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Chapter 1

Introduction

Research in the field of medical imaging has produced several different techniques for clin-

ical diagnosis such as ultrasound (US), computed tomography (CT), magnetic resonance

imaging (MRI), and so on. Each technique has its own advantages and disadvantages. One

may be more appropriate than other depending on syndrome and/or disease severity. In

particular, US imaging has been considered as one of the most non-invasive, practically

harmless to the human body, portable, accurate, cost effective and real-time techniques for

visualizing the human body's internal structures (e.g. soft organs such as liver, kidney,

spleen, uterus, and heart) and movements (e.g. blood flowing through vessels and fetal

development in pregnant women). These features not only help the clinicians in almost all

stages of patient care: from disease detection to treatment guidance and monitoring, but

also make the US imaging the most prevalent diagnostic tool in nearly all hospitals around

the world.

Basically, the US imaging is a coherent imaging system. All US images are obtained

by using high-frequency sound waves, inaudible to the human ear. As the sound waves are

transmitted through body tissues, they are partially reflected by the boundary between two

tissue structures back to the US machine in different ways, depending on the difference in

acoustic impedance of the two tissues at the interface. The time-of-flight (TOF) and the en-

ergy of the reflected echo are recorded and transformed into video or photographic images.

1
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Note that the measurement of TOF determines the gray level of each image pixel, whereas

the measurement of the echo energy provides coordinates identification of the analyzed tis-

sues. We also note that US imaging cannot be used to create the images of bones because

they are too dense to penetrate. In addition, the intestinal tract and normal lung tissue are

not easily identified with this medical imaging technique because air or gas can interfere

with the production of the US images.

Due to the coherent nature of the US imaging systems, the quality and visibility of

the US images are limited by the noise, which originates both from physical phenomena

underlying the image acquisition process and imperfections of the US imaging system. The

so-called speckle noise (SN) is found commonly in the US images of the soft organs whose

underlying structures are too small to be resolved by large wavelengths. As pointed out in

[41], SN is a type of the multiplicative noise (MN), which is a random granular appearance

that marks small differences in gray levels and obscures small structures. The SN occurs

when there is large number of scatterers with random phase within the resolution cell of

an US beam. This interfering phenomenon arises when two or more waves traveling to the

probe from the scatterers interfere with each other, constructively or destructively, produc-

ing bright and dark spots. The pattern of the SN depends on the probe characteristics, such

as the transducer (the US device making the sound waves and receiving the echoes) fre-

quency and the distance from the maximum-pressure point to the transducer. In particular,

the SN at high (acoustic) frequencies is less granular than at low frequencies while, its size

rises as the distance of the probe source increases.

In the literature, various methods have been proposed and studied for SN reduc-

tion from US images. These methods include adaptive filtering [28, 36, 40, 41], wavelet

techniques [1, 27, 37], anisotropic diffusion methods [15, 57], and variational methods

[2, 30, 31, 32, 33, 34, 45, 49]. Among these SN removal techniques, the variational methods

are well-established mathematical theory to offer superior image restoration quality. How-

ever, much improvement on computational complexity is a major challenge to develop fast,

accurate, and stable numerical algorithms for solving associated variational problems.
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In the next section, we present a mathematical framework and briefly introduce a

variational formulation of US image denoising problems.

1.1 Mathematical framework

Let z : Ω ⊂ R2 → V ⊂ R be an observed noisy image, where Ω is a rectangle of R2.

The goal of image denoising problems is to restore (or recover) the original image u : Ω ⊂

R2 → V ⊂ R from the noisy image z. According to the maximum likelihood principle

[24], most image denoising problems involve solving the following variational problem:

min
u∈U
{Jα(u) = D(u, z) + αR(u)} , (1.1)

where D(u, z) is the fidelity/data term deriving from the assumption on the distribution of

the noise in the observed noisy image, which is used to penalize the inconsistency between

the denoised image to be restored and the observed noisy image, R(u) is the regulariza-

tion term, which is used to filter out the noise from the observed noisy image as well as

to preserve significant features such as edges and textures of the restored image, α > 0 is

the regularization parameter, which compromises the fidelity term D(u, z) and the regu-

larization term R(u), and U is a set of admissible functions, which minimizes the energy

functional Jα. For example, the classical model by Rudin, Osher, and Fatemi (ROF model)

[44] considers the additive noise (AN) model

z = u+ η (1.2)

and minimizes the total variation (TV) regularization

RTV(u) =

∫
Ω

|∇u|dΩ

with the fidelity term

DROF(u, z) =
1

2

∫
Ω

(u− z)2dΩ.

Here η in (1.2) is the zero-mean Gaussian white noise. Note that the remarkable advantages

of using the TV regularization for image denoising problems are to allow discontinuities and

preserve edges in the restored images.
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1.2 A review of variational models for SN removal

The SN model considered in many previous works is given by

z = uζ, (1.3)

where ζ is the MN. Unlike traditionally additive Gaussian noise model in (1.2), the noisy

signals in the recorded US images are much more difficult to be removed, mainly not only

because of the multiplicative nature between the noise and the original image, which is

signal correlated, but also because of the noise distribution, which is generally complicated

than that of Gaussian noise, commonly assumed to be Rayleigh distribution for the recorded

US images.

Non-surprisingly, the choice ofR(u) is very crucial for restoration results. Different

choices ofR(u) lead to different restored images. In the literature,RTV(u) has is commonly

used as the regularization term in several variational models for SN removal, and the main

difference among different variational models only comes from their image fidelity terms.

As far as we know, Rudin, Lions, and Osher [45] proposed firstly the TV based variational

model (RLO model) which contains a nonconvex fidelity term

DRLO(u, z) = α1

∫
Ω

z

u
dΩ + α2

∫
Ω

(z
u
− 1
)2

dΩ

derived from considering ζ to be Gaussian white noise with mean one and a very small

variance, where α1 and α2 are the weighted parameters. This model is effective to remove

the SN to a certain degree. By using the Gamma-noise assumption on ζ , Aubert and Aujol

[2] proposed a SN removal method (AA model) with the nonconvex fidelity term

DAA(u, z) =

∫
Ω

(
logu+

z

u

)
dΩ

derived from the maximum a posteriori probability (MAP) estimation. Due to the noncon-

vexity of their fidelity terms, the corresponding algorithms may converge slowly and the

computed solutions by some optimization methods are not necessary to be a global solution.

To overcome these drawbacks, Shi and Osher [49] applied the logarithmic transformation
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with the fidelity term in the AA model to present their convex SN removal method (SO

model) and developed a nonlinear inverse scale space method for their variational tech-

nique. Afterwards, Huang et al. [30] modified differently the fidelity term in the AA

model by using an exponential transformation and proposed an alternative minimization

technique to solve their (strictly) convex SN removal model (HNW model). Bioucas-Dias

and Figueiredo [31] applied the MAP estimation method in the logarithm domain to pro-

pose a convex SN removal method (BF model). The advantage of their BF model is that it

can be efficiently solved by a fast iteration algorithm.

In clinical US imaging system, a nonlinear compression algorithm is usually applied

before displaying in order to adjust the large echo dynamic range [50]. This nonlinear

compression totally changes the gray level statistics of the displayed (real) US “on screen”.

The authors in [4, 22, 27, 40, 50, 52] pointed out that the SN in the real US images can be

modeled as corrupted with the signal-dependent MN of the form

z = u+
√
uζ, (1.4)

where ζ is the zero-mean Gaussian noise with the standard deviation σ2
n. Based on the

SN model for the real US images as represented by (1.4), the authors in [32, 34, 39] also

proposed the SN removal methods including the TV regularization for SN reduction from

the real US images. The authors in [39] presented a new SN removal technique (KKWV

model) using the convex fidelity term

DKKWV(u, z) =

∫
Ω

(u− z)2

u
dΩ

resulting from (1.4) and developed an anisotropic diffusion method specially designed pre-

serving and enhancing small vessel structures with a constrained filtering. Afterwards, a

rigorous analysis of the KKWV model was discussed in [34]. The authors of this previous

work first investigated into the existence and uniqueness of the minimizer for the associ-

ated variational problem and derived the existence and uniqueness of the resulting evolution

equation. Recently, the authors in [32] proposed a new convex fidelity term using a gener-
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alized Kullback-Leibler (KL) distance as given by

DHY(u, z) =

∫
Ω

(
z√
u
log

z

u
− z√

u
+
√
u

)
dΩ

and applied the variable splitting and Bregman iterative methods developed by [42] in

the logarithm domain to efficiently solve their proposed convex SN removal model (HY

model). Their numerical tests show that theHYmodelmarginally improves over theKKWV

model in terms of the restoration quality, whereas the numerical algorithm of HY model is

much faster than that of KKWV model in delivering the same level of restoration quality.

1.3 A review of numerical techniques for SN removal

Classified by the order of its major ingredients, there are two main types of numerical

schemes to compute a numerical solution of the minimization problem (1.1) for a given

regularization parameter α. The first is the so-called optimize-discretize approach and the

second is the so-called discretize-optimize approach. The main idea of the first approach is

to compute the associated Euler-Lagrange equation in the continuous domain and then solve

its discretized version on the corresponding discrete domain by a method of our choices,

e.g. a so-called parabolic and elliptic approach. On the other hand the latter approach aims

to discretize the energy functional Jα and then solve the discrete minimization problem by

standard optimization techniques, e.g. steepest descent or Newton-type methods.

