
T
T

(4.7),(4.8) T d" 2 T s [ d 2
£ N / W 3 ST e T / o3 (Lx
i i ; i

[N

dv

dt

Y 2 2
A e T
D = (HUHT+

From (4.2), (4.7), (4.8) and (4:20);-we obtain

1EY(0)” 42 |Zp N X (0) = X 0)]

T <||IT,NX<0> CXOIEF Hi (@4 X(0Y - X (0))

dt
2

< || Zrn X(0) = X(0)|]5 + H% (TrnX(0) =X(0))

M

Consider
)

T
0<HT -1 < T ( maximum value of function f(t) = (T —1t), Vt € [0,T] )
HT —t) < T

For w = (T —t),

(4.17) 4—2r T . T
(3-c=om) 12 L e or (1 T [ (4

X(t)) 2 dt)

dt.
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dr 2 3 dr 2
r—i el < W2 2 2 )
() <ot (o)

e ? s o d ? [ d ?
Since W' 2 (%X(t)> <w'eT? (%X(to and w' 2 (%X(t)) and
2

: d”
W' a2 (—X(t)) are integrable on [0, T]. By properties of the integral [27], we

/0 s (%X(t))Q < /0 Wi <57X (t))Q‘ 2y

N/ |2 —or g e 1 2 Ard—2p r y_3 [ d" 2
|[EN(0)]" < eN W T X(t)) dt+ ¢’ N WwTE [ ——X(t)) dt
0

0 dt dtr
4S, : /\& t T s(d ?
:cTQNQ’"/ w2 (—X(t)> dt+cT2N4—2’“/ w2 (—X(t)) dt
0 dtr 0 dtr
2 r s [.d" 3
o |EN(O)| < erPN / w2 <@X(t)) dt. (4.22)
0

Substituting (4.22)-into(4.19), we give that

Njw

1 X . 2
(5 —e—29T — E”YT) ||ENH2T < ce_1T2N4_2r/ W (;—ﬂX(t)) dt+7(1+€t)
0
ME Lo ) ol 4 /Tw’”—i £X(t) th
2 DTN / dtr
1
< (1+ (ew (1—!—671) (5 —6—’7T))>
™o d ?
X <061T2N42T/ w2 (—X(t)) dt).
0 dtr

1
From, page 30, we choose € + 1" < 2 it follows that

1 _ 1 1
(5 —e—24T — G”YT) ||ENH2T < (1 + (Gﬂ' (1 +e€ 1) <§ — 5)))
T a(d ’
X (ce_1T2N4_2r/ w2 (—X(t)) dt)

. 1 N||2 —12 AT4—2r g ros [ d ?
.(5—6—27T—67T)||E |, <ce ' T?N W (@) ) .

M
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1 1

%—6—2’}/T—6’7T i—ﬂ'

IN

1 1
Claim : 5~ € — 29T — exT > 1 [ and, hence,

1 1 1
SinceO<’yT§ﬁ<Z,then Z—7T21—5>0.

We consider

1 1 1
5—6—2’7T—€’7T: <Z—7T> + <Z—7T> —e(1+4T)
1 1
= - — T, et | = =T ) —e(1+~T)=0
4 4
1
> - _
20— B
1 1
. el (4.24)
3 —€—20T —evT [ 8
i1
Let € = i T Then by (4:24), we have that
2 1 4 s [ d° 2
1EV)E < (- ce'ljafv4_2TJ/ o (Lxwy) ar
T 3 1 € 2\ EHF p dtr
(4.24) 1 T s [ 2
< |7 PPN / SN EEXDdt
=T 0 dtr
2 o /| il :
BN < 05T2N4_2r/ W (%X(t)) di (4.25)
0

where cg is a positive constant depending only on 4.

Consider

X XX = T X+ T = XN,

0813 VO x|

Using (4.7), (4.25) and (4.21), we have

o (4.7),4.25) T dr T s [ dr 2
X —XN|2 LT N [ wr ( Xt)) dt + csT2N*- 27“/ Wt (%X(t)) dt
0 0
(4.21) T T LA 2
< AN / =3 ( ) dt + cgT>N*2r / R (—X(t)) dt
0 0 dtr
T
X = XV < T2N4‘27"/ T3 dt 4.2
H HT =63 . dt” (4.26)

where cs is a positive constant depending only on f.

Next, we consider

1

/0 (X(t)—XN(t))Zdtz/O (X (1) = XV (1)) w2 (w2 (t)dt.



T2
Since t(T' —t) < T or

T —t) < % and w = (T —t), then 0 < w2 (t) < %
and w2 (t) > 0 for t € [0,T]. Thus,
/OT (X(®) —XN(t))2dt < g/OT (X(¢) _XN(t))2w—%(t)dt
T 2
5 X =X";
[ o -xvw)a < - x (127)

By applying the inequality (4.27), we then arrive the inequality (4.13) in Theorem 4.1.

We next prove the inequality (4.14). We first estimate | X (T) — X™(T) ‘2 :
Consider

CBY= T LT STl XEE)=)(T) |
(1) ~ Zen X (TP +H|XY(T) £ Ty X (T)|".

