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Chapter 1

Introduction

Let G be an additive abelian group, A and B nonempty subsets of G, and
x € G. Then the sumset A+ B and the translation z + A are defined by

A+B={a+blacAandbe Blandz+A=A+z={a+x]|ac A}

Additive number theory and the study of sumsets have a long history dating
back at least to Lagrange in 1770 who proved that every natural number
can be written as a sum of four squares of integers. Cauchy in 1813 gave
a lower bound for the cardinality of the sumset A+ B where A and B are
nonempty subsets of Z/pZ. Davenport [3] rediscovered Cauchy’s result in
1935 and the results is now known as the Cauchy-Davenport theorem. Several
other results on sumsets and in additive number theory have been obtained
by various mathematicians, and we refer the reader to the books by Freiman
[8], Halberstam and Roth [10], Nathanson [18], Tao and Vu [40], and Vaughan
[42] for additional details and references.

On the other hand, Wythoff sequences arise very often in combinatorics and
combinatorial game theory, and so many of their combinatorial properties have
been extensively studied; see for example in the work of Fraenkel [4, 5, 6, 7],
Kimberling [14, 15], Pitman [24], Wythoff [43], and in the online encyclopedia
OEIS [39]. However, as far as we are aware, there are no number theoretic

results, at least in the spirit of this thesis, concerning the sumsets associated



with Wythoff sequences. This motivates us to investigate more on this topic.
Note that Pitman’s article [24] is closely related to ours but it focuses only
on the cardinality of sumsets of certain finite Beatty sequences in connection
with Sturmian words and the nearest integer algorithm.

Before proceeding further, let us introduce the notation which will be used
throughout this thesis as follows: z is a real number, a, b, m, n are integers,
o = (14 /5)/2 is the golden ratio, 8 = (1 — v/5)/2, |«] is the largest integer

less than or equal to z, {z} = x — |z],
B(z) ={|nz] |n e N} ~and  By(z) = {|nz] |n e NU{0}}. (1.1)

The set B(z) is usually considered as a sequence (|nz]),>1 and is called a
Beatty sequence. The sets B(a) and B(a?) are also called lower and upper
Wythoft sequences; respectively; but for our purpose, it is more convenient to
consider them as sets. In addition, if P is a mathematical statement, then the

Iverson notation [P} is defined by

1, if P holds;

]~
0, otherwise.

Recall that a generalized Fibonacci sequence (f,)n>o is defined by f, =
fr_1+ fnoo for n > 2 where fy and f; are arbitrary integers. If fy = 0 and f; =
1, then (f,.)n>0 = (Fy)n>0 1S the classical Fibonacci sequence, and if fo = 2 and
fi =1, then (fn)n>0 = (Ln)n>0 is the classical sequence of Lucas numbers. The
roots of the characteristic polynomial 22 — x — 1 for any generalized Fibonacci
sequence (f,) are a and S, but it turns out that the structures of sumsets
such as B(a) + B(a?) and B(a?) + B(a?) are best described in terms of the
classical Fibonacci numbers F,,. We refer the reader to [12, 13, 20, 21, 22,
25, 26, 27, 34] for some recent results concerning multiplicative properties of
F,, and to [28, 29] for certain Diophantine equations involving additive and
multiplicative properties of F,.

In this thesis, we give a new estimate concerning the fractional part {na}

and study the sumsets associated with B(a) and B(a?). For example, we



obtain from Theorems 3.1, 3.8, and 3.5, respectively, that for every n > 4,
n = |aa]+ |ba] for some a,b € N, for every n > 27, n = |ac?®| + [ba? | + | ca? |
for some a,b,c € N, and for every n > 1, n = |aa] + |ba?| for some a,b € N
if and only if n is not one less than a Fibonacci number. The structure of
B(a?) + B(a?) contains some kinds of fractal and palindromic patterns in
each interval of the form [F),, F,,11]; see for instance Theorem 3.16, Theorem
3.17 , and Remark 3.19, and so the elements in (B(a?)+ B(a?)) N [Fyi1, Friol
can be completely determined by those of (B(a?) + B(a?)) N [Fy, Fry1].

For a general result on the sumsets associated with B(z) and B(z?) where
x satisfies the conditions such as z > 1 and 2% —ax—b = 0 for some a, b € Z, we
think that the answers may be best described in terms of the Lucas sequence
of the first kind. Nevertheless, the calculations even in the case of B(«) and
B(a?) are already complicated, so we postpone this for future research. See
also other problems in the last chapter.

We arrange this thesis as follows. In Chapter 2, we give preliminaries and
lemmas concerning the floor function; fractional parts, Beatty sequences, and
Fibonacci numbers. In Chapter 3, we give our main results concerning various
sumsets associated with' B(a) and B(a?). For more information, we invite
the reader to visit Pongsriiam’s ResearchGate website [38] for some freely

downloadable articles [23, 31, 32, 33, 35, 36, 37] in related topics of research.



Chapter 2

Preliminaries and Lemmas

We often use the following fact: =1 < £ < 0, (|8"|)n>1 is strictly decreasing, if
ay; > as > - -+ > a, are even positive integers, then 0 < g% < %2 < ... < 3%,
and if by > by > -+- > b, are odd positive integers, then 0 > g > g >
.-+ > (. In addition, a and B are roots of the equation 2> —x — 1 = 0.
So, for instance, B2 = B+ 1, B2+ B =48+ 3, a8 = —1, V5 + B = =2,
V562 +1 = =38, and ™+ V5" L4 72 =0 for all n > 2. Moreover, it is
useful to have the following numerical approximations: —0.619 < 5 < —0.618,
—0.237 < % < —0.236; 0.854 < /532 < 0.855, —0.528 < /5% < —0.527,
0.326 < v/54* < 0.327 and it is convenient to have a list of the first twenty

elements of the sequences B(«) and B(a?) as shown below:

B(a) = (1,3,4,6,8,9,11,12,14,16,17, 19, 21, 22, 24,25, 27, 29, 30,32, . ..) and

B(a?) = (2,5,7,10,13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41,44, 47,49, 52, . . ).

The following results are also applied throughout this thesis sometimes without
reference.

As introduced in the first chapter, for each = € R, we let || be the largest
integer less than or equal to x, and let {z} = x — |z]. Basic properties of |z|

and {z} are as follows.

Lemma 2.1. Forn € Z and x,y € R, the following statements hold.



(i) [n+a]=n+lz].

(i) {n+a} = {a}.

(iii) 0 < {z} < 1.

T , if 1x 1;
(V) |z 4 5] = lz] + |y) f{z} +{y} <

2]+ |yl +1, if{x} +{y} > L.

Proof. These are well-known and can be proved easily. For more details, see
in [9, Chapter 3]. We also refer the reader to [19] and [36, Proof of Lemma

2.6] for a nice application of these properties. O]

Lemma 2.2. The following statements hold for all n € N.

i) (Binet’s formula) F, = 2= and L,, = o™+ 8"
a—f

(ii) B = BE, 41 + F.

(ii)) Fyp1 = 4% b aFy.

(iv) BLnt1+ Ln =—=/55"
(V) Lna = Lyg1 + V56"

Proof. The proof of (i) and (ii) can be found in [17, pp. 78-79]. The statement
(iii) follows from (ii) and the fact that af = —1. See also [30] for a result
concerning the generating function of the Fibonacci sequence. Since aff = —1,
multiplying (iv) by «, we obtain (v). The formula (iv) follows from (i) and a

straightforward calculation:

6Ln+1+Ln _ ﬁan—i-l +6n+2+an+ﬂn _ ﬁn+2+ﬁn _ 6n<_\/§ﬁ) _ _\/gﬁn+1‘
]

Lemma 2.3. (Zeckendorf’s theorem) For each n € N, n = F,, + F,, +--- +
F,, where I, is the largest Fibonacci number not exceeding n, a, > 2, and

a;_1 —a; > 2 forevery i = 2,3,..., /.



Proof. This is well-known and can be proved by using the greedy algorithm
([41, pp. 108-109] or [44]). See also [16] for a more general result. O

Lemma 2.4. If vy, x5,...,x, € R, then
(o1 + a4+ an ) = {{o} + {m2} + -+ {2} }.

Proof. We can write 1 +xo+ -+ +x, = m~+{x1} + {x2} +- -+ {x,}, where
m = |z1] + |x2] + -+ [2,] € Z. So this lemma follows immediately from
Lemma 2.1. U

Lemma 2.5. Let n € N. Then the following statements hold.
(i) [Fpa| = Fuyy — [0 20 (mod 2)].
(i) [Fpa2] = Fpys —[n =0 (mod 2)].
(i) {Fp,a} = —8"+[n =0 (mod 2)].
(iv) {Fa?}={F.a}.
(v) [Lna] =Laji=[n =1 (mod 2)].
(Vi) {Lnad= V58" +[n =1 (mod 2)].
(vi)) [Ln0?]'= Lois— [n =1-(mod 2)}.
(viii) {Ln0?} = {Lnal.

Proof. By Lemmas 2.2 and 2.1, we obtain |F,a] = |[F,11 — "] = Fny1 +
|—p"|. If nis even, then 0 < 8" < 1 and so |—p"| = —1. If n is odd, then
—1 < p" <0andso |—f"| =0. Therefore |—f"| = —[n =0 (mod 2)]. This
implies (i). Then (ii) follows from (i) by writing o® = a + 1 and |F,a?] =
|Foa+ F,| = |Fhal + F,. Next, {F,a} = F,a — |F,a], so (iii) can be
obtained from (i) and Lemma 2.2. For (iv), we have {F, o’} = {F,a + F,} =
{F,a}. By Lemma 2.2(v), we obtain |L,a| = Ln4, + [V/58"]. If n is even,
then 0 < /56" < v/53% < 1, and so [v/58"] = 0. If n is odd, then —1 <



V53% < /58" < 0 and thus [v/53"] = —1. This implies (v). Then (vi) is a
consequence of (v) and Lemma 2.2(v). By writing a® = o + 1, we obtain (vii)

from (v), and (viii) from Lemma 2.1(ii). This completes the proof. O

Lemma 2.6. (Beatty’s theorem [1, 2]) Let x and y be irrational numbers such
that z,y > 1 and %—l—i = 1. Then B(z)UB(y) = Nand B(z) N B(y) = 0. In
particular, B(a) U B(a?) = N and B(a) N B(a?) = 0.

If A= (an)n>1 is a sequence, then a segment of A is a finite sequence of
the form (ag, ki1, - ., agpem) for some k;m € N. Then we have the following

results.
Lemma 2.7. The following statements hold.
(i) For each b€ N, [(b+1)a| — |ba| is either1 or 2.
(ii) Foreachb & N, if |(b+1)a]~|ba] =1 then [(b+2)a]—|(b+ 1)) = 2.
(iii) The sequence (|(b+ 1) a)—=|ba])p>1 does not contain the segment (2,2,2).

Proof. Let b€ N. By Lemma 2.1, [(b+ 1)a| — [ba] = |ba+ a| — [ba] = |a]
or |a]+1 =1 or 2. This proves (i). For (ii), suppose that | (b+ 1) a| — |ba| =
1=|(b+2)al —{(0+1)«). Then 2 =|(b+ 2)a)— [ba] > [2a] > 3, which
is a contradiction. For (iii), suppose that (2,2,2) is a segment of the sequence

([(b+1)a] — [ba])ps1, that is, there exists b€ N such that

[(b+1)a) — |ba) =2, (2.1)
((b+2)a) — [(b+1)al =2, (2.2)
L(b+3)a) — [(b+2)a) =2. (2.3)

Adding (2.1) to (2.3), we have 6 = [(b+ 3) a| — [ba| < [3a| + 1 =5, which

is a contradiction. O
Lemma 2.8. Let b € N. Then the following statements hold.

(i) [(b+1)a?] — |ba?] is either 2 or 3.



(ii) If [(b+1)a?| — [ba?| =2, then | (b+2)a?] — [(b+ 1) a?] = 3.

(iii) The sequence ([(b+1)a?] — [ba?])p>1 does not contain the segment

(3,3,3).

Proof. By Lemma 2.1, [(b+ 1) o®] —|ba?] = |(b+ 1) a] — [ba] +1. Therefore

this lemma is an immediate consequence of Lemma 2.7. U



Chapter 3

Main Results

In this chapter, we study various sumsets associated with Wythoff sequences.

We begin with simple cases such as B(«) + B («) and B («) + B («).
Theorem 3.1. Let B(a) and Bo(«) be the sets as defined in (1.1). Then
B (@) +B(a)=N\{1,3} and By (a) + B (a) = N.

Proof. Tt is easy to check that 1,3 ¢ B (a) + B(a) and 2 = |a] + |a] €
B (a) + B(a). So we let n > 4 and show that n € B (a) + B («). Let b be
the largest positive integer such that bay < n. Then b > 2 and |[ba]| < n <
|(b+1) . By Lemma 2.7(1), n = |ba] +k, where k is either 1 or 2. If k =1,
then n = |ba) +|a € B(a)+ B(«a). So assume that k = 2. By Lemma
2.7(i), we can divide the proof into two cases. If |ba| — |(b— 1)« = 1, then
n=|ba|+2=[b—1Da|+3=|(b-1)al+|2a]. If |ba| —|(b—1)a] = 2,
then n = [ba| +2=|(b—1)a] +4 = |[(b—1)a] + [3a]. In any case, we
have n € B (a) + B («), as desired. Since 1 and 3 are in By(«) + B(a) and
B(a)+ B(«a) C By () + B («), we obtain that By (a) + B (o) = N. O

Theorem 3.2. Let B(a) and B(a?) be defined as in (1.1) and n > 3. Then

the following statements hold.
(i) F, € B(«) if and only if n is even.
(ii) F, € B(a?) if and only if n is odd.

9
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(iii) F,, —1 € B(«) if and only if n is odd.
(iv) F, —1 € B(a?) if and only if n is even.
Proof. By Lemma 2.5, we have

F,—[n=0 (mod?2)]=|F,? € B(a?),

F,—[n=1 (mod2)]=|F, 1a| € B(a).

Case 1 n is even. Then by the above equality, we have F;,, — 1 € B(a?) and
F,, € B(a). Then by Lemma 2.6, F,, — 1 ¢ B(«a) and F,, ¢ B(a?).

Case 2 n is odd. Then F, € B(a?) and F,, =1 € B(a). Then by Lemma 2.6,
F, ¢ B(a) and F, —1 ¢ B(a?). This implies the desired result. O

The calculation of B (a)+ B{(a?) is a bit more complicated than B () +

B («) and we need the following theorem.

Theorem 3.3. Let n > 3 and 1 < b < Fypq. Ifb# F,, then 0 < {ba}+ 0" <
1. If b= F,, then {ba} + ™= [n =0 (mod 2)].

Proof. We use Lemma 2.5 repeatedly without reference. If b = F,,, then the
result follows immediately. If b = F,,4q, then {ba} + " is equal to

" I +1=0 (mod 2)]+ 4" ==F""L+[n—1=0 (mod 2)]

={F,1a} € (0,1).

Next we consider the case b = F} for some k € {2,3,...,n— 1}. If k is even

and n is odd, then
1> {ba}>{ba}+p"=1-8+5">1-p*+3=1+8>0.

If k and n are even, then 0 < {ba}+ 8" = 1— 3%+ 3" < 1. Similarly, if k is odd
and n is even, then 0 < {ba}+ "= —pF+pn < pgr—p2 < p -3 =32 < 1.
If k and n are odd, then 1 > {ba} + " = —* + 3" > 0. Hence this theorem
is verified in the case b = F}, for some k < n + 1. Next, we suppose that

Fr < b < Fypyq for some k € {4,5,...,n}. By Lemma 2.3, we can write
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b=F, +Fy+-+F, where { > 2, k = a1 > ay > -+ > a; > 2,
and a; 1 —a; > 2 for every 1 = 2,3,...,{. Then by Lemma 2.4, we obtain
{ba} = {{F,,a} + {F,,a} +---+ {F,,a}}, which is equal to

{0 =B +1=p2 1= )+ (=7 = 52— = )},
where {b1,ba,...,b,}U{c1,¢o,...,cs} ={ar,aq,...,as}, by, ba, ..., b, are even,
and ¢y, ¢, ..., cs are odd.