1.3.1 The optimize-discretize approach

For the optimize-discretize approach, themain aim is to solve the associated Euler-Lagrange

(EL) equation, which generally turns out to be a nonlinear PDE

f(u, z) + αA(u) = 0 (1.5)

subject to the appropriate boundary conditions. In other words, the approach aims to satisfy

the first-order necessary condition for being a local minimizer of the energy functional
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(1.1). Note that on one hand the first term f(u, z) (usually nonlinear) is related to the

Gâteaux derivative of the fidelity term D. On the other hand, the second term A is the

partial differential operator (linear or nonlinear) resulting from the Gâteaux derivative of

the regularization termR.

There are various numerical techniques for solving the nonlinear PDE in (1.5).

These techniques can be broadly divided into two main categories: the parabolic and el-

liptic approaches. A parabolic approach (also known as gradient descent or time marching

approach) performs by introducing the artificial time variable t and then determining the

steady state solution of the time-dependent PDE:

∂tu(t) = f(u(t), z) + αA(u(t)), (1.6)

where u(t) = u(x; t), typically u(0) = z. For example, if f is nonlinear and A is linear,

the semi-implicit scheme for (1.6) can be given by

u(t(k+1))− u(t(k))

τ
= f(u(t(k)), z) + αA(u(t(k+1))) (1.7)

where k ∈ N0 and τ > 0 denotes the time length used to discretize ∂tu(t); see [2, 31, 44,

45, 49]. For an elliptic approach it performs by directly solving the nonlinear PDE (1.5)

with a method of our choice. For example, if both f and A are nonlinear, the fixed-point

(FP) iteration of (1.5) can be defined by

f(u[ν], z) + αA[u[ν]](u[ν+1]) = 0 (1.8)

where both f and A are globally linearized at the current approximation u[ν] and ν ∈ N0

denotes the FP step; see [8, 9, 23, 47, 48].

1.3.2 The discretize-optimize approach

In this section, we shall briefly give the main idea of the discretize-optimize approach based

in the Newton-type schemes. To this end, let us first consider the discrete minimization

problem corresponding to (1.1)

min
u∈U
{J̃α(u) = D̃ (u, z) + αR̃ (u)}. (1.9)
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The next step is to linearize the discrete energy functional J̃α around the current approxi-

mation u(k) (k ∈ N0) by the Taylor expansion given by

J̃α(u
(k) + δu(k)) = J̃α(u

(k)) + J(k)
J̃α
δu(k) +

1

2
(δu(k))⊤H(k)

J̃α
δu(k) (1.10)

and define an (outer) iteration by

u(k+1) = u(k) + ζ(k)δu(k). (1.11)

Here J(k)
J̃α
,H(k)

J̃α
are the Jacobian and the Hessian of J̃α at u(k), and ζ(k) > 0 is the line-search

parameter used to guarantee the reduction of J̃α in each outer step k. For Newton-type

methods, the perturbation δu(k) is determined by solving the normal equation

H̃(k)

J̃α
δu(k) = −J(k)

J̃α
(1.12)

by a method of our choices (e.g. preconditioned conjugate gradient methods), considered

as the inner step. Here H̃(k)

J̃α
is an approximate Hessian; see [54].

Although no proof exists, the first approach has an efficiency similar to that of the

second one [26]. This thesis prefers the first approach. However, no matter which method

is used in practical applications, both approaches are integrated with a so-called multilevel

technique in order to provide reliable initial guesses, avoid getting in the trap of unwanted

minimizers and save computational times [8, 9, 10, 11, 12, 23, 47, 48].

1.4 Contributions

The main aim of this thesis is to propose an improved variational model and its fast solution

for the numerical approximation in removing the SN from real US images. The improved

model includes the new regularization term for removing the SN. In order to efficiently

solve the associated EL equation, we apply the optimize-discretize approach implemented

in a nonlinear multigrid (NMG) framework as a fast and effective solver. We note that the

variational model and its numerical solution to be proposed in this work are the improve-

ment of those done in the previous works by [32, 35, 39] with several advantages. Firstly,
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the proposed model is more appropriate than those in [35] for restoring real US images

corrupted by the signal-dependent multiplicative noise as represented in (1.4). Secondly,

the proposed model can also be considered as the generalization of the variational model

in the previous work done by [39]. Next, we found what we expected in numerical ex-

periments that our variational model provides better restoration results than those obtained

from [32, 39]. Finally, as we shall demonstrate, our proposed numerical solution to be in-

troduced in Chapter 2 is fast and efficient in providing visually pleasing SN reduction from

both synthetic and real US images.

1.5 Summary and structure of this thesis

This thesis is composed of four chapters. Each chapter starts with its introduction, with the

exception of the last chapter. Notations are introduced as the need arises. The following is

the summary of the major contributions of this thesis:

• In Chapter 2, we propose the improved variational model, followed by its numerical

solutions for the associated EL equation.

• In Chapter 3, experimental results from synthetic and real US images illustrating the

effectiveness of the improved model and the efficiency of the proposed numerical

methods are shown.

• Chapter 4 contains the conclusions of this thesis and the outlook for future research

directions.



Chapter 2

An improved variational model for SN

removal from real US images and its

numerical solutions

2.1 Introduction

As pointed out in [35], all images are eventually perceived and interpreted by the human

visual system. As a result, vision psychology and psychophysics play an essential role in the

successful communication of image information. From the imaging science point of view,

this fact implies that we should take into account the consequences of vision psychology and

psychophysics. However, many previous works in image processing have rarely considered

the influence of human vision system. In this chapter, we aim to incorporate one of the

most well known and influential psychological results − Weber’s law for sound and light

perception. We starting our study by proposing an improved variational model using the

Weber’s law for the SN removal from real US images, followed by the study of the major

mathematical properties (e.g. existence and uniqueness). Finally we present some possible

methods for solving the associated EL equation.

10
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2.2 The improved variational model

Weber’s law was first introduced in 1834 by German physiologist Weber. The law reveals

the universal influence of the background stimulus u on humans’ sensitivity to the intensity

increment δu, or the so-called JND (just-noticeable-difference), in the perception of both

sound and light. The raw claims that the so-called Weber’s fraction is a constant:

δu

u
= cont.

In this section, we applyWeber’s law in the context of visual perception. Therefore,

u and δu stand for the background light intensity and the intensity fluctuation, respectively.

As mentioned in [35], our visual sensitivity to the local fluctuation δu depends on the am-

bient intensity level u. That is, variational models such as the KKWV model given by

min
u∈S(Ω)

{
J KKWV

α (u) = DKKWV(u, z) + αRTV(u)
}
, (2.1)

assumes that a local variation δu should be treated equally independent of the background

intensity levelu. But this exactly violatesWeber’s law. Note thatS(Ω) = {u ∈ BV (Ω), u > 0}

andBV (Ω) denotes the bounded variation space, which is the space of functions u ∈ L1(Ω)

such that the following quantity∫
Ω

|Du| = sup
{∫

Ω

udiv(φ)dΩ|φ ∈ C1
0(Ω;Rn), |φ| ≤ 1

}
is finite, where Du represents the distributional gradient of u. As can be seen BV (Ω) is a

Banach space with the norm

∥u∥BV (Ω) =

∫
Ω

|Du|+ ∥u∥L1(Ω) .

Inspired from theWeberized TV (WTV) regularization method in the literature [35],

we replace the new regularization term in the KKWV model as follows:

RTV-WTV(u) = α1

∫
Ω

|∇u|dΩ + α2

∫
Ω

|∇u|
u

dΩ, (2.2)
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where α1 and α2 are the regularization parameters. Therefore, our improved KKWVmodel

is given by

min
u∈S̄(Ω)

{
J̄ KKWV

α1,α2
(u) = DKKWV(u, z) +RTV-WTV(u)

}
, (2.3)

where

DKKWV(u, z) =

∫
Ω

(u− z)2

u
dΩ, h(s) =

(s− z)2

s
,

S̄(Ω) =

{
u ∈ BV (Ω), u > 0,

∫
Ω

|Du|
u

<∞
}
,

denotes the space of admissible functions minimizing the energy functional J̄ KKWV
α in (2.3),

resulting from the coarea formula; see [25]. As can be seen, we note first that if ϕ(u) =

α1 + α2/u, then (2.2) can be re-written as

RTV-WTV(u) =

∫
Ω

ϕ(u)|Du| = α1

∫
Ω

|Du|+ α2

∫
Ω

|Du|
u

,

or

RTV-WTV(u) =

∫
Ω

(
α1 +

α2

u

)
|Du|. (2.4)

Second, when α2 = 0, our improved KKWV model (2.2) clearly reduces to the original

KKWV model (2.1).

2.3 Mathematical analysis for the improved model

This section aims to investigate the existence and uniqueness of the minimizer to the prob-

lem (2.3).

Theorem 2.3.1. (Existence). Suppose that z ∈ L∞(Ω) with inf
Ω

z > 0. Then the variational

problem (2.3) has at least one minimizer ū in the admissible space S̄(Ω) satisfying

inf
Ω

z ≤ ū ≤ sup
Ω

z.

Proof. Let us denote that γ = inf
Ω

z and β = sup
Ω

z. It is obvious that J̄ KKWV
α1,α2

(u) ≥ 0 for all

u ∈ S̄(Ω). This implies that J̄ KKWV
α1,α2

(u) has a lower bound for all u ∈ S̄(Ω). Therefore, we

consider a minimizing sequence {un} ⊂ S̄(Ω) for (2.3).
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First, we show that γ ≤ un ≤ β. Since z ∈ L∞(Ω) with inf
Ω

z > 0, we can choose

a sequence {zn} ⊂ C∞(Ω̄) such that zn → z in L1(Ω) and a.e. in Ω as n→∞, and

inf
Ω

z ≤ zn ≤ sup
Ω

z.