(4.28)
Using (4.20), (4.7), (4.8)-and (4.21), we have

)

(4:20) d
X(T) = Iy X (TP < 7:

e
v, (HX = Ty X |t T2 o (X = ZrnX)

d 2

X - T Xfo 2 2 (X =Tf N X)

(8:7)4(4:8)

—2r 3 r—1 d" ’
QY W= ==X () |.dt
A dtr

2 AT4=2r 4 r—3 d" \
¥ eI2N =X () ) dt
L dtr

(4.21)

7 7 2
< TPNE / o2 (d—X(t)) dt
0 dtr

T sd ?
+ N2 / w2 (—X(t)> dt
0 dtr
T r 2
X (T) = ZonX(T))? < ¢T?N&2 / W' <%X(t)) dt. (4.29)
0

Next, we estimate |Zyy X (T) — XN(T){2 . By (4.20) give that
2
T>

T

N

N

d

(4.20)
Zrn X(T) — XN(T)|* < % (HZT,NX — X5+ 1 o (Trx X = X7)

)

d
—EN
dt

(e
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2) . (4.30)

iEN

m
TN X(T) — XN<T)’ =7 (HENHT + 7" dt

Since %EN € Py(0,T) and (3.5), (3.6b) and (4.2), we get that

2
iEN
TN

= (arrar),,

(4:2
< \ dt T,N

d
dt

2
(3.60)

T

9| rexygms

T,N

TN
d

EN
dt

< (a6 )

(3.60)
(el et ey B

A= e (431

Substituting (4.10), (4.15).and (4:25) into (4.31), we have

T d X T/ (& ?
< NP / W2 ( X (t)) arT cg PN A / W'z (—X (t)) dt.
T 4 dtr 0 dtr

(4.32)

=

1
Since 0 <1T' < 3 < 1 and substituting (4.32) and (4.25) into (4.30),
2 T T d” 2
1 Zr v X(T) — XN(T)]” < 1 cg T N2 / W' (%X(t)> dt
0

+ 02N / i X(t) g
4 \° T \ar
T dr 2
+ cgT*N*2" / W' (—X(t)) dt
0 dtr

T dr 2
1 Zrn X(T) = XN(T)|* < ¢y T2N*% / W' (%X(t)> dt. (4.33)
0

nlw

S|

Nl



Moreover, by (4.28), (4.29) and (4.33), we obtain
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(4.34)



Chapter 5

Numerical Results

In this chapter, we present some numerical results to support the method in
(3.21) . We consider two errors, the discrete L? error and the point-wise absolute
error, in order to compare the results obtained from the Chebyshev—Gauss colloca-
tion method, the Legendre—Gauss collocation method in [14] and the Chebyshev—
Gauss collocation method in[35]. For the systems-of differential equations, we
compare the error in the total energy of the systems and CPU times of those three
collocation methods.

For the three-body problem; we present the numerical solutions, the maximum
error in energy and CPU times and consider some-sets-of initial conditions of this
problem to examine the behavior of the solution-near the equilibrium points. We
compare the result from the three collocationmethods with-the symplectic method
and the Runge-Kutta method.. The symplectic method is known to preserve the
area (or orbit). However, it.may not preserve the-energy of the system. The
Runge-Kutta method is a traditional method. It preserves the area when the time
is not large, but there may be a phase shift when ¢ increases.

The numerical results are obtained by using an Intel(R) Core(TM) i5-2410
CPU @ 2.30GHz RAM 4.00 GB computer.

For simplicity, we use the following notations,

« CGC : Chebyshev-Gauss collocation method (3.21).

« LGC : Legendre-Gauss collocation method in [14].

o CGC-Yang : Chebyshev-Gauss spectral collocation method in [35].

37
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e Sympl : The first-order symplectic method.
o RK4 : The fourth-order Runge-Kutta method.

o The point-wise absolute error

Er, = |X(T) — X™(T)].

o The discrete L? error

Byl X

» The point-wise absolute error for systems of differential equations

5.1 Single interval Domain

Example 5.1.1. We use scheme(3.21) tosolve the problem

d
oK) =fX() )0 <t =T (5.1)

X(0)=1.

with

FIX(8),4) = exp (é sin(X(t)))+g<t+1)%+1ocos(2t>—exp (é sin((t + 1)} + 55111(215))) |

The exact solution of this problem is

3
2

X(t) = (t+1)2 + bsin(2t)

which oscillates and grows to infinity as ¢ increases. The corresponding function

on right side, f(X(t),t), satisfies the Lipschitz condition as follows. Consider

FOX(0),8) = F(Xa(0),) = exp (é sm<xl<t>>) — exp (% sin()@(t))) .
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By Mean Value Theorem [1], we have

1 —oxp (L sin(Xs
exp <5 Sln(Xlgz?) _ X;t§5 X <t))> _ %exp (é sin(Xc(t))) cos(X.(t))

for some X.(t) between X;(t) and Xs(¢).
Since |sin(X,(t))] < 1 and | cos(X.(t))| < 1, we get

exp (ém(xl(t))) ~exp (%sin(Xg(t))) .
X1 (6= Xa(0) Y3
exp (% sin(Xl(t))) A (% sin(Xz(t))) < %eé|X1(z€) — X)),

%eé. It follows from

Thus, |f(X(t),t)| fulfills-the Lipschitz condition with 7 =
Proposition 4.1 and Theorem 4:1 that the equation (5.1) has a unique solution
and has the error estimates.in (4.13)and (4.14).

We implement the algorithm by using this funetion f(X(¢),¢). The figures
below illustrate the errors by the spectral collocation methods defined at the be-
ginning of the section. ' In Figure 51, we plot the point-wise absolute error at
T = 0.5,0.8and 1 with different value of N.. We observe that-the point-wise
absolute error decreases as N increases and 7" decreases:” Furthermore, The errors

oscillates between odd and-even N. The rate of convergence when N is even is

faster than the rate when .V is odd.