Remark that one of the sets {b1,b,...,b.}, {c1,ca,...,cs} may be empty.
In that case, such the set disappears from the subsequent calculation. Also,
for convenience, we let A = 3% 4- 3% 4 ... 4 B 4 51 32 4 ... 4 3%, Then
by Lemma 2.1, {ba} = {—A}.
Case 1 {by,by,..., b} isempty. Then A = B + 32+ ... + % > 334 35 +
BT+ -+ =25 = =p% Therefore 0 < <A < 2 < 1 and so {ba} = {-A} =
—A—|—-A| =—A. Then

{bat+B" < (24 B < B2+ B =48+3 < 1.

It remains to show that {ba}+5" > 0. If n is even, then obviously {ba}+ 5" >
0. So assume that n is odd. Since {by,bs,...,b.} is empty, we see that a; is
odd and —A > —p . Therefore {ba} + 5" > =% + " > 0, as required.
Case 2 {c|,¢co,...,Cs} is empty. Then A = g% 4 g% 4+ ... + g < g2 +
B4+ B8+ = % = —p. In addition, ay is even and A > (3. Therefore
-0 > —-A>f > —1and so {ba} = {—A} =1 — A. Then {ba} + " <
1—p+p8"<1,and {ba}+B">1+B+pB">1+B+33=38+2>0.
Case 3 {by,by,...,b,} and {cy,ca,...,cs} are not empty. Then there is some
cancellation in the sum defining A. Similar to Case 1 and Case 2, we have
A<prr 4624 ... 480 < —Band A > 9 4 2 + -+ (% > —[52.

Case 3.1 A is positive. Then —1 < f < —A <0 and {ba}+p"=1—-A+ "
So it suffices to show that " < A < 1+ ". Since A < —f, we obtain
A—pBr < —B—p3=-38—1< 1, which implies A < 1+ 8. So it remains to
show that A > ". If n is odd, then A > 0 > 5". So suppose that n is even.



12

Let u be the smallest even number among {by, b, ...,b,} and v the smallest
odd number among {ci,¢s,...,cs}. Since a; —a;1 > 2 for alli = 2,3,... ¢

and a; = k < n, we obtain u < n and |v —u| > 3. Then

R R
(3.1)

R Y T AT )
(3.2)

By (3.1) and (3.2), we obtain 8 — "' < 4 < 8 — B*~!. Since |v —u| > 3,
we see that either v —u > 3 or' v —u < —3. Suppose for a contradiction that
v—u < —3. Since v < u— 3 and both v and u— 3 are odd, we have 3¥ < 5473,
So A < B3 — gl = gui3(l — 3%) = =% 2 < 0, which contradicts the
assumption that A is positive. Hence v — 4 > 3. Since v — 1 > v+ 2 and both
v—1and u+2 are even, fV= < 92 So A > B4 —put? = fu(1—3?%) = —putl.
We have u < v =3 < a; — 3 < n—3. Therefore —3%T! = |3]“™! > |3]" = ™.
Therefore A > ", as desired.

Case 3.2 A is negative. Then 0 < —A < 3% < 1l and

{ba} + = {~AY+ = A+ B <P+ <P+ p*=48+3 < 1.

To show that {ba} + " >0, it is enough to show that " > A. If n is
even, then obviously " > 0 > A. So assume that n is odd. Let u and v
be as in Case 3.1. Then we obtain u < n, |v —u| > 3, the inequalities in
(3.1) and (3.2) hold, and g — "1 < A < —p“ ! + 5. Again, we have
either v —u > 3 or v — u < —3. Suppose for a contradiction that v —u > 3.
Following the argument in Case 3.1, we obtain A > g% — v~ > —pgv+l > (,
which contradicts the assumption that A is negative. Therefore v — u < —3.
Then A < —f*™1 4 pv < —pv=1 4 gv=3 = — %72, Since u — 2 < n, u is even,
and n is odd, we obtain —“"? = —|f|“"2 < —|B|™ = B". Therefore A < ",

as desired. Hence the proof is complete. ]
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Corollary 3.4. For eachn >3 and 1 < b < F, 1, we have
Foi1 = [(F, —b)a] + |ba] +1—6 and Fys = | (F, — b) o?| + [ba?] +1 — 4,
where 6 = [n =1 (mod 2)|[b = F,].

Proof. Let n > 3and 1 < b < F,,1. If b = F,,, then we obtain by Lemma
2.5 that [(F, —b)a|+ |ba]+1—-0=F,1—[n=0 (mod 2)]+1—-[n=1
(mod 2)] = F,41. So suppose b # F,,. Then § = 0 and we obtain by Lemmas
2.1, 2.2 and Theorem 3.3, respectively, that | (F,, — b) a] + [ba|+1—§ is equal

to
| Foa—ba+|ba]+1] = [ Frp =" ={ba}+1] = Fi1+|1—{ba} ("] = F11.

This proves the first equality. By writing a? = a +1 and applying Lemma 2.1,

we see that
|(F, —b)a?| + [ba?| +1 =0 = |(F, —b)a|+ |ba] +1 -0+ F, = F,.».
O

Theorem 3.5. Let B(«), By(a), B(a?), and By(a?) be the sets as defined in
(1.1). Then we have

(i) B(a)+ B(a?)=N\{F,—1|n> 3},
(ii) Bo(a)+ B(a?) =N\ {F,—1]| n>3 andn is odd}, and
(iii) B(a)+ By(a?)=N\{F, —1]| n>3 and n is even}.

Proof. We first show that B (a) + B (a?) C N\ {F, — 1| n > 3}. It is easy to
check that F3 —1,Fy — 1 ¢ B(a)+ B(a?). Solet n > 5. In order to get a
contradiction, suppose F, —1is in B (a)+ B (a?). Then F, —1 = |ba |+ |ac?]
for some a,b € N. If b > F},_1, then we obtain by Lemma 2.5 that

lba| + |ac®| > |Fpia) + [ = F,—[n=1 (mod 2)]+2> F, — 1,
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which is not in case. So b < F,,_;. Replacing n by n — 1 in Corollary 3.4, we
have |aa?| = F,,—1—|ba] = | (F,_1 — b)a] € B(a), so |aa?| € B(a)NB(a?),
which contradicts Lemma 2.6. Therefore F,, — 1 ¢ B(a) + B(a?) for any
n > 3. This shows that B(a)+ B(a?) is a subset of N\ {F,, — 1 | n > 3}. For
the other direction, let m € N\ {F, —1|n > 3}. Then there exists n € N
such that n > 3 and F, — 1 < m < F,;; — 1. Thus m = F, —1+0
where 1 < b < F,_;. By Corollary 3.4, we obtain m = [(F,—1 —b)a] +
lba| +b = |(F-1 —b)a] + [ba?] € B(«a) + B(a?). This proves (i). Next
By (a)+ B (a?) = (B(a)+B(a?))UB(a?) = N\{F,—1| n > 3 and n is odd},
by (i) and Theorem 3.2. Similarly, (iii) can be obtained by using (i) and
Theorem 3.2. This completes the proof. ]

Remark 3.6. It follows immediately from Beatty’s theorem that By («) +
BO (Oé2) =N.

Theorem 3.7. Let B(«), Bo(a), B(a?), and By(a?) be defined as in (1.1).
Then the following statements hold.

(i) B(a)+ B(a?)+ B(a?) =N\ {1,2,3,4,6,9}.
(ii) By(a)+ B(a*)+ B(a?) =N\ {1,2,3,6}.
(iii) B (a) + B(a?) + By (a?) =N\ {1,2,4}.
(iv) B(a) + By(a?) + By (o) = N\ {2}

Proof. We can write Theorem 3.5 in another form as

B(a)+ B(a®) = | J (Fn = 1, Fays = 1) ON) = | ([F, For1 — 2] NN)..

Then B(a) + B(a?) + 2| = U2, ([Fn + 2, Fp1] NN) = N\ A, where A =
{F,+1|n>5}U{1,2,3,4}. Similarly, B(a) + B(a?) + |2a?] = N\ B where
B ={F,+4|m>2}U{1,2,3,4}. Therefore N\ (ANB) = (N\A)U(N\B) C

B(a) + B(a?) + B(a?). Tt is easy to see that
ANB={F,+1|n>5}N{F,+4|m>2})U{l,2,3,4}

={F.+1|n>7}n{F,+4|m>6})U{l1,2,3,4,6,9}.



15

Ifn>7m2>6,and F,, +1 = F,, + 4, then n > m and 3 = F, — F,, >
F,—F,_ 1= F,_5 > 5, which is a contradiction. So {F,,+1|n > 7}N{F,,+4 |
m > 6} = (). Therefore ANB = {1,2,3,4,6,9} and thus N\ {1,2,3,4,6,9} C
B(a) + B(a?) + B(a?). Tt is easy to check that 1,2,3,4,6,9 ¢ B(a)+ B(a?) +
B(a?). This proves (i). The other parts follows from (i) and straightforward

verification. 0

The structure of B (a?) + B (a?) seems to be the most complicated among
sumsets associated with B(«) and B(a?). So we first consider a simpler sumset

B (a?) + B (a?) + B (a?).
Theorem 3.8. Let B(a?) and Bo(a?) be defined as in (1.1). Then we have

B (a®) + B(a®) + B(a?) =N\{1,2,3,4,5,7,8,10, 13, 18, 26},
4+ B (o) =N\ {1,2,3,5,8,13},
By (o?) + By (o) + B (o) = N\ {1,3,8}.

Proof. Let Ay = |4a*|+|6a%|+B (o), 4y = |ba? | +|5a? |+ B (a?), and A3 =
|3a?] + |8a| + B (a?). We first show that Ay UA,U A3 = {n € N|n > 27}
Note that |3a?], [4a?]; [5a?], [6a?], [8a?] are equal to 7, 10, 13, 15, 20,
respectively. Then it is easy to see that every element in A; U Ay U Az is larger

than or equal to 27. Next, let n > 27. Then there exists k£ € N such that
|40?] + [60%] + [ka?] <n < [4a?] + [6a2] + [(k+ 1) a?].

By Lemma 2.8, we have [(k+ 1) a?] — |ka?] = 2 or 3, and so n = [4a?] +
|6a?] + |ka?| + b, where b= 0,1 0or 2. If b =0, then n € A;. If b = 1, then
n = [4a?| + [6a?| + |ka?] + 1 = |5a?] + |5a?] + |ka?| € Ay. Similarly, if
b =2, then n = [3a?]| + [8a?| + |ka?| € Az. In any case, n € A; U Ay U As,
as required. This implies that B (a?) 4+ B (a?) + B (a?) contains N N [27, 00).
For the integers in N N [1,26], we can straightforwardly check whether they
are in B (a?) + B (a?) + B (a?) or not. For the reader’s convenience, we give

the integers which are in B (a?) + B (a?) + B (a?) as follows: 6 = 2 + 2 + 2,
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9=5+2+2,11=74+2+2,12=5+5+2,14=10+2+2,15=5+5+5,
16 =7T+7T+2,17T=74+5+5,19=15+2+2,20=104+5+5,21 =T7+7+7,
22=18+2+2,23=134+5+5,24=20+2+2, 25 = 15+ 5+ 5. This proves
the first part. The other parts follow from the first part and straightforward

verification. ]

In order to prove Theorem 3.10, it is convenient to use the following ob-

servation.

Lemma 3.9. Let n >3, a € Z, and b,c € N. If F,, +a = |ba?] + [ca?], then

b and c are less than F, o + 7.
Proof. If b or ¢ > F,_3+ %%, then [ba?] + [ca?] is larger than or equal to
| Fo0® +a| +{a®| = F,—[n=0 (mod2)]+a+2>F,+a.
O

The positive integers in N\ (B (a?) + B(a?)) are 1, 2, 3, 5, 6, 8, 11, 13,
16, 19, 21, 24, 29, 32, 34, 37, 42, 45, 50, 53, 55,.... From this, we notice the

following pattern.

Theorem 3.10. Let n € N and B(a?) the Beatty set as defined in (1.1). Then
the following statements hold.

(i) F, ¢ B(a?) + B(a?):

(ii) If n > 5, then F,, — 1 € B(a®) + B(a?).
(iii) If n # 1,2,3,5, then F, + 1 € B(a?) + B(a?).
(iv) F, — 2 ¢ B(a?) + B(a?).

(v) If n #1,2,4, then F, +2 € B(a?) + B(a?).
(vi) If n > 17, then F,, — 3 € B(a?) + B(a?).

(vii) If n > 3, then F, + 3 ¢ B(a®) + B(a?).
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Proof. For n < 6, the result is easily checked. So we assume throughout that
n > 7. For (i), suppose for a contradiction that F, € B(a?) + B(a?). Then
F,, = |ba?| + |ca?] for some a,b € N. By Lemma 3.9, b and c are less than
F,_5. By Corollary 3.4,

LcaQJ — L(Fn_2 — b)a2J =F, — [boﬂj — L(Fn_2 — b)a2J =1.

But by Lemma 2.8, we know that the difference between the elements in B(a?)
is at least two. So we obtain a contradiction. This proves (i). The statements

(i), (iii), (v), and (vi) also follow from applications of Corollary 3.4 as follows:

So it remains to prove (iv) and (vii). Similar to the proof of (i), if F,, —2 =
[ba] + [ca?], then we have b, ¢ < Fo—= 2, F,, = [(F,—2 — b)a?] + [ba® | +1,
and |(F,_o —b)a?] = |ca?] = [(F_a = b)a?}— (F, — 2 — |ba?]) = 1, which
contradicts Lemma 2.8. For (vii), suppose that F;, + 3 = |ba?| + |ca?]| for
some b,c¢ € N. Then by Lemma 3.9, b and ¢ < F,,_5 + % < F,_1. If band ¢
= F,,_o, then F,,+3 = [ba? |+ |ca?| = 2F,—2[n =0 (mod 2)], which leads to
F; < F, =342[n =0 (mod 2)] < 5, a contradiction. So one of b, ¢ is not equal
to F,,_o. Without loss of generality, assume that b # F, 5. So we can apply
Corollary 3.4 and follow the same idea to obtain [ca?| — [(F,_2 — b)a?] = 4.
By Lemma 2.8(i), the difference between consecutive terms in B(a?) is either 2
or 3. So there are k, 7 € NU{0} such that 4 = 2k+3r. If r > 2, then 2k+3r >
4. If r =1, then 2k +3r =2k +3 # 4. Sor =0 and k = 2. This implies that



18

c=F, 2—b+2 [ca®| —|(c—1Da?] = |(c—1)a?] — [(c — 2)a?| = 2, which

contradicts Lemma 2.8(ii). So the proof is complete. ]

Our next goal is to determine completely the integers a such that F), +a €
B(a?) + B(a?). The reader will see that there is a recurrence and fractal-like

behavior involving those integers.

Lemma 3.11. Let n > 5, a € Z, and F,, + a ¢ B(a?) + B(a?) where B(a?)
is the set as defined in (1.1). Then the following statements hold.

(i) For every integer d € [—Fy_3,0) U (0, F,_3), we have a + 1 + |da?] ¢
B(a?).

(ii) a+1—[n=1 (mod 2)] & B(a?).

Proof. Let 1 < b < F, 1 and 0, = [n = 1 (mod 2)|[b = F,,_5]. By Corollary
3.4, we have F, + a = [(F,2—b)a?] + a+1 — 0, + [ba?]. Since F, +a ¢
B(a?) + B(a?) and |ba?| € B(a?), we see that

|(Fhp=b)a?| +a+1= 6 ¢ B(a?). (3.3)

Since (3.3) holds for all b < F,, _;, we can substitute b = F,_» in (3.3) to obtain
(ii). Similarly, by running b over the integers in [1,F, o) U (F,_a, F,,_1], we
obtain (i). O

Suppose n > 5 and the integers in [F},, Fy,11] N (B(a?) + B(a?)) are given.