Replacing z in (2.3) by zn yields h(s) is decreasing as s ∈ (0, zn) and increasing as s ∈

(zn,∞) for n ∈ N. Therefore, if A ≥ zn, we have

(min(s, A)− z)2

min(s, A)
≤ (s− z)2

s
(2.5)

for x ∈ Ω and n ∈ N. Hence, if we let A = β, we have∫
Ω

(min(u, β)− zn)
2

min(u, β)
dΩ ≤

∫
Ω

(u− zn)
2

u
dΩ.

Letting n → ∞ in the above inequality, using Lebesgue Convergence Theorem and (2.5),

we deduce ∫
Ω

(min(u, β)− z)2

min(u, β)
dΩ ≤

∫
Ω

(u− z)2

u
dΩ. (2.6)

By using the results of [38] (see Lemma 1 in Sect. 4.3) and [35] (see Lemma 1 Sect. 3.2),

we obtain ∫
Ω

|D(min(u, β))| ≤
∫
Ω

|Du| (2.7)

and ∫
Ω

|D(min(u, β))|
min(u, β)

≤
∫
Ω

|Du|
u

(2.8)

respectively. Combining (2.6), (2.7) and (2.8) implies that

J̄ KKWV
α1,α2

(min(u, β)) ≤ J̄ KKWV
α1,α2

(u).

On the other hand, we get in the same way that

J̄ KKWV
α1,α2

(max(u, γ)) ≤ J̄ KKWV
α1,α2

(u).

Therefore we can assume without restriction that γ ≤ un ≤ β.

Next, we prove that there exists u ∈ S̄(Ω) such that

J̄ KKWV
α1,α2

(u) = min
v∈S̄(Ω)

{
J̄ KKWV

α1,α2
(v)
}
.
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Without loss of generality, we assume that α1 = α2 = 1. As can be seen, the above proof

implies that un is bounded in L1(Ω). Moreover, by the definition of {un}, we get that there

exists a constant C such that

J̄ KKWV
α1,α2

(un) ≤ C. (2.9)

Since γ ≤ un ≤ β and h ∈ C[γ, β], we get that h(un) is bounded. Therefore, by using

(2.9), we obtain ∫
Ω

|Dun| ≤ C.

Hence, {un} is bounded inBV (Ω). By the weak compactness, {un} has a subsequence, still

denoted by {un} for simplicity, that converges strongly in L1(Ω) to some ū, i.e. un → ū.

After a refinement of the subsequence if necessary, we can assume that

un(x)→ ū(x), a.e. x ∈ Ω.

Thus by Lebesgue's dominated convergence theorem, we obtain∫
Ω

(ū− z)2

ū
dΩ = lim

n→∞

∫
Ω

(un − z)2

un

dΩ. (2.10)

Applying the lower semicontinuity of the total variation term and Fatou's lemma leads to∫
Ω

|Dū| ≤ lim inf
n→∞

∫
Ω

|Dun|. (2.11)

The lower semicontinuity of the Weberized total variation term can be obtained by [35]

(Theorem 1 in Sect. 3.2): ∫
Ω

|Dv̄| ≤ lim inf
n→∞

∫
Ω

|Dvn|, (2.12)

where vn = logun and v̄ = log ū .

Combining (2.10), (2.11), and (2.12), we have

J̄ KKWV
α1,α2

(ū) ≤ lim inf
n→∞

J̄ KKWV
α1,α2

(un).

It is obvious to see that ū ∈ S̄(Ω). Due to {un} is the minimizing sequence, we therefore

have shown that ū is in fact a minimizer of the problem (2.3).
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Unlike the several variational models discussed in Chapter 1, our improved KKWV

model (2.3) is not convex due to theWeberized TV regularization term. As a result, unique-

ness is no longer a direct product of convexity. To this end, we start with a computational

lemma for the associated EL equation of J̄ KKWV
α1,α2

(u).

Lemma 2.3.1. Let ϕ(u) : (0,∞)→ (0,∞) be a C1 function and

J̄ KKWV
α1,α2

(u) = DKKWV(u, z) +RTV-WTV(u)

then the formal equilibrium EL equation of J̄ KKWV
α1,α2

(u) is given by

− ϕ(u)∇ ·
(
∇u
|∇u|

)
+

(
1− z2

u2

)
= 0, (2.13)

∂u

∂n

∣∣∣∣
∂Ω

= 0,

where n is the unit outward normal vector on the image boundary ∂Ω.

Proof. Applying the standard computation of Calculus of Variation

J̄ KKWV
α1,α2

→ J̄ KKWV
α1,α2

+ δJ̄ KKWV
α1,α2

leads to

δJ̄ KKWV
α1,α2

=

∫
Ω

(
ϕ′(u)|∇u|δu+ ϕ(u)

∇u
|∇u|

∇(δu)
)
dΩ

+

∫
Ω

(
1− z2

u2

)
δudΩ,

=

∫
Ω

(
ϕ′(u)|∇u| − ∇ ·

(
ϕ(u)

∇u
|∇u|

)
δu

)
dΩ

+

∫
∂Ω

ϕ(u)

|∇u|
∂u

∂n
δudS +

∫
Ω

(
1− z2

u2

)
δudΩ,

=

∫
Ω

(
−ϕ(u)∇ ·

(
∇u
|∇u|

))
δudΩ

+

∫
∂Ω

ϕ(u)

|∇u|
∂u

∂n
δudS +

∫
Ω

(
1− z2

u2

)
δudΩ,

where dS denotes the arc-length element of the boundary.
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Since u > 0, then the EL equation for J̄ KKWV
α1,α2

(u) can be rewritten equivalently as

−ϕ(u)∇ ·
(
∇u
|∇u|

)
+

(
1− z2

u2

)
= 0,

∂u

∂n

∣∣∣∣
∂Ω

= 0.

Theorem 2.3.2. (Uniqueness). Assume that α1 > 0, α2 > 0 and z > 0 is in L∞(Ω), and u

is a minimizer of the energy functional J̄ KKWV
α1,α2

(u). Then u is a unique solution in S̄(Ω).

Proof. Let us denote

F ′(u;α1, α2) =
1

ϕ(u)

(
1− z2

u2

)
=

u2 − z2

α1u2 + α2u
.

Define a new energy function as follow:

¯̄J
KKWV
α1,α2

(u) =

∫
Ω

(|∇u|+ F (u;α1, α2)) dΩ.

As can be seen, (2.13) is exactly the associated EL equation for ¯̄J
KKWV
α1,α2

(u). It is easy to

find that

F ′′(u;α1, α2) =
α2u

2 + 2α1uz
2 + α2z

2

(α1u2 + α2u)
2

is strictly convex as u > 0. Therefore, the uniqueness of the minimizer follow from the

strict convexity of the energy functional ¯̄J
KKWV
α1,α2

(u).

2.4 Numerical solutions of the EL equation

In this section, we introduce possible numerical solutions that could be considered for solv-

ing (2.13). To start with, the EL equation in (2.13) is rewritten as follows:

−K(u) + 1

α1u+ α2

(
u− z2

u

)
︸ ︷︷ ︸

Nh(uh)

= g, (2.14)
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where

K(u) = ∇ · ( ∇u
|∇u|ϵ

),

|∇u|ϵ =
√
|∇u|2 + ϵ,

and 0 < ϵ≪ 1 is a small constant to avoid division by zero. Here g = 0 on the finest grid

for the MG setting.

2.4.1 Finite difference discretization

Let
(
uh
)
i,j

= uh
(
x1i , x2j

)
be the grid function with the uniform grid spacing h = 1/n.

Here the integer n = 1/h is the number of uniform intervals in the x1 and x2 coordinate

directions. Each grid point x in the discretized domain Ωh is cell centered and given by

x = (x1i , x2j)
⊤ = ((2i− 1)h/2, (2j − 1)h/2)⊤

for 1 ≤ i, j ≤ n. The partial derivatives in (2.14) are approximated by the standard second-

order finite difference schemes. Therefore, the discrete nonlinear system is given by

−Kh(uh)i,j + αh
⋆(u

h)i,j

(
(uh)i,j −

(zh)2i,j
(uh)i,j

)
︸ ︷︷ ︸

Nh(uh)i,j

= (gh)i,j, (2.15)

where

Kh(uh)i,j = −(1/h2)
(
(Σh)i,j(u

h)i,j − (Σ̄h)i,j(u
h)i,j

)
,

(Σh)i,j(u
h)i,j =

(
D1(u

h)i,j +D2(u
h)i,j + 2D3(u

h
)
i,j
)(uh)i,j,

(Σ̄h)i,j(u
h)i,j = D1(u

h)i,j(u
h)i−1,j +D2(u

h)i,j(u
h)i,j−1 +D3(u

h)i,j(u
h)i+1,j

+D3(u
h)i,j(u

h)i,j+1,

D1(u
h)i,j = D(uh)i−1,j,

D2(u
h)i,j = D(uh)i,j−1,

D3(u
h)i,j = D(uh)i,j,
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D(uh)i,j =
1√

(δ+x (u
h)i,j/h)2 + (δ+y (u

h)i,j/h)2 + ϵ
,

δ+x (u
h)i,j = (uh)i+1,j − (uh)i,j,

δ+y (u
h)i,j = (uh)i,j+1 − (uh)i,j,

αh
⋆(u

h)i,j =
1

α1(uh)i,j + α2

.

We note that the approximations in (2.15) need to be adjusted at the image boundary ∂Ωh

using the discrete boundary conditions

(uh)i,1 = (uh)i,2, (u
h)i,n = (uh)i,n−1, (u

h)1,j = (uh)2,j, (u
h)n,j = (uh)n−1,j.

In the following subsections the symbol ‘h’ will sometimes drop for simplicity.

