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Chapter 1

Introduction

In this chapter, we introduce some definitions and notations used in this thesis.
Most of them follows Clark and Helton[3] and Chartrand and Oellermann[4].

A graph G = (V(G), E(G)) consists-of two finite sets : V(G), the vertex
set of the graph which is a nonempty set of elements-called vertices and E(G),
the edge set of the graph-which is a possibly empty set of elements called edges
such that each edge e in E(G) is assigned an unordered pair of vertices (u,v),
called the end vertices of e. An edge that joins itself is a loop. If two (or more)
edges of G have the same end vertices then these edges are called parallel. A
graph is called simple-if it has-no loops and no parallel edges. Let G denote a
simple graph with avertex set V(G).and an edge set F(G). If e = uv is an edge of
a graph G, then we say that u-and v-are adjacent; and we say that e and u (and
e and v) are incident with eéach other. The complement G of G is defined to be
the simple graph with the same vertex set as'G' and where two vertices u and v are
adjacent precisely when they-are not-adjacentin G: The-open neighborhood
Ne(v) of a vertex w consists of the set of vertices adjacent to v and the closed
neighborhood of v denoted by N¢[v] is Ng(v) U {v}+ Further, Ny (v) denotes
either Ng(v) M V(H). if H is a'subgraph of G-orNg(v) N H if H'is a subset of
V(G). For simplicity, N¢(v) denotes non-open-neighborhood of v in G such
that if + € Ng(v) for v € V(G) — {v}; then zv & E(G). Let v be a vertex of
the graph G, the degree d(v) of.w is the number of edges of G incident with wv.
In other words, it is the number of times-which v is an end vertex of an edge.
For a graph G, we let A(G)=max{d(v) : v is a vertex of G}. Thus, A(G) is the
maximum degree of G.

Let H be a graph with vertex set V(H) and edge set E(H ) and, similarly, let
G be a graph with vertex set V(G) and edge set E(G). Then H is a subgraph of
Gif V(H) CV(G) and E(H) C E(G). The induced subgraph of G with vertex
set S C V(G), denoted by G[S], is the graph with the vertex set S and the edge
set of G[S] consists of all the edges of G with both end vertices in S. Two simple
graphs GG} and G, are isomorphic if there is a one-to-one function ¢ from V(G,)
onto V(Gs2) such that uv € E(Gy) if and only if ¢(u)d(v) € E(Gy). If Gy and G
are isomorphic, then we write G; = (G5. The function ¢ is called an isomorphism.
If G is a graph of order n and every two distinct vertices are adjacent, we say that
G is a complete graph and is denoted by K,. If the vertex set V(G) can be



partitioned into two nonempty subsets X and Y (X UY = V(G) and X NY = ()
in such a way that each edge of G has one end in X and one end in Y then G
is called bipartite. The partition V(G) = X UY is called a bipartition of G.
A complete bipartite graph is a simple bipartite graph G, with bipartition
V(G) = X UY, in which every vertex in X is joined to every vertex in Y. If X
has m vertices and Y has n vertices, such a graph is denoted by K, .

Let G; and G5 be two graphs with no vertex in common. We define the
join of G| and GG, denoted by GG VG5, to be the graph with vertex set and edge set
given as follows : V(G VGy) = V(G)UV(Gs), E(G1VGy) = E(G)UE(Gy)UJ
where J = {x 25|z, € V(G) and 9 € V(G2)}. Thus J consists of edges which
join every vertex of (G to every vertex.of Gj.

A walk in a graph G is an alternating sequence of vertices and edges,
begining and ending with vertices A walk in which no vertex is repeated, is
called a path. Let v and v be vertices in a graph G. We say that u is connected
to v if G contains a u — v path. ‘We say that G is a connected graph if u is
connected to v for every pair u, v of vertices of G. For a pair u, v of vertices of G,
the distance dg(u, v) between u and vof G'is the length of a shortest v —v path in
G if such a path exists. Adiameter of G is given by maz{d;(u,v) : u,v € V(G)}.