107

107 +

10° b

=107 |

log mE

1070k

10721

1074

Figure 5.1: Point-wise absolute error of scheme (3.21) when at 7' = 0.5,0.8 and 1.
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10 T T T
. 2 N
—o— discrete L” error longo.s,d

) 2 N
discrete L error IongO_&d

" 2 N
—— discrete L” error |°g1oE1,d

N
Td

IoglOE

2 4 6 8 10 12 14

Figure 5.2: Discrete L* error-of schemé (3.21) when at T = 0.5,0.8 and 1.

Figure 5.2, we present the discrete L? error at 7' = 0.5, 0.8 and 1 with various of
N. There is only slight, oscillation for the'discrete L*errors. The error decreases as
N increases and T decreases. In Figures 5.3 and 5.4, we compare the Chebyshev—
Gauss collocation method in(3.21)-and the Chebyshev—Gauss spectral collocation
method in [35]. 'The point-wise absolute error-and-the discrete L? error of two
methods are nearly coincide.~The rate from both metheds are of the same order.

10° r ‘
—%— Chebyshev IogloEg7 p

—o— Chebyshev-Yang Iongg7 ol

Figure 5.3: Point-wise absolute error of scheme (3.21) versus the Chebyshev—-Gauss spectral
collocation method.
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—#— Chebyshev IoglOEg‘7 d

—=— Chebyshev-Yang Iongg'7 d

N
lleUEOJ,d

10—10 L

T~
1 0_ 15 L L L

Figure 5.4: Discrete L? error of scheme-(3.21)versus the Chebyshev—Gauss spectral collocation
method.

The rate of convergence of the point-wise absolute errors and the discrete L2
errors from the Chebyshev=Gauss collocation in (3.21) and the Chebyshev-Gauss
spectral collocation method in [35] shown in Figures 5.5 and 5.6 demonstrate the
spectral accuracy. We plot. the point-wise-absolute errors of the two methods
and estimate them by comparing with the function in Figure 5.5. It follows that
convergence rate is of order. O (6'3'1N ) - Similarly, as shown in Figure 5.6, the

convergence rate of the discrete L? error is.of order O (N _4'33‘/N> .

—*— Chebyshev IogloEg7 b

107 —o— Chebyshev-Yang IogwEg'7 ol
BN

Figure 5.5: Point-wise absolute error of scheme (3.21) versus the Chebyshev—Gauss spectral
collocation method and the convergence rate when N varies.
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10 T T

N
—— Chebyshev |°910E0.7,d
107 % —&— Chebyshev-Yang |0910E§7 al
R N—4.33N“2
10+
210°
Z o
w
2
g 10°}
107
10-12 L
10 .
2 3

Figure 5.6: Discrete L? error of scheme (3.21) versus thé Chebyshev-Gauss spectral collocation
method and the convergence rate when IV varies.

10~
—#— Chebyshev IoglOEg5 d
10 —&— Chebyshev-Yang IogloEgsd 1
—o— Legendre log, EN
- 9 910505,
10 "
o
zwg 1008t
S
g
= 10710 |
10—12 |
10—14 E
2 3 4 5 6 7 8 9 10
N

Figure 5.7: Discrete L? error of scheme (3.21) versus the Chebyshev—Gauss spectral collocation
method and the Legendre—Gauss collocation method.

In Figure 5.7, we compare the Chebyshev—Gauss collocation method in (3.21)
with the Legendre-Gauss collocation method and the Chebyshev-Gauss spectral
collocation method in [35]. We observe that the discrete L? error of the Legen-
dre-Gauss collocation method decay slightly faster as N increases and the two

Chebyshev-Gauss collocation methods are of the same rate.
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N
1p

Iong

. . .
0 500 1000 1500 2000
t

Figure 5.8: Point-wise absolute error-of scheme- (3:21) when ¢ = 2000, 7 = 1 and N = 17.

Figure 5.8 shows the point-wise absolute error of the Chebyshev-Gauss col-
location method in (3.21).) We observe-that the point-wise absolute error grows
rapidly when the timeis less than 200 seconds-then it increases at a slower rate

and slightly oscillates as t increases.

5.2 System of differential equations

For the system of differential equations, we denote the vectors
X(t) g (Xl(t)a XZ(t)’ S 7Xn(t))T
L I 3 / T
F(Xm) = (A (Xd) (B 1), oa (X))

We can apply the algorithm in (3.21) to the system of equations. The solution

can be determined in a similar way. Consider the system

d N - -
ZX(M) =FX@®),1), 0<t<T (5.2)
X(0) = X,.

In spectral collocation method, we approximate the solution of (5.2) as follows.
Find X~ (t) € (Pn11(0,T))" such that
d =

N\ _ p/~/2N N .
T X(try) = FX(t7),tr;), 0<j< N, 0<t<T 5.3
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We evaluate each X;(t) by applying (3.21) together with an iterative method.

In the examples below, we presents the numerical solution of linear and non-
linear Hamiltonian systems. We are interested in the long-term behavior of the
system. A good algorithm should preserve both the area (orbit) and the energy
of the system [18].

Example 5.2.1. Consider the Hamiltonian system

P(t)=—q@t)+1, 0<t<rT

t)= p(t); 0<t&r (5.4)

with the exact solution

p(t) = cos(t) +sin(t) Land q(t) = sin®(¢) 4=sin(t)+ cos®(t) — cos(t).

1 1
The corresponding Hamiltenian function of this systemis H(p, q) = §p2 + §q2 —q.

N | —

1 1
The total energy of the system is "= §p2(0) + §q2(0) ~4q(0)=

25

151

o
-

05

-05 . . | . L
-15 -1 -0.5 0 0.5 1 15

)

Figure 5.9: Phase plot p¥ (¢) versus ¢ (t) when M = 10°, 7 =0.1 and N = 7.