Then the next theorem gives us some integers in [F,,, 1, F,12]N(B(a?)+B(a?)).

Theorem 3.12. Let B(a?) be the set as defined in (1.1). Letn > 5, a € Z,
andl <a < F,—2. If F,4+a € B(a?)+B(a?), then F,11+a € B(a?)+B(a?).

Proof. If n = 5, the result is easily checked. So assume that n > 6. Suppose
for a contradiction that F,, +a € B(a?)+ B(a?) but F,.1+a ¢ B(a?)+ B(a?).
By applying Lemma 3.11 to F, 1 4+ a, we obtain that

a+1+ |da’| ¢ B(a?) for 0 <d < F,_;. (3.4)
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Since F,, + a € B(a?) + B(a?), there are b,c € N such that F, + a = [ba?] +
lca?]. If b < F,_5, then by Corollary 3.4, a + 1+ |(F,_2 — b)a?| = F, +
a — [ba?] = |ca?| € B(a?), which contradicts (3.4). Therefore b > F,_,.
Similarly, by applying the same argument to ¢, we obtain ¢ > F,,_5. Then
F,+a = |ba?|+|ca?| > 2| F, 2a?| = 2(F,—[n =0 (mod 2)]), which implies
a > F, —2[n =0 (mod 2)] contradicting the assumption that a < F,, — 2.

Hence the proof is complete. O

Remark 3.13. Let n > 4. By Lemma 2.5, we have F,_s3a? = F,_; — " 3.
So for a € Z, the condition ¢ < F,_; — [n = 1 (mod 2)] is equivalent to

a < F,_sa®. We will use this observation later.
To obtain the converse of Theorem 3.12, we first prove the following lemma.

Lemma 3.14. Let B(a?) be the Beatty set as defined in (1.1), n > 5, a,b,c €
N, and 1 < a < F,36*. Suppose F,, + a ¢ B(a?) + B(a?) and F,41 +a =
|ba? | + [ca?]. ‘Then one of b, ¢ is equal to F,_y and the other, say c, satisfying
lca?| = a+ [n=1 (mod 2)].

Proof. Suppose for a contradiction that both b and ¢ are not equal to F),_;.
Since Fy41+ a = [ba?] + |ca?], we obtain by Lemma 3.9 that both b and ¢

are less than F,,"; + =% < F,. So we can apply Corollary 3.4 to write

Fop +a=|(F,y = b)o?| + [ba?] + 1 +aq,

Foi1+a= L(an — c)aQJ + LCQZJ +1+a.

Since Fy,+a ¢ B(a?)+B(a?) and a+1+ | (F,_1 —b)a?| = F,y1+a— |[ba?| =
|ca?| € B(a?), we obtain by Lemma 3.11 that F,,_—b & [—F,,_3,0)U(0, F,_5).
Therefore F,,_1—b> F,,_o, F,_1—b=0,0r F,_1—b< —F,_3. Thenb < F},_3
or b > F,_1+F,_3. Applying the above argument to a+ 1+ | (F,_1 — ¢)a?| =
|ba?| € B(a?), we also obtain ¢ < F,,_3 or ¢ > F,,_; + F},_3. Recall that b and
c<F,1+ . Soifborc> F, 1+ F,3, then we would obtain F,_; + %5 >

F,_ 1+ F,_3, which contradicts the assumption that a < F,_sa?. Hence b and
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¢ < F, 3. Then F,; +a= |ba?] + |ca?| < 2|F, 30?] <2F, | < F,1 +a,
which is a contradiction. Thus b or ¢ is equal to F,_;. If b = F,_;, then
Foii+a = |F,10%] + [cd?]| = Foy1 — [n = 1 (mod 2)] + [ca?|, and so
lca?] =a+[n =1 (mod 2)]. Similarly, if ¢ = F,,_1, then [ba?| =a+[n =1
(mod 2)]. This completes the proof. O

Lemma 3.15. Let B(a?) be the set as defined in (1.1), n > 6 and 1 < a <
F, 30 If F, 1 +a and F, + a are not in B(a?) + B(a?), then F,.1 +a ¢
B(a?) + B(a?).

Proof. Suppose for a contradiction that F,,-;+a and F, +a are not in B(a?)+
B(a?) but F,.1 + a € B(a?) + B(a?). Then there are b,c € N such that
Foi1+a=|ba?] + [ca?]. By Lemma 3.14, we can assume that b = F,,_; and

lco’| =a+[n=1 (mod 2)]. (3.5)

But by applying Lemma 3.11 to the case F,,—1+a ¢ B(a?)+ B(a?), we obtain

that
a+1l=[n—=1=1 (mod 2)] ¢ B(a?*), or equivalently,
a+[n =1 (mod?2)] ¢ B(a?),
which contradiets (3.5). So the proof is complete. O

Suppose n > 6 and the integers in [F},, F,¢1] N (B(a?) + B(a?)) are given.
Then the next theorem gives us more than a half of the integers in and outside
the set

[Fas1, Fag2] N (B(a®) + B(a?)). (3.6)

Theorem 3.16. Let B(a?) be the Beatty set as defined in (1.1),n > 6, a € Z,
and 0 <a < F,,_1 — 2. Then

F, +a € B(a®)+ B(a®) if and only if F,y1 +a € B(a?) + B(a?).

Proof. If a = 0, the result follows from Theorem 3.10. So assume that a > 1.

By Theorem 3.12, we only need to prove the converse. Assume that F, +
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a ¢ B(a?) + B(a?). Then we obtain by Theorem 3.12 that F, ; +a ¢
B(a?) + B(a?). Then by Lemma 3.15, F,,;1 ¢ B(a?) + B(a?). So the proof is
complete. O

The next theorem gives the remaining integers in (3.6).

Theorem 3.17. Let B(a?) be the set as defined in (1.1), n > 6, a € Z, and
0<a<F,;—[n=1 (mod 2)]. Then F, +a € B(a?)+ B(a?) if and only if
Foy1—2—a € B(a?) + B(a?).

Proof. If a = 0, the result follows from Theorem 3.10. So assume that a > 1.
Suppose F, + a € B(a?) + B(a?) but F,y1 —2 —a ¢ B(a?) + B(a?). By
applying Lemma 3.11 to F, 1 —2 — a, we obtain that

—a—1+|da?| ¢ B(a?) for d € [=Fy5,0) U (0, Fy_1). (3.7)

Since F), + a € B(a?)+ B(ca?), there are b,e € N such that F, +a = [ba?] +
|ca?]. Then by Lemma 3.9, band ¢ < F,_s+-%. Recall also from Remark 3.13
that a < F,,_za® If b < F, 5, then by Corollary 3.4 and the fact given in (3.7),
we obtain, respectively, —a =1+ |ca?| = B, =1 —1ba?] = [(F,_o — b)a?] €
B(a?), and ¢ > F, 4, which contradicts the fact that ¢ < F, 5 + 5. So
b > F,_5. Similarly, applying the above argument to ¢, we have ¢ > F, _s.
Then F, + a = [ba?] + [ba?]| > 2| F,—9a?| > 2F, — 2 > F, + a, which is a
contradiction. Hence the first part of this theorem is proved.

For the converse, we also suppose for a contradiction that F,,.; —2 —a €
B(a?)+ B(a?) but F,,+a ¢ B(a?)+ B(a?). Then there are b, ¢ € N such that
Foi1—2—a=|ba?] + [ca?] and by Lemma 3.11,

a+ 14 |do?| ¢ B(a?) for d € [—F,_3,0) U (0, F,_»). (3.8)

By Lemma 3.9, b and ¢ < F,,_{ — “aif < F,_1. Then by Corollary 3.4, we
obtain

Foii—2—a= L(Fn,l — b)aQJ + Lboﬂ —a—1,
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which implies a + 1+ [ca?| = [(F.—1 — b)a?| € B(a?). So by (3.8), ¢ > F,,_».
By the same argument, b > F,,_,. Therefore F,, ;1 — 2 —a = |ba?| + |ca?| >
2| F,_oa?| > 2F, — 2, which implies a < F,_; — F,, < 0, a contradiction.

Hence the proof is complete. ]

Theorems 3.10, 3.16, and 3.17 give a complete description of B(a?)+ B(a?).
We illustrate this in Example 3.18 and Theorem 3.20 as follows.

Example 3.18. For convenience, if A C N, we write A¢ to denote the com-
plement of A in N. That is A° = N\ A. By direct calculation, the elements
in (B(a?) + B(a?))°N 1, Fy] are 1, 2,3, 5,6, 8, 11, 13, 16, 19, 21, 24, 29, 32,
34. To determine the elements in [Fy, Fio) N (B(a?) + B(a?))¢, we first observe
that for 0 < a < Fx,

Fx+a ¢ B(a®)+ B(a?) if and only if a € {0,3,8,11,13}.
Applying Theorem 3.16 for n = 8, we obtain that for 0 < a < F; — 2,
Fy+ a ¢ B(a®)+ B(a?) if and only if a € {0, 3, 8}.
Applying Theorem 3.17 for n = 9, we obtain that for 0 < a < F; — 2,
Fig—2—a¢ B(a®) + B(a?) if and only if a € {0, 3,8}.

In addition, Fio ¢ B(a?) + B(a?) by Theorem 3.10. The length of the interval
[Fy, Fio] is Fip — Fy = Fy which is less than 2(F7 — 2). Therefore the elements
in (B(a?)+ B(a?))°N|[Fy, F1o] are completely determined. They are Fy, Fy+3,
Fot8, Fio—10, Fio—5, Fio—2, Fio, which are 34,37, 42, 45. 50, 53, 55. By doing
this process repeatedly, we obtain (B(a?) + B(a?))°N A where A = [Fyg, F11],
[Fi1, Fi1a), [Fi2, Fi3], and so on. Thus we can find (B(a?) + B(a?))N[1, F,] for

any given n.

Remark 3.19. In the abstract and introduction, we mention that the struc-

ture of the set X =: B(a?) + B(a?) has some kinds of fractal and palindromic
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patterns. This is not intended to be a precise or mathematically rigorous state-
ment. What we (vaguely) means is that the distribution of the elements of X
in the interval [F,, F},11] looks like fractal for all n > 6. Suppose we display
the points of X N[F,;1, F,42] on the real line and zoom in for a smaller scale,
namely, X N [F,41, Fu1 + Fro1 — 3]. Then, by Theorem 3.16, the picture
(in a smaller scale) is the same as that of X N [F,, F,,;1]. Then by Theorem
3.16 again, the picture (in a smaller scale) of X N [F,, 2, F}, 3] is the same as
that of X N [F,41, F12]. Since Theorem 3.16 holds for all n > 6, we can con-
tinue this process and see the distribution of the elements of X on [F,, F},11],
[Fri1, Fria), [Fuie, Fuys), and so on, as fractal-like pattern. See the figure
shown below for an illustration.

For the palindromicity, recall that a positive integer n can be written

uniquely in the decimal expansion as
n= (akak—l 9 5 ao)l() = akl()k + CLk_l]_Ok_l + -+ ay,

where a5, # 0 and 0 < a; < 9 for all ¢, and n is called a palindrome or a
palindromic number if a;—; = a; for 0 <4 < |k/2]|. So if n is a palindrome
and we know the values of ay,_; only for 0 <i < |k/2], then we can completely
find all the decimal digits of n. Now suppose n > 6 and the elements of
X N [F,, Fhy1] are known. We can divide [F, 1, Fj12] into two overlapped

intervals:

the left-hand interval L =: [F,11, Fyiu1 + Froq — 3]

the right-hand interval R =: [F,,0 — F,,_1 — 1, F, 1]

By Theorem 3.16, X N L is completely determined by X N[F,,, F},+1]. Theorem
3.17 gives us the palindromic pattern which helps us obtain all elements in
R from L. Hence we can basically say that for all n > 6, the distribution of
points in X N[F, 11, F,12| are completely determined by that of X N[F,, F},11]

by the fractal-like and palindromic patterns.

In general, we have the following result.
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Fn Fn+l
Fn+1 Fn+2
Fn+2 Fn+3

Theorem 3.20. Let B(a?) be the set as defined in (1.1). For each n € N, let
A, ={ae€Z|0<a<F, andF,+a¢ B(a?)+ B(a?)}. Then A; = {0},
AQ — A3 — {O, ]_}, A4 — {0, 2}, A5 = {0, 1,3}7 AG — {0,3, 5}, A7 — {0,3,678},

and for n > 8, the set A,, is the disjoint union

An = (Anfl \ {Fn~27 Fn—2 Y 2})
U{F1—2—a|laceA, 1 and0<a<F, 3} U{F,1}.

Proof. The sets Ay, As, ..., A7 can be obtained by direct calculation. So as-
sume that n > 8. Since F, + F, 1 = Fy41 ¢ B(a?) + B(a?), F,_1 € A,.
Then we write 4, = C UBU{F, 1}, where C = A, N[0, F, 2 —2) and
B = A, N[F—2—2,F,—1). Obviously, the sets C', B, and {F,,_,} are disjoint.

So it remains to show that

= An-l \ {Fn,Q, Fn,Q — 2} and (39)
B={F,1-2—-a|la€ A, 1and 0<a < F, 3} (3.10)

To prove (3.9),let a € C. Then 0 < a < F,,_o—2and F,+a ¢ B(a?)+ B(a?).
Applying Theorem 3.16, we obtain F,,_; +a ¢ B(a?) + B(a?). Soa € A, 1\
{F,_2, F,_o—2}. Conversely, suppose that a € A,,_1 \ {F,,_2, F,_2 —2}. Then
a€l0,F, o—2)U{F, 2—1}and F,,_;+a ¢ B(a*)+ B(a?). Ifa=F, 5 —1,
then we obtain by Theorem 3.10 that F,, ; +a = F, — 1 € B(a?) + B(a?),
which is not the case. So 0 < a < F,,_5 — 2. In addition, by Theorem 3.16,
F,+a ¢ B(a?) + B(a?). Hence a € A, N[0, F,,_5 —2) = C. This proves (3.9).

Next, let b € B. Then F,, , —2 <b< F,_; and F, +b ¢ B(a?) + B(a?).
If b = F,_1 — 1, then we obtain by Theorem 3.10 that F,, + b= F,,; — 1 €
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B(a?) + B(a?), which is not the case. Sob < F,,_; —2. Let a = F,_1 —2—b.
Then b = F,,_1 —2—a and 0 < a < F,,_3. So it remains to show that
a € A,_1. Since F, +b ¢ B(a?) + B(a?), we obtain by Theorem 3.17 that
F,+a=F,1—2—(F,_ 1—2—a) = F,;,1—2-b ¢ B(a?)+B(a?). Since F,+a ¢
B(a?) + B(a?), we obtain by Theorem 3.16 that F,_; + a ¢ B(a?) + B(a?).
So a € A,_1, as required.

Finally, suppose b= F,,_1 —2—a wherea € A,,_; and 0 < a < F,,_3. Then
F,9—2<b<F, . Sincea € A, 1, F,_1 +a ¢ B(a?) + B(a?®). Then by
Theorem 3.16, F,, + a ¢ B(a?) + B(a?). Applying Theorem 3.17, we obtain
F,+b=F,1—2—a¢ B*)+B(a?*). Sobe A,N[F, »—2,F, 1) =B, as
desired. This completes the proof. ]

Questions

Q1 Let (f,) be a kth order linear recurrence sequence defined by
fo=fo1+foo+ -+ fog forn>2

with the initial values f_(x—2), f—(—3);-..,fo, fi € Z. Let a be the root

k=1_ pk=2_ ... _ 1 with maximal

of the characteristic polynomial #* —z
absolute value. Can we described the structure of the sumsets associated
with B(a), B(a?), ..., B(a*)? Is the structure best described in terms
of the k-step Fibonacci sequence (Fék)) defined by the same recurrence

as (f,) but with the initial values

ka&_m = ka&_g) = =FW=F"=0and ;¥ =17

Q2 Let a = (14++/5)/2. Since a?—a—1 = 0, the set {a?, a, 1} is not linearly

independent over Q. Suppose {a¥, af~!