2.4.2 Method 1 – Semi-implicit time marching (SITM) method

As discussed in Section 1.3.1, the main idea of time marching approaches is to introduce an

artificial time variable t with (2.14) and drive it to a steady state. This means that we solve

∂u

∂t
= K(u)− α⋆(u)

(
u− z2

u

)
for x ∈ Ω× [0, T ], T > 0, (2.16)

∂u

∂n
= 0 for x ∈ ∂Ω× [0, T ], (2.17)

u(0) = u0 for x ∈ Ω, (2.18)

where α⋆(u) =
1

α1u+α2
and u(t) = u(x; t).

In order to overcome the nonlinear terms in (2.16), wemay linearize (2.16) respect to

the k+1th time step using the method of ‘frozen coefficients’ as well known for variational

approaches related to the TV operator (see e.g. [23, 47, 48, 54], and obtain the semi-implicit

scheme as follows:

u(t(k+1))− u(t(k))

τ
= K̄(u(t(k+1)))− α⋆u(t

(k))

(
u(t(k))− z2

u(t(k))

)
,
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which we simply denote by

u(k+1) = u(k) + τK̄(u(k+1))− τα⋆(u
(k))

(
u(k) − z2

u(k)

)
,

where τ > 0.

Applying the finite difference discretization as discussed in Section 2.4.1 leads to

(u(k+1))i,j − τK̄(u(k+1))i,j = (u(k))i,j − τα⋆(u
(k))i,j×(

(u(k))i,j −
(z)2i,j

(u(k))i,j

)
, (2.19)

where the symbol h is dropped for simplicity,

K̄(u(k+1))i,j = −(1/h2)
(
(Σ(k))i,j(u

(k+1))i,j − (Σ̄(k))i,j(u
(k+1))i,j

)
,

(Σ(k))i,j(u
(k+1))i,j =

(
D1(u

(k))i,j +D2(u
(k))i,j + 2D3(u

(k))i,j
)
(u(k+1))i,j,

(Σ̄(k))i,j(u
(k+1))i,j = D1(u

(k))i,j(u
(k+1))i−1,j +D2(u

(k))i,j(u
(k+1))i,j−1

+D3(u
(k))i,j(u

(k+1))i+1,j +D3(u
(k))i,j(u

(k+1))i,j+1.

Therefore, the update formula determined by a lexicographical ordering in a matrix-vector

form can be written as

u(k+1) =

(
I+

2∑
l=1

τA(k)
xl

)−1

b(k), (2.20)

where I is the identity matrix,A(k)
xl is the coefficient matrix resulting from K̄(u(k+1))i,j along

the xl direction subject to the discrete boundary conditions, and b(k) is the vector determined

from the right hand side of (2.19). Here

u = ((u)1,1, (u)1,2, . . . , (u)1,n, (u)2,1, (u)2,2, . . . , (u)2,n, . . .

(u)n,1, (u)n,2, . . . , (u)n,n)
⊤

and

b = ((b)1,1, (b)1,2, . . . , (b)1,n, (b)2,1, (b)2,2, . . . , (b)2,n, . . .

(b)n,1, (b)n,2, . . . , (b)n,n)
⊤.
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2.4.3 Method 2 – Additive operator splitting (AOS) method

The second method, an additive operator splitting (AOS) method as developed by [55], is

faster and more efficient than SITM method represented in (2.20). The basic idea is to

replace the inverse of the sum by a sum of inverses. The corresponding iterations are then

defined by

u(k+1) =
1

2

2∑
l=1

(
I+ 2τA(k)

xl

)−1
b(k), (2.21)

which is much cheaper than those obtained from (2.20) because the two tridiagonal systems

in each component are solved per iteration rather than the 5-band system.

2.4.4 Method 3 – Fixed-point (FP) methods

As is well known, fixed point (FP) methods are successfully applied in solving the EL

equations related to the TV minimization; see e.g. [3, 6, 7, 8, 9, 13, 17, 18, 19, 20, 21, 23,

29, 47, 48, 54]. This section presents three different FP methods in solving the EL equation

(2.14).

2.4.4.1 Global fixed-point (GFP) method

For the first FP method, the nonlinear terms 1/|∇u|ϵ, α⋆(u) and 1/u represented in (2.14)

orD (u)i,j , α⋆(u)i,j and 1/(u)i,j in (2.15) may be linearized or frozen globally at a previous

FP step ν. This yields the resulting linearized system

N[u[ν]]u[ν+1] = G[u[ν]], ν = 0, 1, 2, ... (2.22)

where

N[u[ν]] = −∇ · ( ∇
|∇u[ν]|ϵ

) + α⋆(u
[ν])I

and

G[u[ν]] = g +
α⋆(u

[ν])z2

u[ν]
,
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typically u[0] = z. Classified by its ingredients, we shall name this FP method the global

FP (GFP) method.

As a commonway to solve (2.22) for eachGFP or outer step ν, we use the successive

over-relaxation (SOR) method with the relaxation parameter ω ∈ (0, 2) and then the new

step at a grid point (x1i ,2j ) is given by

(u[ν+1,k̄+1])i,j = (1− ω) (u[ν+1,k̄])i,j + ω(N[u[ν]])−1
i,j (G[u[ν,k̄+1/2]])i,j, (2.23)

where

(N[u[ν]])−1
i,j =

1

(1/h2)(Σ[ν])i,j + α⋆(u[ν])i,j
(2.24)

(G[u[ν,k̄+1/2]])i,j = (g)i,j +
α⋆(u

[ν])i,j(z)
2
i,j

(u)
[ν]
i,j

+
1

h2
(Σ

[ν]
)i,j(u

[ν+1,k̄+1/2])i,j, (2.25)

and

(Σ
[ν]
)i,j(u

[ν+1,k̄+1/2])i,j = D1(u
[ν])i,j(u

[ν+1,k̄+1])i−1,j

+D2(u
[ν])i,j(u

[ν+1,k̄+1])i,j−1

+D3(u
[ν]))i,j(u

[ν+1,k̄])i+1,j

+D3(u
[ν])i,j(u

[ν+1,k̄])i,j+1.

Here the superscripts k̄, k̄ + 1/2, and k̄ + 1 denote the current, intermediate and new ap-

proximations computed by the SOR method, respectively.

Obviously, for each GFP step ν the linearized system (2.22) is strictly or irreducibly

diagonally dominant. This guarantees the existence of a unique solution and global con-

vergence of the SOR iterations [43, 46]. Moreover, the GFP method shows the interaction

between the outer iteration that overcomes the nonlinearity of the discrete operator N in

(2.15) at each outer step ν and the SOR method that solves the resulting linear system

of equations at each corresponding inner step k̄. Instead of solving the linearized system

(2.22) with very high precision, the SOR method or inner iteration can perform only a few

iterations (3 or 4) to obtain an approximate solution at each outer step ν. This is likely
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the so-called inexact lagged-diffusivity FP method which have been widely used for solv-

ing other problems in image processing applications related to the TV operator; see e.g.

[3, 6, 7, 8, 9, 13, 17, 18, 19, 20, 21, 23, 29, 47, 48, 54]. This procedure leads to a slight dif-

ference of convergence in the GFP scheme when it is used as a stand-alone solver, whereas

the computational costs significantly reduce. Moreover, the relaxation parameter ω has a

strong influence on the convergence speed. We usually use ω > 1, typically ω = 1.2,

because it results in speeding up the convergence by many orders of magnitude faster than

those of the Gauss-Seidel (GS) approach (ω = 1). We also note that other basic iterative

techniques such as line relaxation or preconditioned conjugate gradient (PCG) method may

also be used as an inner solver but they are computationally more expensive than the SOR

method and therefore not recommended.

Finally, the numerical implementation to compute one iteration of the proposed GFP

method (2.22) based on the SOR method (2.23) can be summarized in Algorithm 1.

2.4.4.2 Local fixed-point (LFP) method

Apart from global linearization, the alternative approach for solving the nonlinear discrete

systems like (2.15) is to use methods using only local linearization; see e.g. [3, 6, 7, 9, 8,

21, 47, 48] and references therein. The main idea is to solve a single nonlinear equation in

the given nonlinear system for a (single) unknown using a numerical method of nonlinear

equations in one variable.
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Algorithm 1 (Our Proposed GFP method).

Denote by

v the restored US image

z the noisy US image

g the RHS (right-hand side) term of (2.15)

α1 the regularization parameter of the TV regularization term in (2.2)

α2 the regularization parameter of the WTV regularization term in (2.2)

ω relaxation parameter (ω = 1.2)

maxSOR the maximum number of SOR iterations (maxSOR = 4)

[v]← GFP (v, z, g, α1, α2, ω,maxSOR)

• Use input arguments to compute (N[v])−1
i,j (2.24) and

the first two terms of (G[v])i,j in (2.25) for all 1 ≤ i, j ≤ n

• Perform SOR steps for solving (2.22)

− for k = 1 : maxSOR do

− for i = 1 : n do

− for j = 1 : n do

− Compute the last term of (G[v])i,j in (2.25)

− Updating (v[k+1])i,j using (2.23)

− end

− end

− end
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More precisely, consider the corresponding nonlinear equation for the unknowns

(u)i,j−1, (u)i−1,j , (u)i,j , (u)i+1,j (u)i,j+1 given by (2.15) as follows:

(1/h2)((Σ)i,j(u)i,j − (Σ)i,j(u)i,j) + α⋆(u)i,j

(
(u)i,j −

(z)2i,j
(u)i,j

)
= (g)i,j .