Figure 5.9 represents the phase plots of p™(¢) and ¢ (¢) by using the Cheby-
shev—Gauss collocation method when M = 10°, 7 = 0.1 and N = 7. The other two
collocation methods also present the same orbit. We see that the orbit preserves
the area as it does not shift from the exact solution when t is large.

In Figures 5.10(a) and 5.10(b), we compare the error in energy of the Chebyshev-

Gauss collocation method in (5.3) with the Legendre-Gauss collocation method
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and the Chebyshev—Gauss spectral collocation method in [35]. The error in en-
ergy from the Chebyshev-Gauss collocation method in (5.3) is smaller than the
error from the Legendre—Gauss collocation method. However, the errors are still
larger than that from the Chebyshev—Gauss spectral collocation method in [35].
The three methods show a constant growth (with respect to the log scale) of the

error, but the point-wise absolute error from [35] slightly oscillates as t increases.

x107 <102

Error in energy
o =
& - 5

©
Error in energy
o
>

°
=

o
N

——— Chebyshev

Legendre Chebyshev-Yang

L L L L L L L L L 0 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

t

(a) (b)

Figure 5.10: (a) Error in energy of scheme (5:3) versus the Legendre-Gauss collocation method
(b) the Chebyshev—Gauss spectral. collocation method when M. =105, 7 = 0.1 and N = 7.

N 74 9 11 13 17 21
T 0.1 0.25 0.5 1 2 4
CGC 2.77e-11+|. 1.77e-11 | 3.28e-11.-{"2.48e-11 | 8.14e-11 | 2.62e-11

EN(t) LGC 3.70e-11 | 1.50e-11"| 3.44e-11 | 3.51e-11-| 5.05e-11 | 3.40e-11

CGC-Yang | 1.15e-13+-1.36e-13 | 2.33e-13+| 3.27e-12 | 3.27e-12 | 4.82¢-12

CGC 3.92e-11 | 3.92e-11 | 5.06e-11 | 3.48e-11 | 9.22e-11 | 3.21e-11

En(t) LGC 5.24e-11 | 2.12e-11 | 4.70e-11 | 4.32e-11 | 3.26e-11 | 4.81e-11

CGC-Yang | 1.36e-13 | 8.30e-14 | 4.54e-14 | 3.71e-13 | 6.26e-14 | 4.00e-13

CGC 15.60 25.20 42.07 87.14 221.91 659.08
CPU

LGC 19.04 31.14 56.20 124.27 379.50 743.33

Times

CGC-Yang 33.32 70.70 197.68 539.41 1.35e3 2.15e3

Table 5.1: Comparison of the errors and CPU times from the three collocation methods for
the system (5.4).

Table 5.1 represents the point-wise absolute error EV(¢), the maximum error
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of energy Fy(7) and the CPU times when M = 10? with different values of T
and N of the system (5.4). We have the Chebyshev-Gauss spectral collocation
method in [35] preserves energy better and the point-wise absolute error less than
the other two methods. However, when we compared the CPU times, it takes
much longer than the time taken from the other two methods. The Chebyshev—
Gauss collocation method (5.3) gives the best CPU times.

Example 5.2.2. Consider the Henon~Heiles system

Pi(t) = —at) ~ 2¢1(t)ae(t)s,  (0<t<T
Pa(t) ==g(t) =24 (1) + (1), O<t <7
¢, (t).= palt), O<t<r
a5 (t) =p2(t), 0<tL T (5.5)

with initial conditions p;(0) = 0.011,-p3(0) =0, ¢1(0).= 0.013 and ¢2(0) = —0.4.

The corresponding Hamiltonian function of this system is

1
(PIA D+ ai %)+ G~ gqé”-

N —

H(p1,p2,q1:92) =

The total energy-of the system with respect to the initial conditions:is

E = S (17(0) +p5(0) + ¢1(0) + 65(0)) + q1(0)%g2(0) = L0y = 0.1014.

3

1
2

o)

N

U]
o
2

p.
q.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
o

(b)

Figure 5.11: (a) Phase plot ¢¥(¢) versus pY¥(t) (b) Phase plot ¢} (¢) versus ¢ (t) when
M=10% 7=01land N =7.
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Figures 5.11(a) and 5.11(b) illustrate the phase plots of pY¥(¢) and ¢!V (¢) and
the phase plots of ¢V (¢) and ¢ (t), respectively, by using the Chebyshev—Gauss
collocation method (5.3) when M = 10*, 7 = 0.1 and N = 7. The other two

collocation methods also present the same orbit.

N 7 9 11 13 17 21
T 0.1 0.25 0.5 1 2 4
CGC 5.91e-12 | 1.10e-12 | 8.41e-12 | 9.30e-12 | 2.29e-11 | 1.85e-11

Eg(t) LGC 3.45e-12 | 2.28e-11{ 9.48e-12 | 9:79e-12 | 4.19e-11 | 2.09e-11

CGC-Yang | 1.21le-14 | 6.34e-15 | 2.39e-15 | 1.42e-14 | 2.73e-14 | 2.47e-12

CPU CGC 10.69 158.19 290.49 54.59 221.91 659.08
LGC 13.12 18.24 24.58 34.66 77.84 141.30

Times
CGC-Yang 6.54 9.20 16.05 43.08 163.52 407.01

Table 5.2: Comparison of the errors and CPU times from the three collocation methods for
Henon Heiles (5.5).