,...,a, 1} is linearly independent
over QQ, for example, « is an algebraic number of degree larger than k,
a = e, or a = 7, can we describe the structure of the sumsets associated

with B(a*), B(a*™1),..., B(a)?
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Q3 Let a,b € Z, (a,b) =1, b # 0, and let (u,) be the Lucas sequence of
the first kind defined by u,, = au,_1 + bu,_s for n > 2 with uy = 0 and
u; = 1. Let a be the root of the characteristic polynomial 2% —ax —b. Is
the structure of the sumsets associated with B(a) and B(a?) connected

to (u,)?

The proof of the following theorem is similar to that of Theorem 3.3. In
fact, applying Theorem 3.3 leads to Theorem 3.21 but with a smaller range of

b, which may not be enough in some applications.

Theorem 3.21. Letn > 5 and 1 < b < F,yq1. Then the following statements
hold.

(i) If b= L,_1, thenv/53"7" = {ba} = ~[n =0 (mod 2)].
(i) Ifb € {Fn_ s, F,}, then 0 < /BA" 1 — {ba} +2[n =0 (mod 2)] < 1.
(iil) If b ¢ {Fp o, Fy, Ly—1}, then —1 < /5871 —{ba} < 0.

Proof. The statement (i) follows immediately from Lemma 2.5(vi). For (ii),
let b € {F,_s, F,} and A = v/538"1 — {ba} + 2[n = 0 (mod 2)]. Since A" +
V5371 4 g72 = 0, we obtain by Lemma 2.5(iii) that

if b = F,,, then

A=V5"14+8+[n=0 (mod 2)}=—p"2+[n=0 (mod 2)]
if b= Fn_g, then
A=V5"1 48" 24 [n=0 (mod?2)]=—-F"+[n=0 (mod?2)].

By calculating A according to the parity of n, it is not difficult to see that
0 < A < 1. This proves (ii). For (iii), if b = F,, 41, then we apply Lemma
2.5(iii) to obtain

V5a T —{ba} = V5 I = =1 (mod 2)] =" ~[n=1 (mod 2)],
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which is in the interval (—1,0). Next, let B = v/58""! — {ba} + 1, where b is
not equal to any of F,, o, F,,, L,_1, F,11. We need to show that 0 < B < 1.
Case 1 b=F, where2<k<n—-3ork=n-—1.

Case 1.1 b = F,. Then by Lemma 2.5, B = /58" ! 4+ 2. Therefore,
B < 58+ 52 = B*(—3B) = —38° < 1. If n is odd, then it is obvious that
B > 0. If n is even, then n > 6, and B > v/54° + 8% = 32(v/53° + 1) > 0.
Case 1.2 b = F,_;. Then by Lemma 2.5, B = /58" 1 4 8" —[n =
(mod 2)] + 1. If nis even, then B < 1 and B > 1+ 3°+/53° =1—23* > 0.
If n is odd, then B > 0 and B < 55* + 84 = —2/3° < 1.

Case 1.3 b= F; and 3 < k < n — 3. This case occurs only when n > 6. By
Lemma 2.5,

B=+58""14 gF~ [k =0 (mod 2)] + 1.

We first consider the case that %k is even. Then B = /5"t + g+ If n
is odd, then B > 0 and B < v/55* + 4 = —28% < 1. If n is even, then
B<pFr<pt<l,k<n—4,and B> V5" 4 g7t =g 4(V/532 4+ 1) > 0.
Next, suppose k is odd. Then B = 4/58" ' 4+ 3% + 1. If n is even, then
B<land B> 534 3%4+1=1-38*>0. If nis odd, then k < n — 4,
B >+/58"1> 0and B< /58" 44+ 1 < 1.

Case 2 F), < b < Fyyq for some k € {4,5,...,n}." We apply Lemma 2.5
without further reference. By Zeckendorf’s theorem, we can write b = Fj,, +
Fo,+---+F, where L >2 k'=ay > ay> - >a >2and a;_y —a; > 2
for every ¢ = 2,3,...,¢. Then by Lemma 2.4, we obtain {ba} = {{F,,a} +
{F,a} + -+ {F,,a}} which is equal to

[= B 1= B et T — ) (5% — 3 — o= %)),

where {by,ba,...,b,}U{c1,co,...,¢5} = {ar,a9,...,a5}, by > by > --- > b, are
even numbers, and ¢; > ¢y > --- > ¢, are odd numbers. Remark that one of
the sets {b1,bs,...,b.} and {cy,co, ..., ¢} may be empty. In this case, such
the set disappears from the subsequent calculation. Also, for convenience, we

let A= g%+ 3%+ ... 4 B + 3% + 3% + ... + 3%. Then by Lemma 2.1,
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{ba} = {—A}. To show that 0 < B < 1, it is enough to prove
V58" < {ba} < 1+56"L

Case 2.1 {by,bs,...,b.} is empty. Then

BS

A= o4 ot A B> Pt = =6

Therefore 0 < —A < 2 < 1 and so {ba} = {—A} = —A. If n is even,
then obviously {ba} > 0 > /548" ! and {ba} = —A < B2 < 1+ 53 <
1+ /58" 1. So assume that n is odd. Then {ba} = —A < 52 < 1 ++/55"1,
and {ba} = —A = || + |B|2+ -+ |B|%. If £ > 3, then s > 3, and so

{ba} 2 (Bl + B2+ 1817 = 1B+ |BI"TP o |81 > |B" + 18" = V5",
Suppose ¢ = 2. Then s = 2 and {ba} = |B|°+|5]2. If ¢; # n, then
BI 4181 = 81272+ )8 S8 + {8 = — (8" + ") = V5"

Since L, = F, + F,~9 and b # L, _1, we see that {ci,c2} # {n,n — 2}.

Therefore, if ¢; =mn, then ¢, #n — 2, and soco < n —4
81 1512 S8 48PS I A |31 F =B

In any case, {ba} > /587!, as required.
Case 2.2 {¢1, ¢, ..., ¢} is empty. Then

ﬁQ

A:ﬁb1+ﬁb2+---+5l”<62+64+---:1_—52:—5.
Therefore —1 < f < —A < 0 and {ba} = {—A} =1 — A. Suppose n is even.
Then {ba} > 0 > 54" and {ba} =1 - A =1—p" — b2 — ... — gb

Similar to the proof of Case 2.1, if £ > 3, then r > 3 and
{bOé} < 1_ﬁb1_5b2_ﬁb3 < 1_ﬁn_ﬁn72_ﬁnf4 < 1_ﬁn_ﬁn72 —_ 1—|—\/5ﬁn71
If ¢ =2 and by # n, then

{b&}zl—ﬂbl—BbQ S1_Bn_2_6n_4<1_6n_2_5n:1+\/36n_1-
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If =2 and by = n, then by <n —4 and
fba} =1—p" = g7 <1— "=t < 1= f" = 2 = 145"

If n is odd, then {ba} <1 <1+ 5" and {ba} =1—-A>1+p=/3>>
B3 > /panL.

Case 2.3 {by,b2,...,b,} and {c1, ca, ..., cs} are not empty. Then there is some
cancellation in the sum defining A. Similar to Case 2.1 and Case 2.2, we have
A<prr 482 4. 4 g < —Band A > B9 4 2 4+ - 4 % > — 32,

Case 2.3.1 A is positive. Then —1 < f < —A < 0, and so {ba} = {-A} =
1 — A. If nis odd, then {ba} < 1+ /BB" ' and {ba} =1 - A > 1 +
B > /58% > /5771 Assume that n is even. Then {ba} > 0 > V5
It remains to show that {ba} < 1 4/58""'. Let u = min{b;,by,...,b.}
and v = min{¢y, g, .. -5 5}, Since a;-y —a; > 2 for all i = 2,3,...,¢ and

a; = k < n, we obtain that u < n and |v — u| > 3. Then

B“§5b1+6b2+---+6b"<6“+6“+2+6“+4+---=f—uﬁz:—ﬁ“‘l,
(3.11)

ﬁvzﬁcl+5@+___+ﬁcs>ﬁv+ﬁv+z+ﬁv+4+,,_:1f_“ﬂgz_ﬁv1.
(3.12)

By (3.11) and (3.12), we obtain 8* —v"! < A < Y — 3*". Since |v—u| > 3,
we see that either v — u >3 or v —u < —3. Suppose for a contradiction
that v — u < —3. Since v < u — 3 and both v and u — 3 are odd, we have
BY < Bu3. Thus A < B° — Bu—l < pu—3 — gu—l = gu=3(1 — §2) = —Bu-2 <
0, which contradicts the assumption that A is positive. Hence v — u > 3.
Since v — 1 > w + 2 and both v — 1 and u + 2 are even, 8~ < 2. So
A > BY— put? = g1 — B?) = =BT, We have u < v —3 < n — 3. Thus
u+1<mn-—2 Since n —2is even and u + 1 is odd, we have u+1 < n — 3.
Then {ba} =1—A < 1+ % <1+ "3, Since V56% < 1 and n — 3 is odd,
V5371 > 3773, Therefore {ba} < 1+ "3 < 1+ /58", as required.
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Case 2.3.2 Aisnegative. Then 0 < —A < 32 < 1. Then {ba} = {-A} = —A.
We first show that {ba} < 14 /58771 If n is odd, then {ba} < 1 <
1 ++/5871. If n is even, then {ba} = —A < 32 < 1 +/54° < 1+ /5" L.
Next, we show that {ba} > /53", If n is even, then v/53" ! < 0 < {ba}. So
assume that n is odd. Let uw = min{by, by, ...,b,} and v = min{cy, ca, ..., cs}.
Similar to Case 2.3.1, we have u < n, |[v — u| > 3, the equalities (3.11) and
(3.12) hold, and 8" — 87! < A < 8 — B*7L. Since |v — u| > 3, we see that
either v —u >3 orv—u < —3. If v —u > 3, then f*~! < %2 and A >
pe — prt > g — put2 — _Butl > (. which contradicts the assumption that
A<0. Thusv—u < =3, andso A < B3 — v~ = -2 Since u < n, u is
even and n is odd, we have u—2 < n—3. Then —A > f*2 > 73 > /5471,

Therefore {ba} = —A > /53" as desired. This completes the proof. ]

We can apply Theorem 3.21 to give a short proof the key result in [11,
Theorem 3.3].

Corollary 3.22. [11, Theorem 3.3] Let n >'5, 1 < b < F,y1, and b # F,.
Then
0<{ba}+p" <L

Proof. If b= F,, o or b = L, 1, we can apply Lemma 2.5 to obtain the desired
result. So suppose that b # F,,_o and b # L, 1. We first consider the case n
is odd. Then it is obvious that {ba} + ™ < 1. For the other inequality, we
apply Theorem 3.21 to obtain {bar} > /54"~ > —p". Similarly, if n is even,
then it is immediate that {ba}+ 5™ > 0 and by using Theorem 3.21, we obtain
{ba} <14 +/5" 1 <1 — " This completes the proof. ]

It is possible to extend the range of b in Theorem 3.21 and Corollary
3.22 but the results are not nice and we do not need them in our application.
Therefore, we only give some special cases as an example and leave the general

case to the interested readers.

Example 3.23. Let n > 5, k > n+ 2, b = Fy, and B = {ba} + ". Then the

following statements hold.
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(i) If k and n are odd, then —1 < B < 0.
(ii) If k #n (mod 2), then 0 < B < 1.
(iii) If £ and n are even, then 1 < B < 2.

Proof. By Lemma 2.5, B = " — ¥+ [k =0 (mod 2)].

Case 1 k is odd. Then B = " — *. If n is odd, then —1 < g* < B2
p¥ < 0,and so —1 < B < 0. If nis even, then k > n+3,and 0 < B <
pr— Bt = 28t < 1.

Case 2 kiseven. Then B = " =3*+1. If niis odd, then B < 1, k > n+3, and
B> 1+4p8"—p"3 =1-24""L > 0. If nis even, then 0 < ¥ < g"+2 < g < 1,

IN

and so 1 < B < 2. This completes the proof. O
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Abstract

Leta = (1 +«/§)/2 be the goldenratio, andlet B(«) = (|na]),>1 and B(a?) = (I_nozZJ )”>1
be the lower and upper Wythoff sequences, respectively. In this article, we obtain a new
estimate concerning the fractional part {no} and study the sumsets associated with Wythoff
sequences. For example, we show that every n > 4 can be written as a sum of two terms in
B(w) and a positive integer n can be written as the sum |ao] + LbaZJ for some a, b € N if
and only if 7 is not one less than a Fibonacci number. The structure of the set B (%) + B(ar?)
contains some kinds of fractal and palindromic patterns and is more complicated than the
other sets, but we can also give a complete description of this set.
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1 Introduction

Let G be an additive abelian group, A and B nonempty subsets of G, and x € G. Then the

sumset A + B and the translation x + A are defined by
A+B={a+blaceAandbeB} and x+A=A+x={a+x]|ac A}l

Additive number theory and the study of sumsets have a long history dating back at least
to Lagrange in 1770 who proved that every natural number can be written as a sum of four
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squares of integers. Cauchy in 1813 gave a lower bound for the cardinality of the sumset A+ B
where A and B are nonempty subsets of Z/ pZ. Davenport [3] rediscovered Cauchy’s result
in 1935 and the results is now known as the Cauchy-Davenport theorem. Several other results
on sumsets and in additive number theory have been obtained by various mathematicians,
and we refer the reader to the books by Freiman [8], Halberstam and Roth [10], Nathanson
[17], Tao and Vu [39], and Vaughan [41] for additional details and references.

On the other hand, Wythoff sequences arise very often in combinatorics and combinatorial
game theory, and so many of their combinatorial properties have been extensively studied;
see for example in the work of Fraenkel [4-7], Kimberling [13,14], Pitman [23], Wythoff
[42], and in the online encyclopedia OEIS [38]. However, as far as we are aware, there
are no number theoretic results, at least in the spirit of this paper, concerning the sumsets
associated with Wythoff sequences. This motivates us to investigate more on this topic. Note
that Pitman’s article [23] is closely related to ours but it focuses only on the cardinality of
sumsets of certain finite Beatty sequences in connection with Sturmian words and the nearest
integer algorithm.

Before proceeding further, let us introduce the notation which will be used throughout this
article as follows: x is a real number, a, b, m, n are integers, « = (1 + \/3) /2 is the golden
ratio, 8 = (1 — \/5)/2, Lx ] is the largest integer less than or equal to x, {x} = x — |x],

B(x) ={|lnx||neN} and By(x)={|nx||n>0}. (1.1)

The set B(x) is usually considered as a sequence (|nx]),>1 andis called a Beatty sequence.
The sets B(a) and B(?) are also called lower and upper Wythoff sequences, respectively;
but for our purpose, it is more convenient to consider them as sets. In addition, if P is a
mathematical statement, then the Iverson notation [ P] is defined by

1, if P holds;

[P]= 4
0, otherwise.

Recall that a generalized Fibonacci sequence (f)n>0 is defined by f, = f,—1 + fu—2 for
n > 2 where fo and fj are arbitrary integers. If fy = O-and f1 = 1;then (f;,)n>0 = (Fu)n>0
is the classical Fibonacci sequence, and if fo = 2and f1 = 1, then (f;,)n>0 = (Ln)n>0 1s the
classical sequence of Lucas numbers. The roots of the characteristic polynomial x> — x — 1
for any generalized Fibonacci sequence ( f;,) are o and S, but it turns out that the structures of
sumsets such as B(a)+ B(e?2) and B(a?) + B(a?) are best described in terms of the classical
Fibonacci numbers F,,. We refer the readerto [11,12,19-21,24-26,33] for some recent results
concerning multiplicative properties of F,,, and to [27,28] for certain Diophantine equations
involving additive and multiplicative properties of F,.