Given any vertex « of a graph G, let C(u) denote the set of all vertices in
G that are connected to u. Then the subgraph of G induced by C(u) is called
a connected component containing u. We denote the number of components
and the number of odd components of G by w(G) and wy(G), respectively. For
S CV(G), Sis called a-cutset if w(G —.5) > w(G). If S = {v}.is a cutset, then v
is also called a cut-vertex. The toughness of a graph G, denoted by tough(G),
is defined as min{w(éi's) |S:C V(G)}.

A set of edges in a graph G is called a matching if no two edges have
a vertex in common. A matching M in G is called a perfect-matching if all
vertices of G are incident with some edge of M.

A set S € V(G).is independent if notwo vertices'in .S are adjacent. For
S CV(G), S is.a dominating set for G if every vertex of G either belongs to S
or is adjacent to a.vertex of S. An-independent dominating set in a graph is
a set that is both dominating and independent. The independent domination
number of G, denoted by i(G), is the minimum. cardinality of an independent
dominating set. We will write S =; G if S is an independent dominating set for G.
For any v € V(G), an independent dominating set for G — {v} is denoted by I,,.
For simplicity, if u € V(G) and T" C N¢[u], we shall write u >; 7. A graph G is
called n-i-vertex-critical graph if i(G) = n but i(G —v) < n for all v € V(G).
We also say that G is i-vertex-critical if G is n-i-vertex-critical for some n. The
concept of n-i-vertex-critical graphs was introduced by Ao [1] in 1994. Her results
concerning this concept are reviewed in Chapter 2.

The next two results are used in establishing our results in this thesis. They
are :

Theorem 1.1. [2/(Pigoenhole’s Principle)
If n 4+ 1 objects are put into n bozes, then at least one box contains two or
more of the objects.




Theorem 1.2. [5](Tutte’s Theorem)
A graph G has a perfect matching if and only if w,(G — S) < |S|, for all
S CV(G).

The next three chapters in this thesis provide some previous results and
our new results. More precisely, the previous results are contained in Chapter 2.
Chapter 3 and Chapter 4 contain new results where Chapter 3 provide charac-
terizations of connected 3-i-vertex-critical graphs with a minimum cutset S for
1 < |S| < 2. Properties of 3-i-vertex-critical graphs with a minimum cutset in
terms of the number of components and result concerning having a perfect match-
ing are in Chapter 4.



Chapter 2

Literature Review

In this chapter, we provide some previous studies concerning our study. As we
mention in Chapter 1 that the concept of n-i-vertex-critical graphs was introduced
by Ao [1]. In her study, she established some properties of n-i-vertex-critical
graphs. She characterized n-i-vertex-critical graphs for n = 1 and n = 2. It
is shown that 1-i-vertex-critical graphs are K and 2-i-vertex-critical graphs are
complete graphs K5, without a perfect matching for some positive integer n.
The following five results established by Ao[l] are fundamental results used in
establishing on results.

Lemma 2.1. [1] A graph G isn-i-vertex-critical if and only if for everyv € V(G),
i(G—v)=n—-1

Lemma 2.2. [1] If G is-i-vertez-critical, then every vertex v.€ V(G) belongs to
some minimum independent dominating set.

Lemma 2.3. [1] If there: exist distinct vertices-u,v & V(G) such that Nglv] C
Ne¢lu], then G is not i-vertez-critical.

Lemma 2.3 can be-restated as :' If G s i-vertex-critical, then for each
v € V(G), thereds now # v’ € V(@) such that-N¢[v]C Nelv']:

Corollary 2.4. [1]'If G has a vertex v-with dg(v) >-1 such that G[Ng[v]] is
complete, then G is not n=i-vertex-critical.

Corollary 2.5. [1] If G is connected and n-i-vertez-critical, then the minimum
degree of G is greater than or equal to 2.