Table 5.2 illustrates the maximum error of energy-Ey (7) and CPU times when
M = 10* with different values-of 7 and N of the system (5.5).” From the table,
the method (5.3) and the Legendre-Gauss collocation method provide the error
in energy of the same order.” In this example, the Chebyshev—Gauss spectral
collocation method in [35]. preserves energy better. However, when we compared
the CPU times, the time from the Chebyshev—Gauss spectral collocation method
in [35] grows as 7 and N increases. The CPU times of the method (5.3) and the
Legendre—Gauss collocation method are close to each other when 7 and N are

small.

5.3 The three-body problem

For the three-body problem, as shown in (2.4), apply the algorithm (3.21) to
the system

DD — o)~ L b+ — B+

N

R = —ph) ~ B0 -0~ e
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dqy(t;)
% = pn(t;) + ax ()

dg?(t;
WG] _ j3) — abtty)

In all the figures below, we used N = 18,7 = 0.02 on the interval [0, 360] and
360

M = — for the collocation methods and h = 0.001 for the symplectic and the
Runge-Kutta methods.

According to the theoretical result of the three-body problem, the system has
three unstable saddle points/ We first examine the orbital behavior of the satellite.
We choose the initial conditions to present-the orbit around the center of mass.
Example 5.3.1. Orbital behavior

We consider the first-set of initial conditions, pi(0) = 1.259185, po(0) =
—1.259185, ¢;(0) = —0.25 and ¢2(0) = —=0.25. With this set of initial conditions,

the phase plot of ¢; and ¢, illustrates an orbit:

(a) (b) ()

Figure 5.12: Phase plots of ¢% versus ¢}, by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method' (¢) the fourth-order Runge-Kutta method.

(a) (b) ()

Figure 5.13: Phase plots of ¢% versus ¢} and ¢ by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.
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In Figures 5.12 and 5.13, we compare the phase plots of ¢}, and ¢3% of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbit from the sym-
plectic method is almost the same as the orbit from the Chebyshev-Gauss col-
location method, whereas the loop from the Runge-Kutta method spins out and
diverges as t increases. The other two collocation methods also present the similar

orbit to Figures 5.12(a) and 5.13(a).

Method Time Error in
Method Time Error in

(secs.) energy
CGC 209.912 | 6.92004e-10 (secs.) | energy
LGC 180.254 13498509 CGC 351.484 | 1.03391e-10
CGC-Yang | 168.261 | 3.68594e-14 /7 256.714 | 1.36782¢-9
Sympl 1115.715 | 9.48892¢-5 CGC-Yang | 190.982 | 8.52651e-14
RK4 345.514 1.56437 Table 5.4: Comparison of the errors and

CPU times between the three collocation

Table 5.3: Comparison of the-errors and methods.

CPU times between the five methods.

Table 5.3 illustrates the maximum error in-energy-and CPU times when N =
360

18, 7 = 0.02 on the interval-[0, 360] and M = = for the collocation methods
and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the
table, the collocation methods preserve energy-better and give the better CPU
times than the symplectic method and the Runge-Kutta method. In Table 5.4,
we present the maximum error in energy and CPU times when M = 10*, N = 20
and 7 = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss
spectral collocation method preserves energy better and gives the best CPU times.

In Figure 5.14, we compare the errors in energy of the Chebyshev-Gauss collo-
cation method with the Legendre-Gauss collocation method and the Chebyshev-
Gauss spectral collocation method and the first-order symplectic method. The

errors from the three collocations are much smaller (lie at the bottom of Fig-

ure 5.14(a)) compared to the symplectic. If we compare among the collocation
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methods, we see that the Chebyshev-Gauss collocation method is better than the
Legendre-Gauss collocation method, but still has higher error than the Chebyshev-

Gauss spectral collocation method.
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Figure 5.14: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method " (b)-Comparison of the relative error in energy
between the three collocation methods.

Example 5.3.2. ' Chaotic behavior

In this example, we examine the chaotic behavior of the solution. We consider
the set of initial conditions elose to Ls. The set of initial conditions is p;(0) =
0, p2(0) = 1.22165; ¢1(0) =1.1 and ¢2(0) =0-32].

In Figures 5.15 and 5:16;,-we compare the phase plots of gk and ¢% of the
Chebyshev-Gauss collocation method with the first<order symplectic method and
the fourth-order Runge-Kutta method. We.observe that the phase plot from the
Chebyshev-Gauss collocation method is nested in an oval shape around the saddle
point Ly. The orbit from the symplectic method starts from a point outside then
presents a nested in an oval shape. The orbit from the fourth-order Runge-Kutta
method is thick and grows as ¢ increases. The other two collocation methods also

present the similar orbit to Figures 5.15(a) and 5.16(a).

400
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Figure 5.15: Phase plots of ¢3 versus ¢} by (a)the Chebyshev-Gauss collocation method (b)
the first-order symplectic method. (c) the fourth-order Runge-Kutta method.

Figure 5.16: Phase plotsof ¢3; versus gx-and ¢ by (a) the Chebyshev-Gauss collocation method
(b) The first-order symplectic method (e) The fourth-order Runge-Kutta method.

Method Time (secs.) | Error in energy
CGC 236.126 1:30388e-3
LGC 199:451 2.46555e-4
CGC-Yang 148.078 1.38244e-4
Sympl 1053.726 3.73057¢-3
RK4 339.844 0.26926

Table 5.5: Comparison of the errors and CPU times between the five methods.

Table 5.5 illustrates the maximum error in energy and CPU times when N =

18, 7 = 0.02 on the interval [0,360] and M = 360 for the collocation methods
T

and when h = 0.001 for the symplectic and the Runge-Kutta methods. For the

chaotic case, the errors in energy from the collocation methods and the symplectic

method are almost of the same order. The methods do not preserve energy well
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in this case.
Example 5.3.3. The solution near the stable points

In this example, we examine the behavior of the solution near the stable points.
We consider the set of initial conditions close to L. The set of initial conditions

is p1(0) = —0.9, p2(0) = 0.4, ¢1(0) = 0.4 and ¢»(0) = 0.9.