In this article, we give a new estimate concerning the fractional part {na} and study the
sumsets associated with B(«) and B(a?). For example, we obtain from Theorems 3.1, 3.5,
and 3.8, respectively, that for every n > 4, n = |aa] + |ba] for some a,b € N, for
everyn > 27, n = Laazj + Lbazj + Lccxzj for some a, b, c € N, and for every n > 1,
n=lax|+ Lbazj for some a, b € Nif and only if # is not one less than a Fibonacci number.
The structure of B(a?) + B(a?) contains some kinds of fractal and palindromic patterns in
each interval of the form [ F},, F},+1]; see for instance Theorems 3.16, 3.17, and Remark 3.19,
and so the elements in (B(Olz) + B(otz)) N [Fu+1, Fr42] can be completely determined by
those of (B(a2) + B(a?)) N [Fy, Fpi1l.

For a general result on the sumsets associated with B(x) and B(x?) where x satisfies the
conditions such as x > 1 and x2 — ax — b = 0 for some a, b € Z, we think that the answers
may be best described in terms of the Lucas sequence of the first kind. Nevertheless, the
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calculations even in the case of B(x) and B(a?) are already complicated, so we postpone
this for future research. See also other problems in the last section.

We arrange this article as follows. In Sect. 2, we give preliminaries and lemmas concerning
the floor function, fractional parts, Beatty sequences, and Fibonacci numbers. In Sect. 3, we
give our main results concerning various sumsets associated with B(«) and B (e?). For more
information, we invite the reader to visit the fourth author’s ResearchGate website [37] for
some freely downloadable articles [22,30-32,34-36] in related topics of research.

2 Preliminaries and lemmas

We often use the following fact: —1 < B < 0, (|8"|)s>1 is strictly decreasing, if
ay > ap > --- > a, are even positive integers, then 0 < g4 < % < ... < % and
if by > by > --- > b, are odd positive integers, then 0 > /3”1 > ,8”2 > > ,3”". In
addition, o and f8 are roots of the equation x> — x — 1 = 0. So, for instance, 82 = 8 + 1 and
B% + B* = 4B + 3. Moreover, it is convenient to have a list of the first twenty elements of
the sequences B(«) and B(a?) as shown below:

B(a)=(1,3,4,6,8,9,11,12, 14, 16,17, 19, 21, 22, 24,25, 27, 29, 30, 32, ...) and
B(a?) = (2,5,7,10,13, 15,18, 20,23, 26,28, 31, 34, 36, 39, 41,44,47,49,52, ...).

The following results are also applied throughout this article sometimes without reference.

Lemma2.1 Forn € Z and x,y € R, the following statements hold.

() [n+x]=n+[x]
(i) {n+x} = {x}.
(i) 0 < {x} < L
LA 1yd, flxt+v < s

(iv) lx+y]= x|+ [yf 1, ifx) +{y) > 1

Proof These are well-known and can be proved easily. For more details, see in [9, Chapter 3].
We also refer the reader to [18] and [35, Proof of Lemma 2.6] for a nice application of these
properties. O

Lemma 2.2 The following statements hold for-all n € N.

(i) (Binet’s formula) F,, = an:ﬂn

a—p °
(ii) B"T! = BFut1 + Fa.
(i) Fys1 = p" + aFy.

Proof The proof of (i) and (ii) can be found in [16, pp. 78-79]. The statement (iii) follows
from (ii) and the fact that 8 = —1. See also [29] for a result concerning the generating
function of the Fibonacci sequence. O

Lemma 2.3 (Zeckendorf’s theorem) For each n € N, n = Fy + Fy, + -+ - + Fy, where
Fg, is the largest Fibonacci number not exceeding n, ag > 2, and a;—1 — a; > 2 for every
i=2,3,...,¢

Proof This is well-known and can be proved by using the greedy algorithm ([40, pp. 108-109]
or [43]). See also [15] for a more general result. O
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Lemma24 Ifxy,x3,...,x, € R, then
{x1 +x2+ -+t = e} + {2} + -+ {xa})

Proof We can write x; +x2 + -+ +x, = m + {x1} + {x2} + --- + {x,}, where m =
lx1] + [x2] + -+ + [x,] € Z. So this lemma follows immediately from Lemma 2.1(ii). O

Lemma 2.5 Let n € N. Then the following statements hold.

(i) LFna] = Fpe1 —[n =0 (mod 2)].
(ii) |Fpe?| = Fypo —[n =0 (mod 2)].
(iii) {Fya} =—p"+[n=0 (mod 2)].
(iv) {Fnaz} = {Fpa}.

Proof By Lemmas 2.2 and 2.1, we obtain | Fya| = | Fyuq1 — B"] = Fpp1 + |—B8"]. If
n is even, then 0 < B" < 1 and so |—8"] = —1. If n is odd, then —1 < B" < 0O
and so |—pB"] = 0. Therefore |—B"| = —[n = 0 (mod 2)]. This implies (i). Then (ii)
follows from (i) by writing o« =« + 1and LFnaZJ = |Fya+ F,] = |[Fya] + F,. Next,
{F,a} = F,a — | F,a], so (iii) can be obtained from (i) and Lemma 2.2. For (iv), we have
{Fpa?} = {Fya + Fy} = {Fual. O

Lemma 2.6 (Beatty’stheorem[1,2]) Let x and y be irrational numbers suchthatx,y > 1 and
1y % = 1. Then B(x) U B(y).= N and B(x) N B(y) = . In particular, B(e) U B(a?) = N

X

and B(a) N B(a?) = 0.

If A = (a,)n>1 is a sequence, then a segment of A is a finite sequence of the form
(ak, ag+1, - - ., ag+m) forsome &, m € N. Then we have the following results.

Lemma 2.7 The following statements hold.

(i) Foreachb e N, | (b+ Da| — |ba] is either 1 or 2.
(i) Foreachb € N, if |(b+ Da| = |ba] =1 then | (b +2)a] — (b + 1] = 2.
(iii) The sequence ([ (b + )a] — |ba])p=1 does not contain the segment (2,2, 2).

Proof Letb € N.By Lemma2.1, |[(b+1)a]—|ba] = [ba+a]—|ba] = |a]or a]+1 =1
or 2. This proves (i). For (ii), suppose that | (b+ 1| —|ba] = 1 = |[(b+2)a| — |[(b+ D).
Then 2 = [(b+2)a] — |ba]| > |2 > 3, whichis a contradiction. For (iii), suppose that
(2,2,2) is a segment of the sequence ([ (b + 1) | — |ba))p>1, that is, there exists b € N
such that

L + Do = [ba] =2, 2.1

L+ 2)a) = (b+ Da] =2, 2.2)

L+ 3)a] — L(b+2)a] =2. (2.3)

Adding (2.1)—(2.3), wehave 6 = [ (b+3)a|—|ba| < [3a]+1 = 5, whichis a contradiction.
O

Lemma 2.8 Let b € N. Then the following statements hold.

() |+ Da?| — |ba?] is either 2 or 3.
(i) If L(b + Da?] — |[ba?]| =2, then |(b+ 2)a%] — (b + Da?]| = 3.
(iii) The sequence (| (b + l)azj — Lbazj )b>1 does not contain the segment (3, 3, 3).

Proof By Lemma 2.1, | (b+ 1)a?| — |ba?| = | (b+ 1)a] — |ba] + 1. Therefore this lemma
is an immediate consequence of Lemma 2.7. O
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3 Main results

In this section, we study various sumsets associated with Wythoff sequences. We begin with
simple cases such as B(«) + B(«) and Bo(«) + B(a).

Theorem 3.1 Let B(«) and Bo() be the sets as defined in (1.1). Then
B(x) + B(ax) = N\{l, 3} and By(a) + B(x) = N.

Proof 1t is easy to check that 1,3 ¢ B(a) + B(«) and 2 = || + || € B(x) + B(w). So
we let n > 4 and show thatn € B(«) + B(«). Let b be the largest positive integer such that
ba <n.Thenb > 2 and |ba| <n < [(b+ 1)a]. By Lemma 2.7(1), n = |ba] + k, where
kiseither 1 or 2. If k = 1, thenn = |ba] + || € B(x) + B(x). So assume that k = 2.
By Lemma 2.7(i), we can divide the proof into two cases. If [ba] — [ (b — )] = 1, then
n=\ba]+2=1[0b-Da]+3=1[0b-Da]+ 2«a].If |ba] — [ (b — )a] = 2, then
n=|ba]+2=|0b—-Dal+4=[(b—-1o]+|3«a].Inany case, we haven € B(x)+ B(x),
as desired. Since 1 and 3 are in Bo(«) + B(«) and B(«) + B(a) € Bo(a) + B(«), we obtain
that Bp(e) + B(a) = N. O

Theorem 3.2 Let B(x) and B(a?) be defined as in (1.1) and n = 3. Then the following

statements hold.

(1) F, € B(w) if and only if n is even.

(ii) F, € B(a?) ifand only if n is odd.
(iii) F, — 1 € B(a) if and only.if n is odd.
(iv) F, — 1 € B(a?) if and only if n is even.

Proof By Lemma 2.5, we have
Fy—{n=0_(mod?2)]=|F;20e’] € B>,
F,—[n=1 (mod?2)]=|F,—1¢] € B(x).

Case 1: n is even. Then by the above equality, we have F;,, — 1 € B(a2) and F,, € B(a).
Then by Lemma 2.6, F,, — 1 ¢ B(x)and F,, ¢ B(a?).

Case 2: n is odd. Then F,; € B(«?) and F, —1 € B(«): Then by Lemma 2.6, F,, ¢ B(«)
and F,, — 1 ¢ B(«?). This implies the desired result. O

The calculation of B(wx) + B(az) is a bit more complicated than B(«x) + B(«) and we
need the following theorem.

Theorem3.3 Letn >3 and 1 <b < F,y1. Ifb # F,, then 0 < {ba} + " < 1. Ifb = F,,
then {ba} + B" = [n =0 (mod 2)].

Proof We use Lemma 2.5 repeatedly without reference. If b = F},, then the result follows
immediately. If b = F,, 11, then {ba} 4+ 8" is equal to

B 4 n+1=0 mod2)]+p" =-p""'+n—1=0 (mod 2)]
= {F_1a} € (0, 1).

Next we consider the case b = Fj for some k € {2,3,...,n — 1}. If k is even and n is odd,
then

1>{ba}>{ba})+ B ' =1—B+B">1-B>+p =1+8>0.
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If k and n are even, then 0 < {ba} + 8" = 1 — ¥ + 8" < 1. Similarly, if k is odd and
niseven, then 0 < {ba} + " = —pF +p" < pr — B3 < B*— B3 = B2 < 1. If k
and n are odd, then 1 > {ba} + " = —pF + B" > 0. Hence this theorem is verified in
the case b = Fy for some k < n + 1. Next, we suppose that Fy < b < Fiy for some
ke {4,5,...,n}. By Lemma 2.3, we can write b = F,, + F,, +--- + F,, where £ > 2,
k=a >a > --->a > 2,andaj_1 —a; > 2foreveryi = 2,3,...,£. Then by
Lemma 2.4, we obtain {bar} = {{F4 o} + {Fy,a} + - + {Fy,a}}, which is equal to

[(1=B" 1P b 1= ) (B0 = 2 == 7).
where {b{, by, ..., b} U{c1,c2,...,¢c5} = {ai,an,...,a¢}, b1, bo, ..., b, are even, and
c1,ca,...,cg are odd.
Remark that one of the sets {b1, b2, ..., b}, {c1, c2, ..., cs} may be empty. In that case,

such the set disappears from the subsequent calculation. Also, for convenience, we let
A=pbr 4 b2 4. 4 BPr 4B 4 B2 4. 4 . Then by Lemma 2.1, {ba} = {—A}.

Case1: {by, by, ..., b }isempty. Then A = S+ B2+ ...+ B > B34 B+ ... =
3

lfﬁz = —PB2. Therefore 0 < —A < B2 < landso {ba} = {—A} = —A — |—A] = —A.

Then

(ba}+ 8" < B>+ B <B>+B*=4p+3 <.

It remains to show that {ba} + 8" > 0. If n_is even, then obviously {ba} + " > 0. So
assume that n is odd. Since {b, b7, ..., b} is empty, we see that a; is odd and —A > — g1,
Therefore {ba} + " > —B% 4 " > 0, as required.

Case2: {c1, ¢, ..., cs)isempty. Then A = B0t 4 B2 4 Bbr < B2 4 B4+ B0 ... =
2

IEW = —f. In addition, a1 is even and A > B!, Therefore —* > —A > B > —1 and so

{ba} = {—A} = 1—-A.Then {ba}+p" <1 -4+ p" < l,and {ba}+ 8" > 1+ B+ " >

1+8+8=38+2>0.

Case 3: {b1, b2, ..., b} and {cy, ¢z, . .., ¢y} are not empty. Then there is some cancellation
in the sum defining A. Similar to Case 1 and Case 2, we have A < ﬂbl +ﬁb2 +o B < —B
and A > B + B2 4 ... FBS = —B2.

Case 3.1: A is positive. Then =1 < < —A < 0and {ba}+p" =1 —A+B". Soit suffices
toshow that 8" < A < 1+p".Since A < —B, weobtain A—p" < —f—p> = —38—1 < 1,
which implies A < 1+8". So it remains to show that A > g". If nisodd, then A > 0 > B".
So suppose that n is even. Let u be the smallest even number among {by, b2, ..., b,} and v
the smallest odd number among {cy, ¢2, .-+, ¢s}- Since a; —a;—1 > 2foralli =2,3,...,¢
anda; = k < n,weobtainu < n and |v — u| > 3. Then

/3“</3b1+ﬂ”2+---+ﬂb’<ﬂ“+ﬂ“+2+ﬂ“+4+'”=1fﬁ2=—ﬂ”‘], (3.1)
BY > B4 B . B >,3U+,3v+2+/3v+4+"': ]fﬁZ :—ﬂvil. 3.2)

By (3.1) and (3.2), we obtain % — V=1 < A < ¥ — B*~!. Since |[v — u| > 3, we see
that either v — u > 3 or v — u < —3. Suppose for a contradiction that v — u < —3. Since
v < u — 3 and both v and u — 3 are odd, we have B? < B*=3. S0 A < pg«=3 — pu-1 =
B473(1 — B2) = —B*~2 < 0, which contradicts the assumption that A is positive. Hence
v—u >3.Sincev—1>u-+2andbothv —1 andu—}-Zareeven,ﬂ”’l < ,8”*2.80
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A> gt —pgut2 = g1 — g2) = —g*t Wehaveu < v—3 < a; —3 < n — 3. Therefore
—putl = |g|“*+! > |B|" = B". Therefore A > ", as desired.

Case 3.2: A is negative. Then 0 < —A < g2 < 1 and
(ba} + " = (A} + " = A+ " < B2+ " < B2+ B =4 +3 < 1.

To show that {ba} 4+ 8" > 0, it is enough to show that " > A.If n is even, then obviously
B" > 0 > A. So assume that n is odd. Let # and v be as in Case 3.1. Then we obtain u < n,
v — u| > 3, the inequalities in (3.1) and (3.2) hold, and g* — Bl < A < —prl 4 Y.
Again, we have either v —u > 3 or v —u < —3. Suppose for a contradiction that v —u > 3.
Following the argument in Case 3.1, we obtain A > g% — gv=! > —g#+l > 0, which
contradicts the assumption that A is negative. Therefore v — u < —3. Then A < —pg*~! +

Y < —pu~l 4 g3 = —B“=2. Since u — 2 < n, u is even, and n is odd, we obtain
—p4=2 = —|B|“"2 < —|B|" = B". Therefore A < p", as desired. Hence the proof is
complete. O

Corollary 3.4 Foreachn > 3 and 1| <b < F,41, we have

Fpy1 = [(Fy —b)a] + [ba) + 1 =38 and Fyys = | (Fy — b)&?] + |ba®| +1 -8,
where § = [n =1 (mod 2)][b = F,].
Proof Letn > 3 and 1 < b < F,y1. If b = F,, then we obtain by Lemma 2.5 that
L(Fy —D)a]+ba]+1—-6=Fyy1—[n=0 (mod 2)]+ 1 —[n=1 (mod 2)] = Fy41.