Therefore, at the k̄ + 1th iteration a nonlinear GS step is given by

(1/h2)((Σ[k̄+1])i,j(u
[k̄+1])i,j − (Σ

[k̄+1]
)i,j(u

[k̄+1])i,j)

+α⋆(u
[k̄+1])i,j

(
(u[k̄+1])i,j −

(z)2i,j

(u[k̄+1])i,j

)
= (g)i,j , (2.26)

where

(Σ[k̄+1])i,j(u
[k̄+1])i,j = (D1(u

[k̄+1])i,j +D2(u
[k̄+1])i,j + 2D3(u

[k̄+1])i,j)×

(u[k̄+1])i,j,

(Σ
[k̄+1]

)i,j(u
[k̄+1])i,j = D1(u

[k̄+1])i,j(u
[k̄+1])i−1,j +D2(u

[k̄+1])i,j(u
[k̄+1])i,j−1)

+D3(u
[k̄+1])i,j((u

[k̄])i+1,j + (u[k̄])i,j+1).

If the nonlinear terms D∗(u
[k̄+1])i,j , α⋆(u

[k̄+1])i,j and 1/(u[k̄+1])i,j are simply replaced by

D∗(u
[k̄])i,j , α⋆(u

[k̄])i,j and 1/(u[k̄])i,j , we obtain the so-called Gauss-Seidel-fixed point re-

laxation and we shall name this numerical scheme the local FP (LFP) method. As a result,

we found experimentally that this relaxation method is inefficient in leading to fast conver-

gence. An improvement can be simply obtained by using a few more steps of FP iterations

with respect to the relaxation parameter ω ̸= 1 (typically ω = 1.3 and maxFP = 2 , where

maxFP denotes the maximum number of FP iterations) as follows:

(u[k̄+1])i,j = (1− ω) (u[k̄])i,j + ω(u[k̄+1])i,j, (2.27)

where

(u[k̄+1])i,j =
(G[u[ν]])i,j + (1/h2)((Σ

[ν]
)i,j(u

[k̄+1/2;ν])i,j)

(1/h2)(Σ[ν])i,j + α⋆(u[ν])i,j
, (2.28)
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(G[u[ν]])i,j = (g)i,j +
α⋆(u

[ν])i,j(z)
2
i,j

(u)
[ν]
i,j

, (2.29)

(Σ
[ν]
)i,j(u

[k̄+1/2;ν])i,j = D1(u
[ν])i,j(u

[k̄+1])i−1,j +D2(u
[ν])i,j(u

[k̄+1])i,j−1

+D3(u
[ν])i,j((u

[k̄])i+1,j + (u[k̄])i,j+1), (2.30)

(Σ[ν])i,j = D1(u
[ν])i,j +D2(u

[ν])i,j + 2D3(u
[ν])i,j. (2.31)

We note that

D1(u
[ν])i,j =

1√√√√( (u[ν])i,j−(u[k̄+1])i−1,j
h

)2

+

(
(u[k̄])i−1,j+1−(u[k̄+1])i−1,j

h

)2

+ϵ

,

D2(u
[ν])i,j =

1√√√√( (u[k̄])i+1,j−1−(u[k̄+1])i,j−1
h

)2

+

(
(u[ν])i,j−(u[k̄+1])i,j−1

h

)2

+ϵ

,

and

D3(u
[ν])i,j =

1√√√√( (u[k̄])i+1,j−(u[ν])i,j
h

)2

+

(
(u[k̄])

i,j+1
−(u[ν])i,j

h

)2

+ϵ

.

Finally our proposed method for performing one GS iteration with ω ̸= 1 (SOR

iteration) can be summarized as given in Algorithm 2.
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Algorithm 2 (Our Proposed LFP method).

Denote by

v the restored US image

z the noisy US image

g the RHS (right-hand side) term of (2.15)

α1 the regularization parameter of the TV regularization term in (2.2)

α2 the regularization parameter of the WTV regularization term in (2.2)

ω relaxation parameter (ω = 1.3)

maxFP the maximum number of inner FP iterations (maxFP = 2)

[v]← LFP (v, z, g, α1, α2, ω,maxFP)

− for i = 1 : n do

− for j = 1 : n do

− Set (v[ν=0])i,j = (v)i,j

− for ν = 0 :maxFP do

− Compute (G[v[ν]])i,j using (2.29)

− Compute (Σ[ν]
)i,j(v

[ν])i,j using (2.30)

− Compute (Σ[ν])i,j using (2.31)

− Compute (v)i,j using (2.28)

− Set (v[ν+1])i,j = (v)i,j

− end

− Use (v[ν=0])i,j , (v)i,j and (2.27) to compute (v)i,j

− end

− end
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2.4.4.3 Combined global-local fixed-point (CGLFP) method

The goal of this section is to show that it is possible to design a FP method that combines

the advantages of GFP and LFP methods.

In the first (outer) step, we apply the GFP method. The nonlinear terms α⋆(u)i,j and

1/ (u)i,j in (2.15) are linearized globally at a previous FP step ∗. This yields

(1/h2)((Σ)i,j(u)i,j − (Σ)i,j(u)i,j) + α⋆(u
∗)i,j(u)i,j = (G)i,j,

where

(G)i,j = gi,j +
α⋆(u

∗)i,j(z)
2
i,j

(u∗)i,j
. (2.32)

In the second (inner) step, we apply the LFPmethod. The resulting nonlinear system

is solved by the nonlinear GS method with a few inner FP steps (2 or 3) and the relaxation

parameter 1 ̸= ω ∈ (0, 2) (typically, ω = 0.9 and maxFP = 2) as given by

(u[k̄+1])i,j = (1− ω) (u[k̄])i,j + ω(u[k̄+1])i,j, (2.33)

where

(u[k̄+1])i,j =
1

(1/h2)(Σ[ν])i,j + α⋆(u∗)i,j
×[

(G)i,j + (1/h2)((Σ
[ν]
)i,j(u

[k̄+1/2;ν])i,j)
]
, (2.34)

(Σ
[ν]
)i,j(u

[k̄+1/2;ν])i,j = D1(u
[ν])i,j(u

[k̄+1])i−1,j +D2(u
[ν])i,j(u

[k̄+1])i,j−1

+D3(u
[ν])i,j((u

[k̄])i+1,j + (u[k̄])i,j+1), (2.35)

(Σ[ν])i,j = D1(u
[ν])i,j +D2(u

[ν])i,j + 2D3(u
[ν])i,j, (2.36)

D1(u
[ν])i,j =

1√√√√( (u[ν])i,j−(u[k̄+1])i−1,j

h

)2

+

(
(u[k̄])i−1,j+1−(u[k̄+1])i−1,j)

h

)2

+ϵ

,

D2(u
[ν])i,j =

1√√√√( (u[k̄])i+1,j−1−(u[k̄+1])i,j−1

h

)2

+

(
(u[ν])i,j−(u[k̄+1])i,j−1

h

)2

+ϵ

,

D3(u
[ν])i,j =

1√√√√( (u[k̄])i+1,j−(u[ν])i,j
h

)2

+

(
(u[k̄])i,j+1−(u[ν])i,j

h

)2

+ϵ

,
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where ν = 0, 1, 2, . . . represent the inner FP steps. k̄, k̄ + 1/2, and k̄ + 1 denote

respectively the current, intermediate and new approximations computed by the nonlinear

GS method. We shall name this numerical scheme the combined global-local FP (CGLFP)

method. Finally our proposed CGLFP method can be summarized in Algorithm 3.
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Algorithm 3 (Our Proposed CGLFP Method).

Denote by

v the restored US image

z the noisy US image

g the RHS (right-hand side) term of (2.15)

α1 the regularization parameter of TV regularization term in (2.2)

α2 the regularization parameter of WTV regularization term in (2.2)

ω relaxation parameter (ω = 0.9)

maxFP the maximum number of inner FP iterations (maxFP = 2)

[v]← CGLFP (v, z, g, α1, α2, ω,maxFP)

− Compute α⋆(v)i,j =
1

α1(v)i,j+α2
and (G)i,j using (2.32) for all 1 ≤ i, j ≤ n

− for i = 1 : n do

− for j = 1 : n do

− Set (v[ν=0])i,j = (v)i,j

− for ν = 0 :maxFP do

− Compute (Σ[ν]
)i,j(v

[ν])i,j using (2.35)

− Compute (Σ[ν])i,j using (2.36)

− Compute (v)i,j using (2.34)

− Set (v[ν+1])i,j = (v)i,j

− end

− Use (v[ν=0])i,j , (v)i,j and (2.33) to compute (v)i,j

− end

− end
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2.4.5 Method 4 – Coarse-to-fine method

Common iterative solvers like the three FP methods presented in the previous sections are

usually expensive and time-consuming to produce the restored US images when they are

applied on a single grid. In order to gain better performance, they should involve solution on

multiple grids using a so-called coarse-to-fine approach. The advantage of such an approach

is that we are able to obtain a good initial solution for the fine grid problem by solving

coarse grid problems. Since the coarse grid problems can be solved cheaply, it is possible

to quickly find an approximate solution to the fine grid problem; using this approximate

solution as an initial solution, only a few iterations are needed to provide visually pleasing

restoration results on the fine grid.