Figure 5.17: Phase plots of g%, versus ¢} by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method '(¢) the fourth-order Runge-Kutta method.

Figure 5.18: Phase plots of ¢3; versus ¢j, and ¢-by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method-.(c) the fourth-order-Runge-Kutta method.

In Figures 5.17 and 5.18, we compare the phase plots of ¢} and ¢% of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbits from the
Chebyshev-Gauss collocation method, the first-order symplectic method and the
fourth-order Runge-Kutta method present an oval loop which eventually converges
to the equilibrium point (g1, ¢2) = (0.49,0.87). The other two collocation methods
also present the similar orbit to Figures 5.17(a), 5.18(a).

Table 5.6 represents the maximum error in energy and CPU times when N =
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18, 7 = 0.02 on the interval [0,360] and M = @ for the collocation methods
and when A = 0.001 for the symplectic and the Runge-Kutta methods. From the
table, the collocation methods preserve energy better and give the better CPU
times than the symplectic method and the Runge-Kutta method. In Table 5.7,
we present the maximum error in energy and CPU times when M = 10%, N = 20

and 7 = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss

spectral collocation method preserves energy better and gives the best CPU times.

Method Time Error in
Method Time Error in
(secs.) energy
CGC 287.781 | 4.59632¢-13 (secs.) | energy
LGC 260.260 | 819789013 CGC 210.539 | 8.06022e-14
CGC-Yang | 149.774 | 1.332260-15 /7 168.366 | 4.48752e-13
Sympl 1237.980 | 2.95572¢.7 CGC-Yang | 73.670 | 8.88178e-16
RK4 353.667 || 1:79116e-4 Table 5.7: Comparison of the errors and
CPU times between the three collocation
methods:

Table 5.6: Comparison of the errors.and
CPU times between the five methods.
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Figure 5.19: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method (b) Comparison of the relative error in energy
between the three collocation methods.

In Figure 5.19, we compare the errors in energy of the Chebyshev-Gauss collo-

cation method with the Legendre-Gauss collocation method, the Chebyshev-Gauss
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spectral collocation method and the first-order symplectic method. The error from
the symplectic method grows larger as ¢ increases.
Example 5.3.4. Orbital behavior

In this example, we examine the case where the phase plots present an orbit
with an inner loop. We consider the set of initial conditions p;(0) = —0.16, p»(0) =
—0.7, ¢1(0) = 1.3 and ¢2(0) = —0.31.

-

(a) (b) ()

Figure 5.20: Phase plots of ¢% versus ¢ by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method ' (c) the fourth-order Runge-Kutta method.

(a) (b) ()

Figure 5.21: Phase plots of ¢%; versus qj and ¢ by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figures 5.20 and 5.21, we compare the phase plots of ¢} and ¢% of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbits from the sym-
plectic method are similar to the orbit of the Chebyshev-Gauss collocation method.
The phase plot shows a circular orbit with an inner loop on left side where the
third mass moves around an object. The orbit of the fourth-order Runge-Kutta

method spins out as ¢ increases. The other two collocation methods also present



a similar orbit to Figures 5.20(a), 5.21(a).
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Method Time Error
Method Time Error

(secs.) energy
CGC 203.075 | 6.67316e-10 (secs.) | energy
LGC 186.929 1.9983%6-9 CGC 213.755 | 1.06250e-10
CGC-Yang 126.929 | 6.40987e-14 LGC 172.932 1.35033¢-9
Sympl 1939537 | 5.09196¢-6 CGC-Yang | 113.769 | 7.09432e-14
RK4 342.127 1.82939 Table 5.9: Comparison of the errors and

CPU times between the three collocation

Table 5.8: Comparison of the errors and methods.

CPU times between the five methods.

Table 5.8 represents the maximum error in energy and CPU times when N =
360

18,7 = 0.02 on the interval [0, 360] and M = — for the collocation methods
and when A = 0.001 for the symplectic and the Runge-Kutta methods. From the
table, the collocation methods preserve energy better and give the better CPU
times than the symplectic method and the Runge-Kutta -method. In Table 5.9,
we present the maximum error in energy and CPU. times when M = 10*, N = 20
and 7 = 0.1 for the collocation methods. ‘From. the table, the Chebyshev-Gauss
spectral collocation method preserves energy better-and gives the best CPU times.
Example 5.3.5. The solution near the stable points

In this example, we examine the behavior of the solution near the stable points.
We consider the set of initial conditions close to Ls. The set of initial conditions
is p1(0) = 0.83, p2(0) = 0.55, ¢1(0) = 0.55 and ¢»(0) = —0.83.

In Figures 5.22 and 5.23, we compare the phase plots of ¢ and ¢% of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbits from the
Chebyshev-Gauss collocation method, the first-order symplectic method and the
fourth-order Runge-Kutta method present an oval loop which eventually converges

to the equilibrium point (¢q,g2) = (0.49, —0.87). The other two collocation meth-
ods also present the similar orbit to Figures 5.22(a), 5.23(a).
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Figure 5.22: Phase plots of ¢3 versus ¢} by (a)the Chebyshev-Gauss collocation method (b)
the first-order symplectic method (c) the fourth-order Runge-Kutta method.

i &8 B 8 &

Figure 5.23: Phase plots of g3, versus ga and ¢ by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic/ method “(c)the fourth-order Runge-Kutta method.