So suppose b # F,. Then § = 0 and we obtain by Lemmas 2.1, 2.2 and Theorem 3.3,
respectively, that [ (F,, —b) o] + |ba) + 1= § is equal to

LFnot — ba + [ba] + 1] = [ Fug1 = B = {ba} + 1] = Fypi+ 11 —{ba} — B" ] = Fyy1.
This proves the first equality. By writing &> = « + 1 and applying Lemma 2.1, we see that
L(Fp —b)a? |+ [ba? | +1— 68 = [(Fy — bya] + |ba| +1— 8+ F, = Fyi.

[}

Theorem 3.5 Let B(w), By(a), B(a?), and Bo(a?) be the sets as defined in (1.1). Then we
have

(i) B(@) + B (¢?) =N\{F, — 1 |n >3},
(ii) Bo() + B («?) = N\{F, — 1'|.n = 3and n is odd}, and
(iii)) B(a) + Bo (az) =N\ {F, — 1| n>3andniseven}.

Proof We first show that B(a) + B (¢?) € N\ {F, —1|n > 3}. It is easy to check that
F3—1,F4—1¢ B(a)+ B (¢?).Soletn > 5.In order to get a contradiction, suppose F, — 1
isin B(a) + B (¢?). Then F,, — 1 = |ba] + |aa?] for some a, b € N.If b > F,_j, then
we obtain by Lemma 2.5 that

lbar| + |ao?| > [Fy_ia) + || = Fy—[n=1 (mod2)]+2> F, — 1,

which is not in case. So b < F,_;. Replacing n by n — 1 in Corollary 3.4, we have Laazj =
F, — 1 — |ba] = [(Fy—1 —b)a| € B(), so |aa®| € B() N B(a?), which contradicts
Lemma 2.6. Therefore F,, — 1 ¢ B(«)+ B(«?) forany n > 3. This shows that B(«) + B(«?)
is a subset of N\{F,, — 1 | n > 3}. For the other direction, letm € N\ {F,, — 1 | n > 3}. Then
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there exists n € Nsuchthatn > 3and F,, — 1 <m < Fy41 — 1. Thusm = F, — 1+ b
where 1 < b < F,,_1. By Corollary 3.4, we obtain m = |[(F,—1 —b)a] + [ba] +b =
|(Fu—1 — b)) + |ba?] € B(ar) + B (o). This proves (i). Next By(e) + B (@*) = (B(a) +
B(@?)UB(a?) = N\{F, — 1| n > 3 and n is odd}, by (i) and Theorem 3.2. Similarly, (iii)
can be obtained by using (i) and Theorem 3.2. This completes the proof. m|

Remark 3.6 1t follows immediately from Beatty’s theorem that By(«) + By (o) = N.
Theorem 3.7 Let B(), By(a), B(«?), and By(a?) be defined as in (1.1). Then the following
statements hold.

(i) B(a)+ B (o? ) ( 2) =N\{1,2,3,4,6,9).

(i) Bo(a) + B («?) + B («?) = N\{1,2, 3,6}
(i) B(a)+ B (o) + By () = N\{1, 2,4}.
(iv) B(a) + By () + Bo () = N\{2}.

Proof We can write Theorem 3.5 in another form as

B(@) + B@) = | (Fy = L Fayr =D Ny = (| ([Fas Far1 —2] NN).
n=4 n=4

Then B(a) + B(@?) + [ | = Uy ([Fa +2, Fas1] NN) = N\A, where A = {F, +1 |
n > 5}U{1,2,3,4}. Similarly, B(e) + B(a?) + | 20> | = N\B where B = {F,, +4 | m >
2} U{l, 2, 3, 4}. Therefore N\(A N B) = (N\A) U (N\B) C B(a) + B(a?) + B(a?). It is
easy to see that
ANB=({F+1|n=5IN{F,+4]|m=2})U{l,2,3,4}
={Fp+Lin=T0{F +41m 2 6})U{l1,2,3,4,6,9}.

Ifn>7,m>6,and F, + 1 = F,, + 4, thenn >mand3 =F, — F, > F, — F,_| =
F,—» > 5, which s a contradiction. So {F,, + 1 | n > T} N {F,, +4 | m > 6} = (. Therefore
ANB ={1,2,3,4,6,9}and thus N\ {1, 2, 3, 4,6, 9} € B()+ B(a?) + B(a?). Itis easy to
check that 1,2,3,4,6,9 ¢ B(x)+ B(o%) + B(a?). This proves (i). The other parts follows
from (i) and a straightforward verification. O

The structure of B (e®) + B () seems to be the most complicated among sumsets
associated with B(e) and B(a?). So we first consider a simpler sumset B («?) + B (a?) +
B (az).

Theorem 3.8 Let B(«?) and Bo(c%) be defined as.in (1.1). Then we have
B (o?) + B («?) + B (¢?) = N\{1,2,3,4,5,7,8, 10, 13, 18, 26},
By (¢?) + B («?) + B (¢?) = N\{1,2,3,5,8, 13},
By () + By («?) + B («?) = N\{1,3,8}.
Proof Let A| = [4a?| + [60%] + B (¢?), Ay = |50%] + |5¢2] + B («?), and A3 =
[3c%] + [8a?] + B (o). We first show that A; U Ay U A3 = {n € N | n > 27}. Note that
[3a?], |4a?], |5a?], |60%], |82 ] are equal to 7, 10, 13, 15, 20, respectively. Then it is easy

to see that every element in A; U Ay U A3 is larger than or equal to 27. Next, let n > 27.
Then there exists k € N such that

[4a?] + [6a2] + [ka?] <n < |40?] + |602] + [k + Da?].
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ByLemma2.8, we have | (k+1)a? | —[ka?] = 20r3,andson = |4a? |+ 62|+ [ka? |+,
whereb =0, 1or2.Ifb = 0,thenn € A;.If b = 1, thenn = |4a?| + |60? | + [ka? |+ 1 =
502 |+ [502 | + |ka? | € A,. Similarly, if b = 2,thenn = [30%] + |82 ] + [ka?] € A3.In
any case, n € AjUAyU A3, as required. This implies that B (az) +B (az) +B (az) contains
NN[27, 0o). For the integers in NN [1, 26], we can straightforwardly check whether they are
in B (az) + B (az) +B (az) or not. For the reader’s convenience, we give the integers which
arein B () + B (o) + B () as follows: 6 =2+2+2,9=5+2+2,11=7+2+2,
12=54+5+2,14=104+2+2,15=54+54+5,16=7+7+2,17T=T4+54+35,
9=15+2+2,20=10+5+5,21=7+7+7,22=184+2+2,23 =13 +5+35,
24 =20+2 42,25 = 15+ 5+ 5. This proves the first part. The other parts follow from
the first part and straightforward verification. O

In order to prove Theorem 3.10, it is convenient to use the following observation.

Lemma3.9 Letn >3,a € Z,andb,c e N If F,, +a = Lbotzj + LcaZJ, then b and c are
less than F,_» + ;—2

Proof If borc > F,,_p + ﬁ, then |_ba2J + |_ca2J is larger than or equal to
| Foso® +a| +|a?| =F—[n=0 (mod 2)] +a+2>F,+a.
O

The positive integers in N\ (B (¢*) + B («?)) are 1,2, 3,5, 6,8, 11, 13, 16, 19, 21, 24,
29, 32, 34,37, 42, 45, 50, 53,55, . . .. From this, we notice the following pattern.

Theorem 3.10 Let n '€ N and B(a?) the Beatty set as defined in (1.1). Then the following
statements hold.
(i) Fy ¢ B(a?) + B(@?).
(i) Ifn =5, then Fy— 1 & B(@?) + B(a?).
(i) Ifn # 1,2,3,5, then F, +1 € B(a®) + B(a?).
(iv) F, —2 ¢ B(a?) + B(a?).
) Ifn #1,2,4, then F, +2 € B(a?) + B(a?).
(vi) Ifn > 17, then F, — 3 € B(a®) + B(a?).
(vil) Ifn > 3, then F, + 3 ¢ B(a?) + B(a?).

Proof For n < 6, the result is easily checked. So we assume throughout that n > 7. For (i),
suppose for a contradiction that Fy-€ B(e®) + B(a?). Then F, = | ba* | + | ca? | for some
a,b € N. By Lemma 3.9, b and c are less than F,,_,. By Corollary 3.4,

|co? | = | (Fyz — b)o? | = F, — |ba? | — | (Fyz — b)a? | = 1.

But by Lemma 2.8, we know that the difference between the elements in B(a?) is at least
two. So we obtain a contradiction. This proves (i). The statements (ii), (iii), (v), and (vi) also
follow from applications of Corollary 3.4 as follows:

Fp—1=[(Fa—a* |+ o] € B@®) + B,
Fy+1=[(Fuoa—2)a*| + [22%] +2

= [(Fu—z — 2)0? | + |3a?| € B(@?) + B(@?),
Fo+2=|(Fpe2— D& | + & | +3
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= [(Fu2 — De?] + [207| € B(a?) + B(@?),
Fy =3 =|(Fyo2—3)*| +|3e?] -2
= [ (Fu—z — 3)a? | + |22% | € B(@?) + B(a?).

So it remains to prove (iv) and (vii). Similar to the proof of (i), if F,, — 2 = | ba® | + | ca? |,
thenwe have b, ¢ < Fya— 5, Fy = | (Fy—2 — b)a? |+ [ba® | +1,and | (F,— — b)a* | —
|ca? | = | (Fu—2 — b)a? | — (F, —2—| ba? |) = 1, which contradicts Lemma 2.8. For (vii),
suppose that F, + 3 = |ba? | 4 | ca?| for some b, ¢ € N. Then by Lemma 3.9, b and ¢
< Fpa+ 2 < Fyr.Ifbandc = F, o, then F, +3 = | ba* | + |ca?| = 2F, —2[n =0
(mod 2)], which leads to F; < F, = 3+ 2[n = 0 (mod 2)] < 5, a contradiction. So
one of b, ¢ is not equal to F,,_». Without loss of generality, assume that b # F,_;. So we
can apply Corollary 3.4 and follow the same idea to obtain |ca® | — | (Fy—2 — b)a? | = 4.
By Lemma 2.8(i), the difference between consecutive terms in B(a?) is either 2 or 3. So
there are k,r € N U {0} such that 4 = 2k + 3r. If r > 2,then 2k +3r > 4. If r = 1,
then 2k 4+ 3r = 2k + 3 # 4. Sor = Oand k = 2. This implies that c = F,,_» — b + 2,
|ca?| — | (c = Da? | = [ (c = Da?| — | (c — 2)a? | = 2, which contradicts Lemma 2.8(ii).
So the proof is complete. O

Our next goal is to determine completely the integers a such that F; +a € B(a?) + B(a?).
The reader will see that there is a recurrence and fractal-like behavior involving those integers.

Lemma3.11 Letn > 5, a € Z, and Fy + a ¢ B(a?) + B(a?) where B(a?) is the set as
defined in (1.1). Then the following statements hold.

(i) For every integer d € [—F;_3,0) U (0, F,,_»), we have a + 1 + LdOlZJ ¢ B(a?).
(i) a+1—[n=1 (mod2)]¢ B(a?).

Proof Let1 < b < F,—yanddp = [n =1 (mod 2)][b = F,,_3]. By Corollary 3.4, we have
Fp4a=|(Fma—b?| +a+1—38,+ |ba?|. Since F, +a ¢ B(a?) + B(e?) and
LboﬂJ € B(a?), we see that

[(Fuoa = b)e? | +a+1=6, ¢ Bl (3.3)
Since (3.3) holds for all b < F,_1, we can substitute » = F,_, in (3.3) to obtain (ii).
Similarly, by running b over the integers in [1, F,—2) U (F,,—2, Fj,—1], we obtain (i). m]

Suppose n > 5 and the integers in [F,,, Fj41] N (B(a?) + B(a?)) are given. Then the next
theorem gives us some integers in [F,1, F,42] N (B(a?) + B(a?)).

Theorem 3.12 Let B(a?) be the set as definedin (1.1). Letn > 5,a € Z,and1 < a < F,—2.
If F, +a € B(@?) + B(a?), then Foy1 +a € B(a?) + B(a?).

Proof Ifn = 5, the result is easily checked. So assume thatn > 6. Suppose for a contradiction
that F, + a € B(a?) + B(a?) but F,, .1 +a ¢ B(a?) + B(a?). By applying Lemma 3.11 to
F,+1 + a, we obtain that

a+1+|do?| ¢ B(e?) for0 <d < F,_y. (3.4)

Since F, +a € B(a?)+ B(a?), there are b, ¢ € Nsuch that F, +a = |ba? | +|ca?|.Ifb <
Fy—», then by Corollary 3.4,a+ 1+ | (Fy—» — b)a* | = F,+a—|ba? | = |ca?| € B(a?),
which contradicts (3.4). Therefore b > F,,_,. Similarly, by applying the same argument to
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c,weobtainc > F,_». Then F,, + a = |_ba2J + I_axzj >2 |_F,,_zoc2J =2(F,—[n=0
(mod 2)]), which implies a > F, — 2[n = 0 (mod 2)] contradicting the assumption that
a < F, — 2. Hence the proof is complete. O

Remark 3.13 Let n > 4. By Lemma 2.5, we have F,_3a? = F,_; — " 3. So fora € Z,
the condition a < F,_; —[n = 1 (mod 2)] is equivalent to a < F,_3a?. We will use this
observation later.

To obtain the converse of Theorem 3.12, we first prove the following lemma.

Lemma 3.14 Let B(a?) be the Beatty set as defined in (1.1), n > 5, a,b,c € N, and
1 <a < F,_30?. Suppose F, +a ¢ B(a?) + B(a?) and Foi1+a= Lbazj + LcaZJ. Then
one of b, c is equal to F,,_ and the other, say c, satisfying LcaZJ =a+[n=1 (mod 2)].

Proof Suppose for a contradiction that both 4 and ¢ are not equal to F,,_1. Since Fj,+1 +a =
|ba? | + | ca? |, we obtain by Lemma 3.9 that both b and c are less than F,,_; + & < Fy.
So we can apply Corollary 3.4 to write

Fup1 +a= [(Fui — b)o? | + |ba® | + 1 +a,
For14a= I_(Fn_1 — c)oc2J + |_CO(2J +1+a.

Since F, +a ¢ B(o?) +B(e?) and a + 1 + | (Fy—y = b)a?| = Fuq1 +a — [be?] =
|ca? | € B(a?), weobtain by Lemma3.11 that F,,_ —b ¢ [—F,~3, 0)U(0, F,_»). Therefore
F,1—-b>F, »,F,_1—b=0,orF,_—b < —F,_3.Thenb < F,,_30rb > F,_1+F,_3.
Applying the above argument to a + 1+ |_(F,,_1 I- c)a2J = |_b012J € B(a?), we also
obtain ¢ < F,_3 or ¢ > F,_1 4+ F,—3. Recall that b and ¢ < F,_1 + 5—2 So if b or

¢ > Fy—1 + Fyy3, then we would obtain F, | + -5 > F,1 + F,_3, which contradicts the
assumption that a < F,_3a*. Hence b and ¢ < F,—3. Then Fyy 1 +a = |ba? | + |ca? | <
2| Fu—30?| < 2F,) < Fy41 + a, which is a contradiction. Thus b or c is equal to F,_;.
If b= F,_y, then Fypy +a = | Fo10? |+ |ca? | = Fopr= [n=1 (mod 2)] + |ca? ],
and so |_ca2J =a+[n =1 (mod 2)]. Similarly, if ¢ = F,_1, then |_boc2J =a+[n=1
(mod 2)]. This completes the proof. m]

Lemma 3.15 Let B(c?) be the setasdefinedin(1.1),n>6and1 <a < Fy3a?. IfFy_1+a
and F, + a are-not in B(a?) + B(a?), then Foir+a¢ B(a?) + B(a?).