Suppose that we operate with L levels in total with l = 1 the coarsest level (where

the image size is the smallest) and l = L the finest level (where the image size is the

same as the original one). Here the size of the coarsest level 1 is chosen as 32 × 32. As a

starting point, the standard coarsening is used in computing the coarse-grid domain ΩH by

doubling the grid size in each space direction, i.e. h → 2h = H . In order to transfer grid

functions between different levels, our coarse-to-fine method uses the four-point average

operator uH
l = IHh uh

l for restriction and the bi-linear interpolation operator uh
l = IhHu

H
l for

prolongation. Here the operators IHh and IhH are given by

(uH
l )i,j =

1

4
[(uh

l )2i−1,2j−1 + (uh
l )2i−1,2j + (uh

l )2i,2j−1 + (uh
l )2i,2j],

and

(uh
l )2i,2j =

1

16
[9(uH

l )i,j + 3((uH
l )i+1,j + (uH

l )i,j+1) + (uH
l )i+1,j+1)],

(uh
l )2i−1,2j =

1

16
[9(uH

l )i,j + 3((uH
l )i−1,j + (uH

l )i,j+1) + (uH
l )i−1,j+1)],

(uh
l )2i,2j−1 =

1

16
[9(uH

l )i,j + 3((uH
l )i+1,j + (uH

l )i,j−1) + (uH
l )i+1,j−1)],

(uh
l )2i−1,2j−1 =

1

16
[9(uH

l )i,j + 3((uH
l )i−1,j + (uH

l )i,j−1) + (uH
l )i−1,j−1)],

respectively.
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Finally, the whole procedure of Method 4 may be summarized with a recursion step

as follows:

[uh]← CF(uh, zh, gh, α1, α2, ω,maxC,maxF)

1) If Ωh = coarsest grid
(∣∣Ωh

∣∣ = 32× 32
)
, solve (2.15) using a FP method as introduced

in Section 2.4.4 with maxC steps and then stop. Else continue with following step.

2) Restriction to the coarse grid:

uH ← IHh uh, zH ← IHh zh, gH ← IHh gh.

3) Implement the multi-resolution step on the next coarser grid:

uH ← CF(uH , zH , gH , α1, α2, ω,maxC,maxF).

4) Interpolation to the next finer grid:

uh ← IhHuH .

5) Solve (2.15) using the FP method in 1) with maxF steps.

2.4.6 Method 5 – Full approximation scheme based nonlinear multi-

grid (FAS-NMG) method

The basic idea of a MG method is to solve the problems on a series of coarse grids and

interpolates coarse grid correction back to the fine grids. Performing major computational

work on the coarse grids reduces significantly computation time.

One iteration of a standard MG algorithm consists of smoothing high frequency

components of the error using a few steps of a smoother (an iterative relaxation technique,

e.g., Jacobi, GS, and successive over relaxation (SOR) methods), solving an approximation

to the smooth error equation on a coarse grid, interpolating the error correction to the fine

grid, and finally adding the error correction into the current approximation (coarse-grid

correction step).

An important aspect of the MG method is that the coarse grid solution can be ap-

proximated by recursively using the MG idea. That is, on the coarse grid, the smoother is

performed to reduce the high frequency component of the errors followed by the projection

of a residual equation on yet a coarser grid, and so on. Thus, the MG method requires a se-
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ries of problems to be solved on a hierarchy of grids with different meshsizes. A multigrid

V-cycle is the process that goes from the finest grid down to the coarsest grid and moves

back from the coarsest up to the finest. A V(ν1; ν2)-cycle is a MG V-cycle algorithm that

performs ν1 steps of the smoother on each level before projecting the residual back to the

coarse grid (pre-smoothing step), and performs ν2 steps of the smoother after interpolating

the coarse grid correction back to the fine grid (post-smoothing step). For other MG cycling

algorithms and more details, we refer to [5, 51, 56].

Full approximation scheme based NMG (FAS-NMG) method has become an effi-

cient approach for solving nonlinear problems; see e.g. [9, 10, 14, 16, 18, 19, 20, 21, 53].

Here we have to solve the nonlinear PDE (2.15), i.e.

−Kh(uh)i,j + αh
⋆(u

h)i,j

(
(uh)i,j −

(zh)2i,j
(uh)i,j

)
︸ ︷︷ ︸

Nh(uh)i,j

= (gh)i,j.

Recall that gh = 0 on the finest grid.

Let uh be the current approximation of uh after a few smoothing iterations in a pre-

smoothing step on a fine-grid problem where we denote by uh the exact solution of (2.15).

Then, the algebraic error eh of the solution is given by eh = uh−uh. The nonlinear residual

equation is given by

N h(uh + eh)−N h(uh) = gh −N h(uh) = rh.

In order to correct the approximated solution uh on the fine grid, one needs to compute the

error eh. However, the computation of eh is prohibitively expensive and cannot be computed

directly on the fine grid. Since high frequency components of the error in the pre-smoothing

step have already been removed by the smoother, we can transfer the following nonlinear

system to the coarse grid as follows:

N h(uh + eh)︸ ︷︷ ︸
Nh(uh)

= rh +N h(uh)︸ ︷︷ ︸
gh

→ NH(uH + eH)︸ ︷︷ ︸
NH(uH)

= rH
l̂
+NH(uH)︸ ︷︷ ︸

gH

(2.37)

where H = 2h is the new cell size H × H and gH ̸= 0 on the coarse grid. After the

nonlinear residual equation on the coarse grid (2.37) has been solved with a method of our
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choice, the coarse-grid correction eH = uH − uH is then interpolated back to the fine grid

eh that can now be used for updating the approximated solution uh of the original system

on the fine grid uh
new = uh + eh. The last step for a FAS-NMG method is to perform the

smoother again to remove high frequency parts of the interpolated error.

The FAS-NMG components for solving (2.15) are as follows.

1. The MG smoother is obtained from the FP method discussed in Section 2.4.4; GFP,

LFP or GLFP method.

2. The standard coarsening method is used in the coarse-grid domain ΩH by doubling

the grid size in each space direction − i.e. h→ 2h = H .

3. The intergrid transfer operators are determined by averaging and bilinear interpo-

lation techniques, for the restriction and interpolation operators denoted respectively

by IHh and IhH as represented in the previous section.

4. The discretization coarse grid approximation (DCA) method is applied to compute

the coarse-grid operator of N h(uh), where the EL system is re-discretized directly.

5. Method 1 (SITM) is used as the coarsest grid solver for solving the nonlinear residual

equation on the coarsest grid, typically the 4× 4 grid.

6. The MG cycle is V (ν1; ν2)-cycle for solving the discrete nonlinear system (2.15).

For practical applications our FAS-NMG approach is stopped if the maximum num-

ber of V−cycles ε1 is reached (usually ε1 = 20), the relative residual obtained from the EL

equation (2.15) is smaller than a small number ε2 > 0 (typically ε2 = 10−4), the change

in two consecutive steps of PSNR (see the meaning for PSNR in Chapter 3) is smaller

than some ε3 > 0 (typically ε3 = 10−2), or the change in two consecutive steps of Jα1,α2

is smaller than a small number ε4 > 0 (typically ε4 = 10−4). Finally, the pseudo-code

implementation of our FAS-NMG method can be summarized in Algorithm 4.
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We have so far presented five numerical methods for solving (2.15). So it remains

to test and compare the overall performances of these numerical techniques. Their perfor-

mances will be tested and reported in the next chapter.
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Algorithm 4 (FAS-NMG Algorithm).

Denote the FAS-NMG parameters as follows:

vh the restored image

zh the noisy image

gh the RHS (right-hand side) term of (2.15)

α1 the regularization parameter of TV regularization term in (2.2)

α2 the regularization parameter of WTV regularization term in (2.2)

ω relaxation parameter

maxS the maximum number of iterations using by a smoother

ν1 pre-smoothing steps on each level

ν2 post-smoothing steps on each level
−→ε the tolerance(−→ε = (ε1, ε2, ε3, ε4))

vh← FASNMG
(
vh, zh, gh, α1, α2, ω,maxS, ν1, ν2,−→ε

)

• Select and initial guess solution ṽhinitial on the finest grid

• SetK = 0, (vh)[K] = ṽhinitial, ε̃2 = ε2 + 1, ε̃3 = ε3 + 1, and ε̃4 = ε4 + 1

•While (K < ε1 AND ε̃2 ≥ ε2 AND ε̃3 ≥ ε3 AND ε̃4 ≥ ε4)

▶ (vh)[K+1] ← FASCYC((vh)[K], zh, gh, α1, α2, ω,maxS, ν1, ν2)

▶ ε̃2 = ||gh −N h((vh)[K+1])||L2(Ωh)/||gh−Nh(ṽhinitial)||L2(Ωh)

▶ ε̃3 = |PSNR(vh)[K+1] − PSNR(vh)[K]|, [PSNR is given by (3.1)]

▶ ε̃4 = |Jh
α1,α2

((vh)[K+1])− Jh
α1,α2

((vh)[K])|

▶K = K + 1

• end

where
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[
vh
]
← FASCYC(vh, zh, gh, α1, α2, ω,maxS, ν1, ν2)

• If Ωh = coarsest grid (|Ωh| = 4× 4), solve (2.15) using (2.20)

and then stop. Else continue with the following steps.

• Pre-smoothing:

For k = 1 to ν1,
[
vh
]
← Smoother(vh, zh, gh, α1, α2, ω,maxS)

• Restriction to the coarse grid:

vH ← IHh vh, zH ← IHh zh

• Set the initial solution for the coarse-grid problem:

ũH ← vH

• Compute the new right-hand side for the coarse-grid problem:

gH ← IHh (gh −N h(vh)) +NH
(
vH
)

• Implement the FAS-NMG method on the coarse-grid problem:[
vH
]
← FASCYC

(
vH , zH , gH , α1, α2, ω,maxS, ν1, ν2

)
• Add the coarse-grid corrections:

vh ← vh + IhH
(
vh − ũH

)
• Post-smoothing:

For k = 1 to ν2,
[
vh
]
← Smoother(vh, zh, gh, α1, α2, ω,maxS)



Chapter 3

Numerical results and discussion

3.1 Introduction

In this chapter, we carry out numerical experiments from several test cases for both synthetic

and real US images to

(i) compare the restoration results of the proposed model in (2.2) with the state-of-the-art

models for SN removal in the literature;

(ii) illustrate the overall performances of the five numerical methods discussed in Chapter

2; and

(iii) to assess the accuracy and efficiency of our proposed FAS-NMG technique with re-

gard to parameter changes.