Method Time Error in
(secs.) energy

CGC 323.575 | 2.10498e-13

LGC 293.721 | 4.00568e-13

CGC-Yang | 148.077 | 6.66134e-16

Sympl 1214.538 | 3.98323e-8

RK4 1013.856 | 2.83977e-5

Table 5.10: Comparison of the errors and

CPU times between the five methods.

Method Time Error in
(secs.) energy
CGC 808.611 | 5.75096e-14
LGC 256.714 | 1.36782e-9
CGC-Yang | 190.982 | 8.52651e-14

Table 5.11: Comparison of the errors and
CPU times between the three collocation
methods.

Table 5.10 illustrates the maximum error in energy and CPU times when N =

360

18, 7 = 0.02 on the interval [0,360] and M = —— for the collocation methods

T

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the
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table, the collocation methods preserve energy better and give the better CPU
times than the symplectic method and the Runge-Kutta method. In Table 5.11,
we present the maximum error in energy and CPU times when M = 10*, N = 20
and 7 = 0.1 for the collocation methods. From the table, the Chebyshev-Gauss
spectral collocation method preserves energy better and gives the best CPU times.
Example 5.3.6. The solution near the unstable points

In this example, we examine the behavior of the solution near the unstable
points. We consider the set of initial conditions close to L;. The set of initial

conditions is p1(0) = 0, p2(0) = 0.9025, ¢,(0). = 0.78 and ¢»(0) = 0.

Figure 5.24: Phase plots of ¢% versus ¢}, by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic methed “(c) the fourth-order Runge-Kutta method.

Figure 5.25: Phase plots of g3 versus ¢ and ¢ by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method (c) the fourth-order Runge-Kutta method.

In Figures 5.24 and 5.25, we compare the phase plot of ¢k and g3 of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbit from the sym-

plectic method is almost the same as the orbit from the Chebyshev-Gauss col-



o8

location method, whereas the loop from the Runge-Kutta method spins out and

diverges as t increases. The other two collocation methods also present the similar

orbit to Figures 5.24(a), 5.25(a).

Method Time (secs.) | Error in energy
CGC 338.415 3.77642e-10
LGC 300.389 7.30468e-10
CGC-Yang 168.403 2.77556e-14
Sympl 1439.647 4.98448e-5
RK4 1116.041 0.21472

Table 5.12: Comparison of the errors and CPU-times between the five methods.

Table 5.12 represents the maximum- error in energy, and CPU times when
N = 18, 7 = 0.02 on the interval [0,360] and M = @ for the collocation
methods and when h = 0.001 for-the symplectic-and the Runge-Kutta methods.
From the table, the collocationnmethods preserve energy better and give the better

CPU times than the symplectic method and the Runge-Kutta method.
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Figure 5.26: (a) Comparison of the relative error in energy between the three collocation
methods and the first-order symplectic method (b) Comparison of the relative error in energy
between the three collocation methods.

In Figure 5.26, we compare the error in energy of the Chebyshev-Gauss colloca-
tion method with the Legendre-Gauss collocation method, the Chebyshev-Gauss

spectral collocation method and the first-order symplectic method. The error from
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the symplectic method grows larger as ¢ increases.
Example 5.3.7. The solution near the unstable points

In this example, we examine the behavior of the solution near the unstable
points. We consider the set of initial conditions close to Ls. The set of initial

condition is p1(0) = 0, p2(0) = —0.9617, ¢1(0) = —1.05 and ¢,(0) = 0.

(a) (b) (c)

Figure 5.27: Phase plots of ¢%, versus ¢}, by (a) the Chebyshev-Gauss collocation method (b)
the first-order symplectic method '(¢) the fourth-order Runge-Kutta method.

Figure 5.28: Phase plots of ¢3; versus ¢j, and ¢-by (a) the Chebyshev-Gauss collocation method
(b) the first-order symplectic method-.(c) the fourth-order-Runge-Kutta method.

In Figure 5.27 and 5.28, we compare the phase plot of ¢} and ¢% of the
Chebyshev-Gauss collocation method with the first-order symplectic method and
the fourth-order Runge-Kutta method. We observe that the orbits from the
Chebyshev-Gauss collocation method, the first-order symplectic method and the
Runge-Kutta method spin out and diverges as ¢ increases. The other two colloca-

tion methods also present the similar orbit to Figure 5.27(a), 5.28(a).
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Method Time (secs.) | Error in energy
CGC 319.861 1.65429e-7
LGC 294.403 1.766210e-8
CGC-Yang 141.078 1.65460e-7
Sympl 1344.604 8.08749e-3
RK4 1082.638 1.03653

Table 5.13: Comparison of the errors.and CPU times between the five methods.

Table 5.13 illustrates the maximum errorin energy and CPU times when N =

18, 7 = 0.02 on the interval [0,360] and M = iy for the collocation methods
T

and when h = 0.001 for the symplectic and the Runge-Kutta methods. From the
table, the collocation methods preserve -energy. better and give the better CPU

times than the symplectic method and the Runge-Kutta method.



Chapter 6

Conclusions

In this work, we proposed the Chebyshev-Gauss collocation method to solve to
the initial value problems of ordinary differential equations. - We constructed the
algorithm for an ordinary-differential equation as well as the system of ordinary
differential equations in both single and multi-interval domain. The numerical
results support the theoretical result-discussed in Chapter 3. For a fixed T, the
error drops rapidly as N.increases: This behavior is-expected since we increase
the number of collocation points. ~We compare the results to show the order of
convergence of @ (6*3'1N) and O (N*4'33‘/N> in Figure 5-and 6 respectively. It
shows that the method (3.21) possesses a spectral-accuracy.