Proof Suppose for a contradiction that F,,_| + a and F,; + a are not in B(az) + B(az) but
Fyt1+a € B(e?) + B(a®). Then there are b, ¢ € N such that Fy ) +a = |ba? | + | ca? |.
By Lemma 3.14, we can assume thatb = F,,_; and

lce’| =a+[n=1 (mod2)]. (3.5)
But by applying Lemma 3.11 to the case F,_; +a ¢ B(«?) + B(«?), we obtain that
a+1—[n—1=1 (mod?2)]¢ B(az), or equivalently,
a+[n=1 (mod?2)]¢ B>,
which contradicts (3.5). So the proof is complete. O

Suppose n > 6 and the integers in [F;, Fy+1] N (B(a?) + B(a?)) are given. Then the next
theorem gives us more than a half of the integers in and outside the set

[Fus1, Fni2l N (B(@?) + B(a?)). (3.6)
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Theorem 3.16 Let B(az) be the Beatty set as defined in (1.1),n > 6,a € Z, and 0 < a <
F,_1—2. Then

F,4+ace B(otz) + B(a?) ifand only if Fy41+a € B(az) + B(az).

Proof If a = 0, the result follows from Theorem 3.10. So assume that @ > 1. By The-
orem 3.12, we only need to prove the converse. Assume that F,, + a ¢ B(a?) + B(a?).
Then we obtain by Theorem 3.12 that F,, | + a ¢ B(a?) + B(a?). Then by Lemma 3.15,
Foi ¢ B(a?) + B(a?). So the proof is complete. O

The next theorem gives the remaining integers in (3.6).

Theorem 3.17 Let B(a?) be the set as definedin (1.1),n >6,a € Z, and0 < a < F,_| —
[n=1 (mod 2)]. Then F,+a € B(a®)+B(a?) ifand only if Fy41 —2—a € B(a?)+B(a?).

Proof If a = 0, the result follows from Theorem 3.10. So assume that a > 1. Suppose
F,+a € B(a®) + B(a?) but F, 1 —2 —a ¢ B(a?) + B(a?). By applying Lemma 3.11 to
Fo4+1 — 2 — a, we obtain that

—a— 1+ |da?| ¢ B@? ford € [=F,_3,0) U (0, F,_y). (3.7)

Since F, +a € B(a?) + B(e?), there are b, ¢ € N such that F, +a = |ba? | + | ca?].
Then by Lemma 3.9, b and ¢ < F,,_» + % Recall also from Remark 3.13 that a < F,_3a?2.
If b < F,_», then by Corollary 3.4 and the fact given in (3.7), we obtain, respectively,
—a—1+|ca®| = F, =1 —|ba%| = |(Fy—» — b)o*| € B(a?), and ¢ > F,_y, which
contradicts the fact that ¢ < F,_» + O% So b > F,_5. Similarly, applying the above
argument to ¢, we have ¢ > F,_5. Then F, +a = Lboczj + Lba2J > 2 LFn,gazj >
2F, —2 > F, + a, which is a contradiction. Hence the first part of this theorem is proved.

For the converse, we also suppose for a contradiction that ;41 —2 —a € B(a?)+ B(a?)
but F,+a ¢ B(e?)+ B(a?). Thenthereare b, ¢ € Nsuchthat Fy 1 —2—a = |ba* |+ | ca? |
and by Lemma 3.11,

a+1+|do*] ¢ B(a?) ford € [~ F;—3,0) U (0, F, ). (3.8)

By Lemma 3.9, b and ¢ < F,_1 — “—;@2 < Fy—1. Then by Corollary 3.4, we obtain

Fust — 2 =a = |[(Fy—1 — bya*| + |ba? | = a—1,

whichimpliesa+1+|ca?| = | (Fy—; — b)a®| € B(a?).Soby(3.8),¢ > F,_>.By the same
argument, b > F,_,. Therefore F, 41 =2 —a = |ba® | + [ca? | = 2| Fy0a?| = 2F, -2,
which implies a < F,,_; — F,, < 0,acontradiction. Hence the proof is complete. O

Theorems 3.10, 3.16, and 3.17 give a complete description of B (?)+ B(a?). We illustrate
this in Example 3.18 and Theorem 3.20 as follows.

Example 3.18 For convenience, if A C N, we write A€ to denote the complement of A in N.
That is A° = N\A. By direct calculation, the elements in (B(e?) + B(a?))¢ N [1, Fo] are
1,2,3,5,6, 8,11, 13, 16, 19, 21, 24, 29, 32, 34. To determine the elements in [Fy, Fio] N
(B(a?) + B(?))¢, we first observe that for 0 < a < Fy,

Fs +a ¢ B(e®) + B(a?) ifand only if a € {0, 3, 8, 11, 13}.
Applying Theorem 3.16 for n = 8, we obtain that for 0 < a < F7 — 2,
Fo+a ¢ B(e®) + B(a?) if and only if a € {0, 3, 8}.
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Applying Theorem 3.17 for n = 9, we obtain that for0 < a < F; — 2,
Fio—2—a ¢ B(a?) + B(a?) if and only if a € {0, 3, 8}.

In addition, Fyg ¢ B(a?) + B(a?) by Theorem 3.10. The length of the interval [ Fy, Fio] is
Fio — F9 = Fg which is less than 2( F7 — 2). Therefore the elements in (B (%) + B(a?))° N
[Foy, Fio] are completely determined. They are Fo, Fo + 3, Fo + 8, Fio — 10, Fio — 5, Fio —
2, Fio, which are 34, 37,42, 45,50, 53, 55. By doing this process repeatedly, we obtain
(B(az) + B(az))c N A where A = [Fio, F11l, [Fi1, F12], [ F12, F13], and so on. Thus we
can find (B(a?) + B(a?)) N[1, F,] for any given .

Remark 3.19 In the abstract and introduction, we mention that the structure of the set X =:
B(a?) + B(a?) has some kinds of fractal and palindromic patterns. This is not intended
to be a precise or mathematically rigorous statement. What we (vaguely) means is that the
distribution of the elements of X in the interval [F},, F;+1] looks like fractal for all n > 6.
Suppose we display the points of X N[F, 41, Fy,42] on the real line and zoom in for a smaller
scale, namely, X N [F,+1, Fyr1 + F,—1 — 3]. Then, by Theorem 3.16, the picture (in a
smaller scale) is the same as that of X N[F},, F,,+1]. Then by Theorem 3.16 again, the picture
(in a smaller scale) of X N [F,42, F4+3] is the same as that of X N [F,41, F,42]. Since
Theorem 3.16 holds for all » > 6, we can continue this process and see the distribution of the
elements of X on [F,, F+1l, [Fu+1, Fatals [Fnt2, Fnt3], and so on, as fractal-like pattern.
See the figure shown below for an illustration.

For the palindromicity, recall that a positive integer n can be written uniquely in the
decimal expansion as

n = (agag—1...ag)0 = akl()k + ak_ll()k_l +- -+ ao,

where a; # 0and 0 < q; < 9 foralli, andn is called a palindrome or a palindromic number
ifap_; = a; forQ <i < |k/2].So if nis a palindrome and we know the values of ax_; only
for 0 < i < |k/2], then we can completely find all the decimal digits of n. Now suppose
n > 6 and the elements of X N [F,,, F;+1] are known. We can divide [F, 1, Fj,+2] into two
overlapped intervals:

the left-hand interval L =: [F, i1, Fy1 + Fi1 — 3]

the right-hand interval R =: [Fq0 — F—1 — 1, Fp40].
By Theorem 3.16, X N L is completely determined by X N [F;,, F,,+1]. Theorem 3.17 gives
us the palindromic pattern which helps us obtain all elements in R from L. Hence we can

basically says that for all n > 6, the distribution of points in X N[ F},+1, Fy,42] are completely
determined by that of X N [F;,, F;,11] by the fractal-like and palindromic patterns.

Fn Fn+1
Fn+1 Fn+2
Fn+2 Fn+3

In general, we have the following result.

Theorem 3.20 Let B(a?) be the set as defined in (1.1). For eachn € N, let A, = {a €
Z|0<a<F,_and F, +a ¢ B(a®) + B(a®)}. Then A; = {0}, Ay = A3 = {0, 1},
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Ay =1{0,2}, As = {0, 1, 3}, A¢ = {0, 3,5}, A7 = {0, 3,6, 8}, and for n > 8§, the set A, is
the disjoint union

An = (An—l\{Fn—Zv Fy— 2})
U{F,_.1—2—al aeA,_1and0<a < F, 3}U{F,_1}.

Proof The set Ay, A», ..., A7 can be obtained by direct calculation. So assume that n > 8.
Since Fy,+F,_1 = Fpy1 ¢ B(@?)+B(a?), Fy_1 € A,.Thenwe write A, = CUBU{F,_},
where C = A, N[0, F,_» —2)and B = A, N[F,—2 — 2, F,_1). Obviously, the sets C, B,
and {F,_1} are disjoint. So it remains to show that

C=A, 1\{Fh2, Fy2—2} and (3.9
B={F,_1—2—a|aecA,and0 <a < F,_3}. (3.10)

To prove (3.9),leta € C. Then0 <a < F,-2»—2and F,, +a ¢ B(az) + B(a?). Applying
Theorem 3.16, we obtain F,_| 4+ a ¢ B(e?)+ B(@?). Soa € Ay_1\{Fu_2, Fu_o — 2}.
Conversely, suppose thata € A, \{F;—-2, F,—2—2}.Thena € [0, F,—» —2) U{F,,_» — 1}
and F,_1 +a ¢ B(a?) + B(@?). Ifa = F,_» — 1, then we obtain by Theorem 3.10 that
F,_14+a=F,—-1c¢€ B(ozz) 4 B(az), which is not the case. So 0 < a < F,_» —2.1In
addition, by Theorem 3.16, F; 4+ a ¢ B(a?) + B(a?). Hence a € Ay N[0, F,_r —2) = C.
This proves (3.9).

Next,leth € B.Then F, ~2 < b < F,_yand F,4+b ¢ B(a®)+B(a?).1fb = F,_;—1,
then we obtain by Theorem 3.10 that F,, +b = F,.1 — 1 € B(a?) + B(a?), which is not the
case.Sob < F,,_1—2.Leta = F,_1—2—b.Thenb = F, 1—2—aand0 < a < F,_3.Soit
remains to show thata € A, _1. Since F,, + b ¢ B(ozz) + B(ozz), we obtain by Theorem 3.17
that F, +a = Fypp— 2 = (Fy_y —2—a) = Fyy1 —2—0b ¢ B(a?) + B(e?). Since
F,+a ¢ B(a?) + B(a?), we obtain by Theorem 3.16 that F,,_{ + a ¢ B(a?) + B(@?). So
a € A,_1, as required.

Finally, suppose b = F,_1 —2—awherea € A,_rand0 <a < F,,_3.Then F,,_», —2 <
b< F,_1.Sincea € Ay, Fp_1 +a ¢ B(Otz) + B(az). Then by Theorem 3.16, F,, +a ¢
B(a?)+ B (ar®). Applying Theorem 3.17, we obtain Fy+b = Fy1 —2—a ¢ B(@?)+ B(a?).
Sobe A, N[F,—2 —2, F,—1) = B, as desired. This completes the proof. O

Some possible questions for future research are-as follows.

Questions Q1 Let (f,) be a kth order linear recurrence sequence defined by

fo=Ja—1+ fo2+- -+ fui forn=>2

with the initial values f_(—2), f—k-3),--., fo, /i € Z. Let a be the root of the charac-
teristic polynomial x* — x¥=1 — x¥=2 — ... — | with maximal absolute value. Can we
described the structure of the sumsets associated with B(a), B(a?), ..., B(a*)? Is the

structure best described in terms of the k-step Fibonacci sequence (F,Ek)) defined by the
same recurrence as ( f;;) but with the initial values

F© F®

— _ _ k) _ gk _ (k) _
7(1{72)— 7(k73)—"'—F71—F0 —OandFl —1?

Q2 Leta = (1 +\/§)/2. Since a2 —a—1 = 0, the set {«2, &, 1} isnot linearly independent
over Q. Suppose {ozk okl a, 1} is linearly independent over Q, for example, « is
an algebraic number of degree larger than k, « = e, or « = 7, can we describe the
structure of the sumsets associated with B(a¥), B(a*¥™1), ..., B(®)?
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Q3 Leta,b € Z, (a,b) = 1, b # 0, and let (u,) be the Lucas sequence of the first kind
defined by u, = au,—1 + bu,_» forn > 2 with ug = 0 and u; = 1. Let o be the root
of the characteristic polynomial x> — ax — b. Is the structure of the sumsets associated
with B(a) and B(e?) connected to (i,)?
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Abstract

Let a be the golden ratio and Sa = —1. In the study of sumsets
associated with Wythoff sequences, it is important to prove the in-
equality 0 < {ba} 4 " < 1 for integers b and n in a certain range. In
this article, we continue the investigation by replacing {ba} + ™ by

V58" = {ba}.

1 Introduction

Wythoff sequences arise very often in combinatorics and combinatorial game
theory. As a result, many of their combinatorial properties have been ex-
tensively studied (see, for example, the works of Fraenkel [1, 2], Kimberling
[5], Pitman [8], and Wythoff [10]). However, as far as we know, there are
only a few number theoretic results concerning the sumsets associated with
Wythoff sequences. In order to describe the structure of such sumsets, it is
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important to prove the inequality [4, Theorem 3.3]:

0 < {ba}+ " < 1for all integers n > 5 and 1 < b < F, 1 with b # F,.

(1.1)
Here and throughout this article, o = (1 +1/5)/2 is the golden ratio, Sa =
—1, x is a real number, a, b, m, n are integers, |z| is the largest integer
less than or equal to =, {z} = z — |z|, F, and L,, are the nth Fibonacci
number and the nth Lucas number which are defined by F,, = F,,_1 + F,,_o,
L, =L, 1+ L,_5 for n > 2 with the initial values F, =0, F}, =1, Ly = 2,
and L; = 1. Moreover, if P is a mathematical statement, then the Iverson
notation [P] is defined by

1, if P holds;
[P] = :
0, otherwise.

In this article, we replace {ba} + 8% in (1.1) by V58" ! — {ba}. Our
interest is that we have an application in mind. Indeed, it is useful in the
study of sumsets associated with Wythoff sequences and Lucas numbers.
For a short discussion on the sumsets associated with some Beatty sequences
generated by a real number 2 > 1 with > —ax —b = 0 for some a,b € Z see
the last section of [4].

2 Preliminaries and Lemmas

We often use the following facts:

Let —1 < 8 < 0 and (|8"|)n>1 is strictly decreasing. If a; > as > - -+ > a, are
even positive integers, then 0 < ™ < % < --- < % . If by > by > -+ > b,
are odd positive integers, then 0 > 3% > g2 > ... > gbr,

In addition, let a and 3 are roots of the equation z> — x — 1 = 0. So, for
instance, aff = —1, B> = B+ 1, VB8 + 5 = =2, V5% + 1 = —34, and
B+ /5B + g2 =0 for all n > 2.

Moreover, it is useful to have the following numerical approximations:
—0.619 < B < —0.618, —0.237 < 3° < —0.236, 0.854 < /53> < 0.855,
—0.528 < /5% < —0.527, 0.326 < /55* < 0.327.

The following results are also applied throughout this article sometimes with-
out reference.

Lemma 2.1. Forn € Z and x,y € R, the following statements hold:

i) |In+z]=n+|z].
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(i) {n+z}={z}.

(iii) 0 < {z} < 1.

2] + |yl if {z} +{y} < 1;
2] + [y + 1, if {z} A {y} > 1.

Proof. These are well-known and can be proved easily. For more details, see
[3, Chapter 3]. We also refer the reader to [7] and [9, Proof of Lemma 2.6]
for a nice application of these properties. O

(iv) [z +y] = {

Lemma 2.2. The following statements hold for all n.e NU{0} :
(i) (Binet’s formula) L, =a" 4 ™.
(ii) BLpy1 + L, = —V/53"F.
(iit) Lo = Lyyi 4+ V/56™

Proof. The formula (i) is well-known. Multiplying (ii) by «, we obtain (iii).
The formula (ii) follows a straightforward calculation:
BL,y1+ Ly is equal to

5an+1 +5n+2 +am +ﬁn - ﬁn+2 +ﬁn N ﬁn(_ﬂﬁ) _ _\/gﬁnJrl.
U

Lemma 2.3. (Zeckendorf’s theorem [11]) For eachn € N, n = F, + F,, +
-+ Fy, where F,, is the largest Fibonacci number not exceeding n, a;—1—a; >
2 for everyi=2,3,...,¢, and a; > 2.