We note first that all numerical algorithms for Methods 1 − 5 were implemented

in MATLAB (version R2011a) and run on a MacBook Air under OS X 10.10, at a 1.4

GHz clock speed and equipped with an Intel Core i5 and 4 GB of RAM. Second, a peak

signal to noise ratio (PSNR) and a relative error (ReErr) of a restored image are used for

the evaluated experiments by measuring the quality of the restored images or the ability to

37
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(a) Ring (b) Lena (c) Pepper

Figure 3.1: The original test images.

reduce SN from the given noisy images. The PSNR and ReErr are defined as follows:

PSNR = 20 log10

[
maxu0√
MSE

]
, (3.1)

ReErr =
∥u− u0∥22
∥u0∥22

, (3.2)

where

MSE =
1

n2

n∑
i=1

n∑
j=1

((u)i,j − (u0)i,j)
2
2 ,

u0 andu are respectively the vectors of u0 the original (clean) image and the restored image

u . Here maxu0 represents the maximum intensity value that exists in the original image.

(u0)i,j and (u)i,j are the sample values of the original image and the restored image at a

sample point (x1i , x2j).

3.2 Comparison with other SN removal models

The standard test images: “ring”, “Lena” and “pepper” are used in this section to compare

the performance of SN removal models in the literature and the one proposed in Chapter

2 as part of this thesis. The sizes of the three images are all the same which is 256 × 256

pixels. The noise formation model in (1.4) is being assumed for creating the noisy versions
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of the images. The stopping criterion of the SN removal models under consideration is that

the relative difference between the successive iterates of the restored image should satisfy

the following inequality: ∥∥u[m+1] − u[m]
∥∥2
2

∥u[m]∥22
< 10−4. (3.3)

We remark that there are two regularization parameters α1 and α2 in the proposed

model. In order to reduce the computational time in the search for good regularization pa-

rameters, we fix α1 in all the tests, typically α1 = 10−4. Therefore, we need only determine

the best value of α2 for their tested values such that the relative error of the restored image

u(α2) with respect to the original image u is the smallest, i.e.,

∥u(α2)− u0∥22
∥u0 ∥22

is the smallest among all tested values of α2.

3.2.1 Experiments on synthetic images

Fig. 3.1 shows the original test images to be used here for the performance test in removing

SN by various models.

In Fig. 3.2, we compare the performance of the proposed model with those by

KKWV and HY models using the test image “ring” degraded with the standard deviation

σ2
n = 10, 15 and 20, respectively. The first row in the figure shows the degraded images

with different SN strength. The second row shows the SN removal capability of KKWV

model for the noisy images shown in the first row of the figure. The third row illustrates

the performance of HY model and finally the last row shows the restoration results by the

proposed model under various SN noise strength. Obviously, as the SN strength increases

the proposed model is significantly much better than those by other SN removal models in

terms of visual appearance.

Similarly the SN removal capacity of the models considered here is further demon-

strated in Figs. 3.3−3.4 for the test images “Lena” and “pepper”. The performance (in

terms of SN reduction) of the proposed model is further well presented in these results.



40

Figure 3.2: Noisy and restored images (image: ring): ROW 1: image corrupted by SN with the

standard deviation σ2
n = 10, 15 and 20, respectively; ROW 2: images restored using KKWVmodel;

ROW 3: images restored using HY model; ROW 4: images restored using the proposed model.
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Figure 3.3: Noisy and restored images (image: Lena): ROW 1: image corrupted by SN with the

standard deviation σ2
n = 10, 15 and 20, respectively; ROW 2: images restored using KKWVmodel;

ROW 3: images restored using HY model; ROW 4: images restored using the proposed model.
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Figure 3.4: Noisy and restored images (image: pepper): ROW 1: image corrupted by SN with the

standard deviation σ2
n = 10, 15 and 20, respectively; ROW 2: images restored using KKWVmodel;

ROW 3: images restored using HY model; ROW 4: images restored using the proposed model.
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Image PSNR0 PSNR PSNR PSNR

KKWV HY Proposed Model

Ring 25.72 37.96 38.37 39.30

Lena 24.10 25.50 26.10 28.97

Pepper 25.03 28.18 30.16 32.02

Table 3.1: SN removal models evaluated using PSNR. Test images with the size 256×256 corrupted

by the SN generated by (1.4) with the noise standard deviation σ2
n = 10. Recall that the last three

columns show the PSNR using various SN removal models. PSNR0 means the PSNR computed

from the original image u0 and the initial image u(0) = z. Here the regularization parameters for all

models were well-selected.

Image ReErr0 ReErr ReErr ReErr

KKWV HY Proposed Model

Ring 2.01× 10−2 1.51× 10−3 1.37× 10−3 1.11× 10−3

Lena 2.01× 10−2 1.45× 10−2 1.26× 10−2 6.56× 10−3

Pepper 2.31× 10−2 1.11× 10−2 7.10× 10−3 4.62× 10−3

Table 3.2: SN removal models evaluated using ReErr. Test images with the size 256×256 corrupted

by the SN generated by (1.4) with the noise standard deviation σ2
n = 10. Recall that the last three

columns show the ReErr using various SN removal models. ReErr0 means the ReErr computed

from the original image u0 and the initial image u(0) = z. Here the regularization parameters for all

models were well-selected.

Tab. 3.1 and Tab. 3.2 show respectively the PSNR and ReErr of the restored images

produced by the proposed model and other SN removal models for different test images.

In this experiment, the test images are corrupted by a SN with the noise standard deviation

σ2
n = 10. As expected, it is clear that the PSNR and ReErr of the restored images are much

better for the proposed model compared with those of other models considered here.

Fig. 3.5 shows a one-dimensional profile of the image: “ring” (128th column with
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256 rows) treated with other models and the proposed one. The original, noisy and restored

images are shown in the figure with the noise standard deviation σ2
n = 10, 15 and 20. It can

be observed from Fig. 3.5 that all models can be used to remove SN from the noisy images.

However, as the SN strength increases the proposed model yields better restoration quality

for reducing SN.

Fig. 3.6 shows the enlarged portions of the image Lena in the homogeneous of

regions. The first row shows the enlarged portion in the image Lena and its noisy version

with the noise standard deviation σ2
n = 10 in the selected region. The second row shows

the restoration results by KKWV and HY models and the proposed model. We can see

that while KKWV and HY models produce the undesirable blocky (staircase) images, the

proposed model has recovered the image without causing any staircase effect. This fact is

evident from the homogeneous regions presented in these enlarged images.
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Figure 3.5: Row profiles plotted for image “ring” is selected at the 128th column with 256 rows,

for display at (a) σ2
n = 10; (b) σ2

n = 15; and (c) σ2
n = 20.
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(a) (b)

(c) (d) (e)

Figure 3.6: Enlarged portions of the image Lena: (a) original image; (b) noisy image with σ2
n = 10;

(c) results by KKWV model; (d) results by HY model; and (e) results by the proposed model.
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Figure 3.7: Comparison with different SN removal models on a real US image of a baby. Top row

(from left to right): original image; restored image by proposed model; bottom row: restored image

by KKWV model; restored image by HY model.

3.2.2 Experiments on real US images

In this part, we test the performance of the proposed model and compared with other two

models using three real US images, “baby”, “liver” and “kidney”. These real US images

from differentmedical applications are the same sizewhich is 256×256 pixels and corrupted

with unknown SN strength.

The first rows in Figs. 3.7−3.9 show the real US images and the restored images by

the proposed model. The last rows in Figs. 3.7−3.9 show the restored images by KKWV

and HY models.

Figs. 3.10−3.12 (from top-to-bottom) show the corresponding signal of one column

128 and the restored signal by KKWV model, HY model and the proposed model. As is

evident from Figs. 3.7−3.9, the proposed model restores the real US images with a better

visual quality reduced amount of SN in comparison with the other models. Moreover, Figs.
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Figure 3.8: Comparisonwith different SN removal models on a real US image of a human liver. Top

row (from left to right): original image; restored image by proposed model; bottom row: restored

image by KKWV model; restored image by HY model.

3.10−3.12 indicate that the staircase effects are observable in the restored images produced

by KKWV and HY model, whereas the staircase effect is not so evident in the images

resulting from our proposed model.

3.3 Performance tests among Methods 1−5

To illustrate the performance of Methods 1−5, the three test images with the 256 × 256

pixels as shown in Fig. 3.1 are used here and distorted by a SN with σ2
n = 10. All methods

starts with the same initial solution u[0] = z. In this section we will use following common

stopping rules:

1) Stop(1) = ||g −N (u(new))||L2(Ω)/||g −N (u[0])||L2(Ω) < 10−4.

2) Stop(2) = |PSNR(u(new))− PSNR(u(old))| < 10−6.
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Figure 3.9: Comparison with different SN removal models on a real US image of a human kid-

ney. Top row (from left to right): original image; restored image by proposed model; bottom row:

restored image by KKWV model; restored image by HY model.

3) Stop(3) = |Jα1,α2(u
(new))− Jα1,α2(u

(old))| < 10−6.

4) Stop(4) = (iter ≥ 1000).

Recall that u(new) and u(old) represent the restored images from the current and previous

iterations and “iter” denotes for the number of iterations used by Methods 1−5.

For Methods 1−2, the parameter τ needs to be given to start up our time marching

algorithms. Although wemay obtain better restoration results for very small values of τ , the

algorithms will be time-consuming. In contrast, if it is set to be very large, the algorithms

will not converge. In this section, we found experimentally from several cases that setting

τ = 5×10−5 is an appropriate choice which can make a good balance between the run times

and the SN removal performance. For Method 3, we also found experimentally that the FP

parameters, (ω,maxSOR) = (1.2, 4), (ω,maxFP) = (1.3, 2) and (ω,maxSOR) = (0.9, 2), are

optimal in leading to fast convergence and visually pleasing restoration results for GFP,
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Figure 3.10: Corresponding signals of one column 128 of the baby image as shown in Fig. 3.7.