For a fixed 7 and NN, with the scheme for a-multi-interval domain, the error
grows at a faster rate for a.smaller ¢ than a-larger t.~As ¢ gets larger, the error
increases due to the.accumulation of errors from the subintervals. These errors
may occur when we approximate the endpoint value of each subinterval and set
it as the initial condition for the next subinterval. For the systems of differential
equations, we have that the method (3.21) preserves both energy and the area.
The CPU times for the method (3.21) are the best for the linear systems and
are comparable to the Legendre—Gauss collocation method and the Chebyshev—
Gauss spectral collocation method in [35] for nonlinear systems. One may improve
the algorithm by designing the iterative methods for solving the implicit systems
(3.21), especially when the coefficient matrix has a large condition number.

For the three-body problem, we presents a comparison of the collocation meth-

ods, the symplectic method and the Runge-Kutta method for the three-body prob-
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lem. We choose appropriate sets of initial conditions to present the case of orbital
behavior, chaotic behavior, the case when the solution converges to the stable
point and the case when the solution converges to the unstable point.

For the case when the phase plots present an orbit (Example 5.3.1. and Ex-
ample 5.3.4.), the collocation methods give a thinner loop than the fourth-order
Runge-Kutta method and they preserves energy and CPU times much better than
the symplectic and the fourth-order Runge-Kutta methods.

For the chaotic case (Example 5.3.2.); the collocation methods still give a better
loop than the other two methods. However, the errors in energy for this case are
almost of the same order. They donot preserve energy well.

For the case when the solution converges to the stable point (Example 5.3.3.
and Example 5.3.5.), the collocation methods givera thinner loop than the fourth-
order Runge-Kutta method and they preserves energy and CPU times much better
than the symplectic and the fourth-order Runge-Kutta method.

For the case when the solution converges to the unstable point (Example 5.3.6.
and Example 5.3.7.), the collocation methods give-a thinner loop than the fourth-
order Runge-Kutta method and they preserves energyrand CPU times much better
than the symplectic and the fourth-order Runge-Kutta method.
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Appendix A
Appendix

A.1 Chebyshev polynomials

The Chebyshev polynomials, 7, (), are defined as the solution to the Sturm-—
Liouville problem with p(z)=1/1 — 22 and ¢(x) = 0 [8, 16],

2

(Mu(x))'+ Vf_ix?n(@:o, te[—1,1]

or
(1 £ 2?) Ty« THw) + n’Ti(x) =0z € [-1,1].
An alternative representation of the Chebyshev polynomial of degree n is given by

To(2) = cos(narccos(x)).

where 7, (z) is assumed bounded for 'z € [—1, 1].

The Chebyshev. polynomials are-given-as To(z). = 1, Ti(z) = z, Ta(z) =
222—1, T3(z) = 4a®—3zr-and are orthogonal in Li_% € [-1,1] with w(z) =
(1—2?),

1
/ T (@) T ()™ 2 () da = %ﬂcn&%m, n > 0.

1
where ¢y =2, ¢, =1 and 6,,,, is the Kronecker symbol.

Some properties of Chebyshev polynomials are

Tos1(w) = 22T, (x) + Tpor(2) =0,  n>1. (A.1)
2t
For the shift Chebyshev polynomial on [0, 7] with the transformation x = v 1,
d 2
x € [0,T] and d—f =7 We defined the shifted Chebyshev polynomials 7r,,(t) by

(%) _ —1 (2t _
TT’”<t)_T’“(T 1)—cos(ncos (T 1)>), n=20,12, ..
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Since
l—2*=(1-2)(1+x)
_ (1—%“) (1+¥—1)
)
N %(T—t):% T — 1)
Therefore,
1/ TN
V1= 2 JI(T—1)
Consider
/ 117;<x>’rm<x> ( ﬂ%) ao= [ T 2 ﬁ> 2 —1
1 ol ﬁ> 2t
/_11771(:[)7,”(@ <\/11_7x2) dxzfoTﬁ(t)Tm(w m)d (A.2)

So, the shifted Chebyshev polynomials are also orthogonal on the‘interval [0, T,

T
T 0T T = s 0 (A3)
0

where w(t) = (T —t);.co =2, ¢, =1 and 6,4, is the Kronecker symbol.

Some properties of Chebyshev polynomials-on-[0, 7] are

(Tnta(z) — 2 <— — 1) To(@)+ Toi(x) =0, n>1. (A.4)

A.2 Cauchy-Schwarz Inequality

Let X be a Hilbert space, endowed with the inner product (u,v) and the asso-
ciated norm ||u||. The Cauchy-Schwarz inequality states that |(u,v)| < ||u|| ||v]|
for all u,v € X. Of particular importance in the analysis of numerical methods

for partial differential equations is the Cauchy-Schwarz inequality in the weighted
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Lebesgue spaces L2w((2), where € is a domain in RY and w = w(x) is a weight

function. The previous inequality becomes [8] :

< ( /Q u2(x)w(x)dx> v ( /Q UQ(I)w(:L’)dx> "

A.3 Peter-Paul Inequality

/Q u(z)v(x)w(z)dr

1 1
Let a,b be nonnegative real numbers and p,q € (0,00) such that — + - = 1.

p g
Then
L~qy
ab <i— + —.
p q
For p = ¢ = 2, we have
@z YV
b=~ A5
ab = H 15 (A.5)

which also gives rise to the so called Young’s inequality and for an € > 0, we have

the so called Peter-Paul Inequality[25],

2 b2
b % + % (A.6)

A.4 Properties of the integral
Since f(z) < g(«) andf(z) ~and ¢(z) areintegrable on [a, b], then [27]

/a b f(@)de < / b glw)ds. (A7)
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