Proof. This is well-known and can be proved by using the greedy algorithm.
See also [6] for a more general result. O

Lemma 2.4. [4, Lemma 2.4] If 1,9, ...,x, € R, then
{r1+xo+ - +a,}={{o} + {2} + -+ {z.}}
Lemma 2.5. Let n > 2. Then the following statements hold:
(i) [Frnal = Fuy1—[n=0 (mod 2)].
(ii) |Fno?] = Fuia— [n=0 (mod 2)].
(iii) {F,a}=—F"+[n=0 (mod 2)].
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(iv) {F,a*} = {F,a}.

)
(v)
(vi) {Lna} = V58" +[n=1 (mod 2)].
)

)

{

|Lna] = Ly — [n=1 (mod 2)].
{

| Lno?] = Lpo — [n =1 (mod 2)].

(vii
(viii) {L,a?} = {L,a}.

Proof. The proofs of (i) to (iv) can be found in [4, Lemma 2.5]. By Lemma
2.2(iii), we obtain |L,a] = Lyy1 +1v/58" . If nis even, then 0 < /54" <
V53% < 1, and so |v/54"| = 0. If n is odd, then —1 < /53% < /5" < 0
and thus |v/53"| = —1. This implies (v).-Then (vi) is a consequence of (v)
and Lemma 2.2(iii). By writing o* = a/ + 1, we obtain (vii) from (v), and
(viii) from Lemma 2.1(ii). This completes the proof. O

3 Main results

The proof of the following theorem is similar to that of [4, Theroem 3.3].
In fact, applying Theorem 3.3 of [4] leads to our main theorem but with a
smaller range of b, which is not enough in our application. Therefore, we still
need to adjust the proof from [4] to obtain the following theorem:

Theorem 3.1. Letn > 5 and 1 <b < F, 1. Then the following statements
hold:

(i) If b= L,_y, then /58" ' — {ba} = —[n = 0 (mod 2)].
(i) Ifb € {F,_ o, F,}, then 0 < /58" 1 — {ba} +2[n =0 (mod 2)] < 1.
(iil) Ifb ¢ {F, o, Fy, Ly_1}, then —1 < /5571 — {ba} < 0.

Proof. The statement (i) follows immediately from Lemma 2.5(vi). For (ii),
let b € {F, 5, F,} and A = 58" — {ba} +2[n = 0 (mod 2)]. Since
B" 4+ /5" 4 g2 = 0, we obtain by Lemma 2.5(iii) that if b = F},, then

A=V5"148"+[n=0 (mod2)]=-F"24+n=0 (mod?2)],
it b= F,,_o, then

A=V5"148"24[n=0 (mod2)]=—-F"4+n=0 (mod2).
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By calculating A according to the parity of n, it is not difficult to see that
0 < A < 1. This proves (ii). For (iii), if b = F, 1, then we apply Lemma
2.5(iii) to obtain

V58" —{ba} = V5" + B —[n=1 (mod 2)]
=pB"3~n=1 (mod 2)],

which is in the interval (—1,0). Next, let B = /58"~ — {ba} + 1, where b is
not equal to any of F,,_o, F,, L, 1, F,,+1. We need to show that 0 < B < 1.
Case 1 b=F), where 2 <k<n—3ork=n—1.

Case 1.1 b = F,. Then by Lemma 2.5, B = /537" + 2. Therefore,
B < 5B+ 5% = p2(—38) = =33° < 1. If nis odd, then it-is obvious that
B > 0. If n is even, then n > 6, and B > v/53° + 5% = B*(v/553% + 1) > 0.
Case 1.2 b= F,_;. Then by Lemma 2.5,

B=+V58" '+ = [n=1 (mod?2)]+1.

If n is even, then B < T and B > 1+ /3% +/6p° =1—28*> 0. If n is odd,
then B > 0 and B < /54 + 8t =—28° < 1.

Case 1.3 b= I} and 3 < k < n— 3. This case occurs only when n > 6. By
Lemma 2.5,

B=+58""1 44"~ [k=0 (mod2)] +1.

We first consider the case that k is even. Then B = /54"~ 4 ¢ If n
is odd, then B > 0 and B < 5%+ 3% = —28% < 1. If n'is even, then
B<pBF<pt<1,k<n—4,and B> 6" 474 = g (/533 +1) > 0.
Next, suppose k is odd. Then B =+/54"""+ 3% +1. If n is even, then B < 1
and B > V5> + 2 +1=1-38* > 0. If nis odd, then k < n — 4,
B>58""'>0and B< V54" 14+t +1 < 1.

Case 2 I}, < b < Fjyq for some k € {4,5,...,n}. We apply Lemma 2.5
without further reference. By Zeckendorf’s theorem, we can write

b:Fa1+Fa2+"'+Fa47

where ¢ > 2, k =a; > ay > -+ > ay > 2 and a;_1 — a; > 2 for every
t=2,3,...,0. Then by Lemma 2.4, we obtain

{ba} = {{Fo,a} + {Fo,a} + -+ {F,a}},

which is equal to

(L= + 1= B oot 1= BO) 4 (= = B — - — )},
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where {by,ba,...,b,} U{ci,co, ... cs = {ai,a9,...,a5}, by > by > --- >0,
are even numbers, and ¢; > ¢ > - -+ > ¢, are odd numbers. Notice that one
of the sets {by, ba, ..., b} and {cy, o, ..., cs} may be empty. In this case, such
a set disappears from the subsequence calculation. Also, for convenience, we
let A= % +p%2 ... 4 B 4 3% 4 32 4 ... 4 3%, Then. by Lemma 2.1,
{ba} = {—A}. To show that 0 < B < 1, it is enough to prove

VBT < Aba) < 1 44/58"71
Case 2.1 {by, by, ...,b.} is empty. Then
BS

Therefore 0 < —A < 2 < 1 and so {ba} = {—A} = —A. If n is even,
then obviously {ba} > 0> +5"! and {ba} = —A < 32 < 1 +58° <
1++/58""1. So assume that n is odd. Then {ba} = —~A < 32 < 1+/58"71,
and {ba} = —A = |B|* +|B|>+ -+ |B]%. If €= 3, then s > 3, and so

A:/661+/BC2+"'+/BCS>/83+/85+..' :—52,

{ba} > |81 R [BIAFIBI 2B B2 4 B > B + 8" 2 = V55"
Suppose ¢ = 2. Then s = 2 and {ba} = |B|* + |B|. If ¢; # n, then
B+ 812 =B 24" > 18" 481" = =(8"4 5"7%) = V5"

Since L,y = F, +F,_5 and b # L,_1, we see that {c;,co} # {n,n — 2}.
Therefore, if ¢; = n, then ¢; #n—2,and so c; <n —4

BI7 181 = 8"+ |8]"* > 181" + 18" = V58

In any case, {ba} > /53", as required.
Case 2.2 {¢;,¢g,...,cs} is empty. Then

2
Azﬂln_}_ﬁbz_’_..._’_ﬂbr<62+ﬁ4+__.:1fiﬁ2:—ﬁ.
Therefore —1 < f < —A < 0 and {ba} = {—A} = 1— A. Suppose n is even.
Then {ba} > 0> /55" L and {ba} =1—-A=1—-p" —pb2 —... - g As

in the proof of Case 2.1, if £ > 3, then » > 3 and

{bO[} < 1_6b1_ﬁb2_5b3 < 1_Bn_5n72_ﬁn74 < 1_Bn_ﬂn72 — 1_|_\/55n71
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If / =2 and b; # n, then

{ba}=1-p" —p» <1-p"2—prt<1-p"2—p" =1+ V55"
If £ =2 and b; = n, then by <n —4 and

{ba} =1— " — % <1 "~ g H<1— 5" — "2 = 1+ VB,

If n is odd, then {ba} <1< 1456 and {ba} =1-A>1+5=753>>
an?) > \/gﬁnfl.

Case 2.3 {by,by,...,b.} and {c1,co,...,cs} are not empty. Then there is
some cancellation in the sum defining A. As in Cases 2.1 and 2.2, we have
A<Bb1 _|_6b2_|_...+5br <= and A> B 4L 4 o4 G0 > —52-

Case 2.3.1 A is positive. Then —1 < f < —A < 0, and so {ba} = {—A} =
1 — A. If nis odd, then {ba} <14 /587" and

{ba} =1 —=A> 14+ >+/58* > V5L,

Assume that n is even. Then {ba} > 0> /53" 1. It remains to show that
{ba} < 1++/58""1. Let u=min{by,bs,...,b,}and v = min{cy, co, ..., c;}.
Since a;_1 —a; > 2 forall 2 =2,3,...,¢ and a; = k < n, we obtain that
u<n and |v—ul > 3. Then

ﬁugﬂbl—i_ﬁb—’_”'—’_ﬁbr<ﬁu+ﬂu+2+ﬂu+4+---: 1€U52:_6u—17
(3.2)

5U2601+602+“'+BCS>Bv+ﬁv+2+ﬁv+4—|—--.: 151’52 :—ﬁv_l
(3.3)

By (3.2) and (3.3), we obtain 8* — v7! < A < 8¥ — %71, Since |v —u| > 3,
we see that either v —u > 3 or v — u < —3. Suppose for a contradiction
that v — u < —3. Since v < u — 3 and both v and u — 3 are odd, we have
BU S ﬁu{)’- Thus A < Bv_ﬁufl S 6u73_BU71 — 5u73(1_52> — _Bu—Q < 07
which contradicts the assumption that A is positive. Hence v — u > 3.
Since v — 1 > w4+ 2 and both v — 1 and u + 2 are even, 3~ < B“*2. So
A > pv— put? = gl — B?) = =Bt We have u < v —3 <n —3. Thus
u+1<n-—2. Sincen —2is even and v + 1 is odd, we have u +1 <n — 3.
Then {ba} =1—A < 1+ p**' < 14 "3, Since V582 < 1 and n — 3 is
odd, v/53"~! > 3773, Therefore {ba} < 1+ "3 < 1++/53"1, as required.
Case 2.3.2 A is negative. Then 0 < —A < 82 < 1. Then {ba} = {—A} =
—A. We first show that {ba} < 1++/58"7L If nis odd, then {ba} < 1 < 1+
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V5871 If nis even, then {ba} = —A < 82 < 1+/54% < 1+/58" L. Next,
we show that {ba} > /58" 1. If n is even, then /53" ! < 0 < {ba}. So
assume that n is odd. Let u = min{by, bs,...,b.} and v = min{cy, co, ..., 5}
As in Case 2.3.1, we have u < n, |v — u| > 3, the equalities (3.2) and (3.3)
hold, and 8% — 87! < A < 3% — 1. Since |v — u| > 3, we see that either
v—u>3orv—u< —3. fv—w>3, then f*7! < B2 and A > v — B! >
B¢ — pBut? = —putl > (. which contradicts the assumption that A < 0. Thus
v—u < -3, and so A < fu? —~pBul = B2 Since u < n, u is even
and n is odd, we have u —2 < n—3. Then —A > v 2 > g3 > /5gn—1,
Therefore {ba} = —A > /55"~! as desired. This completes the proof. [

Theorem 3.1 leads to a short proof of [4, Theorem 3.3].

Corollary 3.2. [4, Theorem 3.3] Let n > 5, 1 < b < F,4y, and b # F,.
Then 0 < {ba} + p" < 1.

Proof. If b = F,,—5 or b = L,_1, we can apply Lemma 2.5 to obtain the
desired result. So suppose that b # F;, 5 and b # L,_;. We first consider the
case n is odd. Then it is obvious that {ba}+5" < 1. For the other inequality,
we apply Theorem 3.1 to obtain {ba} > /5"t > —p". Similarly, if n is
even, then it is immediate that {ba} + 5" > 0 and by using Theorem 3.1, we
obtain {ba} < 1+ v/5377" < 1 — ™. This completes the proof. O

It is possible to extend the range of b in Theorem 3.1 and Corollary
3.2 but the results are not nice and we do not need them in our application.
Therefore, we only give some special cases in-an example and leave the general
case to the interested readers.

Example 3.3. Letn>5, k>n+2,b=Fg, and B = {ba}+ 8". Then the
following statements hold.

(i) If k and n are odd, then —1 < B < 0.
(i) Ifk #n (mod 2), then 0 < B < 1.
(i) If k and n are even, then 1 < B < 2.

Proof. By Lemma 2.5, B = " — 8% + [k =0 (mod 2)].

Case 1 k is odd. Then B = " — g¥. If n is odd, then —1 < " <
prt?2 < Bk < 0, and so —1 < B < 0. If n is even, then & > n + 3, and
0< B<pBr—pnts =28 <1,

Case 2 k is even. Then B = " — 3% + 1. If n is odd, then B < 1,
k>n+3 and B> 14" — "3 =1-28"" > 0. If nis even, then
0< Bk <2 < " <1, and so 1 < B < 2. This completes the proof. [



Distribution of Wythoff Sequences Modulo One 1053

References

1]

2]

3]

[10]

[11]

A. S. Fraenkel, How to beat your Wythoff games’ opponent on three
fronts, Amer. Math. Monthly, 89, (1982), 353-361.

A. S. Fraenkel, Heap games, numeration systems and sequences, Ann.
Comb., 2, (1998), 197-210.

R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics :
A Foundation for Computer Science, Second Edition, Addison—Wesley,
1994

S. Kawsumarng, T. Khemaratchatakumthorn,  P. Noppakeaw, P.
Pongsriiam, Sumsets Associated with Wythoff Sequences and Fibonacci
Numbers, Period. Math. Hungar, online first version available at
https://doi.org/10.1007 /s10998-020-00343-0

C. Kimberling, Beatty sequence and Wythoff sequences, generalized, Fi-
bonacci Quart., 49, (2011), 195-200.

D. A. Klarner, Representation if N as a sum of distinct elements from
special sequence; Fibonaeci Quart., 4, (1966), 289-305.

K. Onphaeng, P. Pongsriiam, Jacobsthal-and Jacobsthal-Lucas numbers
and sums introduced by Jacobsthal and Twverberg, J. Integer Seq., 20,
(2017), Article 17.3.6

J. Pitman, Sumsets of finite Beatty sequences, Electron. J. Combin,, 8,
(2001), Article R15, 1-23.

P. Pongsriiam, R. C. Vaughan, The divisor function on residue classes
I, Acta Arith., 168, (2015), 369-381.

W. A. Wythoff, A modification of the game of nim, Nieuw Arch. Wiskd.,
2, (1905-1907), 199-202.

E. Zeckendorf, Représentation des nombres par une somme des nombres
de Fibonacci ou de nombres de Lucas, Bull. Soc. e Roy, Sci. Liége, 41,
(1972), 179-182.



NAME

DATE OF BIRTH

PLACE OF BIRTH

VITA

Sutasinee Kawsumarng
30 December 1995

Nakhonpathom

INSTITUTIONS ATTENDED Bachelor of Science in Mathematics, Silpakorn

HOME ADDRESS

PUBLICATION

Universityin 2017.

48 Swine 4, Bangchang Sub-district,

Sampran District, Nakhonpathom, 73110.

® S.Kawsumarng, T. Khemaratchatakumthorn, P. Noppakeaw and
P. Pongsriiam, Sumsets Associated with Wythoff Sequences and
Fibonacci Numbers, Period. Math. Hungar, online first version
available at https://doi.org/10.1007/s10998-020-00343-0

® S.Kawsumarng, T. Khemaratchatakumthorn, P. Noppakeaw and
P. Pongsriiam, Distribution of Wythoff Sequences Modulo One,
International Journal of Mathematics and Computer Science,

15(2020), no. 4, 1045-1053