Top row: recovered signal by KKWV model; middle row: recovered signal by HY model; bottom

row: recovered by the proposed model.
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LFP and CGLFP methods, respectively. As can be seen, Method 3 is more efficient than

Methods 1 and 2. Further, we had applied these sets of parameters with Methods 4 and 5.

We found first that restoring by Method 4 with maxc = 1000 and maxF = 100 outperforms

other choices of these parameters in terms of visual appearance and computation time for

SN removal performance. However, Method 4 is better than Method 2, but it is less effi-

cient than Methods 1 and 3. As expected, applying these FP parameters in our FAS-NMG

framework with the MG parameters, the pre-smoothing step ν1 = 7 and the post-smoothing

step ν2 = 7, leads to convergent MG methods for Method 5. Obviously, Tab. 3.3 shows

that Method 5 with the GFP smoother is the fastest way in our tests for solving the discrete

nonlinear system (2.15) and producing good restoration results.
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Figure 3.11: Corresponding signals of one column 128 of the liver image as shown in Fig. 3.8.

Top row: recovered signal by KKWV model; middle row: recovered signal by HY model; bottom

row: recovered by the proposed model.
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Figure 3.12: Corresponding signals of one column 128 of the kidney image as shown in Fig. 3.9.

Top row: recovered signal by KKWV model; middle row: recovered signal by HY model; bottom

row: recovered by the proposed model.
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3.4 Further performance tests on Method 5

In this section we present some results obtained fromMethod 5 or our proposed FAS-NMG

method summarized in Algorithm 4 to show that its convergence properties are reliable with

regard to parameter changes.

3.4.1 h−independent test

One of the key properties of MG techniques is that their convergence does not depend on

the number of grid points.

As shown in Table 3.3, GFP smoother with the parameters ω = 1.2 and maxSOR = 4

is recommendable for our FAS-NMG framework in terms of fast convergence. Thus, in this

test we designed our experiments to investigate the convergence property resulting from this

GFP smoother. Here “N” represents the number of MG steps (cycles) used in Algorithm 4

with the stopping parameters −→ε = (20, 10−4, 10−3, 10−4). The PSNR values and the run

times are given in Table 3.4 with different sizes of grid points. Recall that ν1, ν2, ω, maxSOR,

PSNR and CPUs denote the number of pre-smoothing and post-smoothing, the relaxation

parameter, the maximum number of the inner iteration, the peak signal-to-noise ratio and

the run times (in seconds), respectively.

As expected, the numerical results shown in Table 3.4 clearly confirm that the pro-

posed FAS-NMG method is h−independent.

3.4.2 Signal−dependent tests

Table 3.5 shows the robustness of our SN removal model and the proposed FAS-NMG

method in Algorithm 4 for different noise levels.

Here we tested our proposed FAS-NMG method with the GFP smoother using the

parameters h = 1/256, ϵ = 10−2, ν1 = ν2 = 7, ω = 1.2, maxSOR = 4 and −→ε =

(20, 10−4, 10−3, 10−4) for all tests on the image ring.

As can be clearly seen, although convergence is slower for noisier images, the PSNR
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Image MG with the GFP Smoother (Alg. 1)

ν1/ν2/N/PSNR/CPUs

Ring α1 = 10−4, α2 = 10−3, ϵ = 10−2

h = 1/128 7/7/4/38.15/0.57

h = 1/256 7/7/5/39.03/2.62

h = 1/512 7/7/5/40.22/11.03

h = 1/1024 7/7/5/41.21/42.96

Lena α1 = 10−4, α2 = 5× 10−4, ϵ = 10−2

h = 1/128 7/7/3/28.66/0.59

h = 1/256 7/7/3/28.96/1.37

h = 1/512 7/7/3/29.15/5.40

h = 1/1024 7/7/3/29.45/22.83

Pepper α1 = 10−4, α2 = 5× 10−4, ϵ = 10−2

h = 1/128 7/7/3/30.63/0.42

h = 1/256 7/7/3/32.02/1.36

h = 1/512 7/7/3/32.26/5.43

h = 1/1025 7/7/3/32.46/21.92

Table 3.4: Restoration results of Algorithm 4 (Proposed FAS-NMGmethod) with theGFP smoother

for the synthetic images in Fig.3.1 corrupted by SN with the standard deviation σ2
n = 10. Recall

that ω = 1.2 and maxSOR = 4 were used in the GFP smoother.

and ReErr values show that the restored images would come with good quality. Moreover,

the number of MG steps does not increase very much.
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σ2
n 1 5 10 15 20

N 3 4 5 5 5

PSNR 57.19 45.75 39.30 36.11 34.20

ReErr 1.81× 10−5 2.52× 10−4 1.11× 10−3 2.32× 10−3 3.60× 10−3

Table 3.5: Restoration results for signal−dependent tests of Algorithm 4 (Proposed FAS-NMG

method) with the GFP smoother for the image ring shown in Fig. 3.1. Note the regularization

parameters for all tests were well-selected.

3.4.3 α1/α2−dependent test

Next we evaluate to show how our FAS-NMG method in Algorithm 4 is affected with

varying ᾱ = α1/α2.

To this end, the MG algorithm based on the GFP smoother was tested on the image

ring (see Fig. 3.1) with the results shown in Table 3.6. Here the following parameters

are used: ϵ = 10−2, h = 1/256, ν1 = ν2 = 7, ω = 1.2, maxSOR = 4, σ2
n = 10 and

−→ε = (20, 10−4, 10−3, 10−4) for all experiments and ᾱ is varied from 0.01 to 100.

As can be seen from Table 3.6, decreasing the values of α2 leads to the best restora-

tion result at ᾱ = 0.2. Moreover, we can also see that large ᾱ is not needed as small ones

give better results, typically ᾱ = 0.1, 0.2, 0.5, 1, and 2. We note that the process to select

the optimal value of ᾱ is a separate but important issue because it is in general unknown

a priori and it significantly affects on the qualities of restored images as well as the MG

performance.
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α1
α2

10−4

10−2
10−4

10−3
10−4

0.5×10−3
10−4

0.2×10−3
10−4

10−4
10−4

0.5×10−4
10−4

0.2×10−4
10−4

10−5
10−4

10−6

ᾱ 0.01 0.1 0.2 0.5 1 2 5 10 100

N 15 5 4 4 3 3 n.c. n.c. n.c.

PSNR 28.68 39.30 40.22 34.98 31.38 29.69 ∗ ∗ ∗

ReErr 1.28 × 10−2 1.11 × 10−3 8.90 × 10−4 3.00 × 10−3 6.89 × 10−3 1.01 × 10−2 ∗ ∗ ∗

Table 3.6: Restoration results for α1/α2−dependent tests of Algorithm 4 (Proposed FAS-NMG

method) with the GFP smoother for the image ring shown in Fig. 3.1. Clearly, the small ratios

between α1 and α2, i.e. ᾱ = 0.1, 0.2, 0.5, 1 and 2, are recommended.

3.4.4 ϵ−dependent test

As is well known, the qualities of restoration results and the performance of the MG tech-

niques in solving the nonlinear systems related to the TV regularization method are affected

significantly by the values of ϵ.

Here our aim for this test is to see how the proposed variational model and FAS-

NMG algorithm are affected with varying the values of ϵ. To see this, the MG algorithm

based on the GFP smoother was tested on the image ring using the following parameters

h = 1/256, α1 = 10−4, α2 = 10−3, σ2
n = 10, ν1 = ν2 = 7, ω = 1.2, maxSOR = 4 and

−→ε = (20, 10−4, 10−3, 10−4) for all experiments and ϵ is varied from 10−4 to 5× 10−1.

As can be seen, Table 3.7 shows that our FAS-NMG method with GFP smoother

converges within a few MG steps for ϵ ∈ [10−4, 5 × 10−1]. Theoretically, ϵ should be

selected to be very small as much as possible. However our experimental results indicate

ϵ 5× 10−1 2.5× 10−1 10−1 10−2 10−3 10−4

N 5 5 5 5 5 5

PSNR 38.08 38.40 38.75 39.30 39.51 39.57

ReErr 1.47× 10−3 1.37× 10−3 1.26× 10−3 1.11× 10−3 1.05× 10−3 1.04× 10−3

Table 3.7: Restoration results for ϵ−dependent tests of Algorithm 4 (Proposed FAS-NMGmethod)

with the GFP smoother for the image ring shown in Fig. 3.1. Clearly, ϵ = 10−2 is enough to remove

this kind of SN with the good PSNR results in a few MG steps.
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that very small ϵ is not necessary and not recommendable. As clearly shown in Table 3.4,

ϵ = 10−2 is enough to remove this kind of noise with the good PSNR and ReErr results.

We note GFP smoother can lead to better MG convergence for the case ϵ < 10−2 when the

number of pre- and post-smoothing steps ν1 and ν2 are increased.



Chapter 4

Conclusion and future work

The main focus of author’s work presented in this thesis is to study effective variational

models and their efficient solution methods for removing SN from real US images. We

have presented an improved variational model for removing SN from real US images based

on the TV and WTV regularization methods. The existence and uniqueness of the solution

for the improved variational model have also discussed. In order to solve the associated

EL equation, we have proposed several numerical methods. Numerical tests confirmed that

the model delivers better restoration results than the competing models and very impor-

tantly its MG solution is fast, robust and reliable in providing visually pleasing restoration

results. There are still outstanding issues with our proposed model and algorithms; among

others optimal selection of α1 and α2 is to be addressed. Future work will also consider

generalization of this work to other image processing problems.
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