In 2013, Wang][6] provided the upper bound on the diameter of n-i-vertex-
critical graphs.

Theorem 2.6. [6] If G is a connected n-i-vertez-critical graph, then diam(G) <
2(n—1).



In this thesis, we provide characterizations of connected 3-i-vertex-critical
graphs with a cutset S for 1 < |S| < 2 and we study toughness result in 3-i-
vertex-critical graphs. These results are in Chapter 3 and Chapter 4.

Our latest search shows that there are no other results concerning n-i-
vertex-critical graphs besides results stated in Lemma 2.1 - Theorem 2.6. Hence,
our results are new.



Chapter 3

Characterizations of connected
3-i-vertex-critical graphs with

a minimum cutset. of small order

In this chapter, we provide characterizations of connected 3-i=vertex-critical graphs
with a cutset S for 1 < {5} < 2. We begin our chapter with classes of connected
3-i-vertex-critical graphs:

3.1 Classes of connected 3-i-vertex-critical
graphs
In this section, we present-five classes of connected 3-i-vertex-critical graphs.

Class .77

For positive integers m and n and for G € ¢, let G be a graph of
order 2m + 2n + 3'where V(G) = X' U ¥ U{u, v;w}and | X| = 2m and |Y| = 2n.
Form complete graphson X and Y with a perfect matching deleted. Join v to
every vertex of X ; join w to every vertex of Y and-finally join u to every vertex of
XUY. Observe that for G € 77, (G is a connected 3-i-vertex-critical graph contain-
ing u as a cut-vertex. Further, w(G —u) = 2. Figure 1 illustrates our construction.

Class %

For positive integers m and n, let G be a graph of order 2m +2n+5
where V(G) = XUY U{u,v,w,z,y} and | X| = 2m and |Y| = 2n. Form complete
graphs on X and Y with a perfect matching deleted. Join w to every vertex of
X UY ; join u to every vertex of X U {z,y} and finally join v to every vertex
of VY U{xz,y}. Let G € Z where V(G') = V(G) and E(G') = E(G) U E' where
E' C {e = x*y*|z* € Xandy* € Y'}. Note that if E' = (), then G' = G. Tt is not
difficult to show that G' € Z is a connected 3-i-vertex-critical graph where {u, v}



is a minimum cutset. Observe that w(G' — {u,v}) = 3 and G’ — {u, v} contains
exactly two singleton components. Figure 2 illustrates our construction.

(7
Ko —a Ky —a
perfect perfect
matching matching
X Y
v w

Figure 1. The structure of a graph in .7

€r Y
Uu ()
Kva —a A"Zn —a
perfect perfect
matching matching
X Y
w

Figure 2: The structure of a graph in Z where E' = ()

Note that in our diagrams, in the rest of this section, double line denotes
the join, the vertices that are adjacent to both u and v are represented by the
triangle vertices while the vertices that are adjacent to u but not v and » but not
u are represented by the cross and diamond vertices, respectively.



Class . #

For a positive integer n and non-negative integer m and for G € .#,
let G be a graph of order 2m + 2n + 5 where V(G) = X UY U{u,v,y, 1,25}
and |X| = 2m and |Y| = 2n. Let § # Y; C Y. Now join u to every vertex of
{v,22} UX UY ; join v to every vertex of {z1} U X UY] ; join y to every vertex
of Y and then add the edge z,75. Further, if X # (), join each vertex of X to
every vertex of {z1,z5} and then form a complete graph on X with a perfect
matching deleted. Now form a complete graph on Y with a perfect matching
F = FiUFy,U F; deleted where Fy = {y1y2 € E(G)|y1,y2 € Ny(u) — Ny (v)}, Fy =
{y192 € E(G)|y1, 42 € Ny (u) N Ny (v)}o B = {y1y2 € E(G)|yr € Ny (u) — Ny (v)
and yo € Ny(u) N Ny(v)} and F; might be empty for 1 < i < 3. Note that if
Y1 =Y, then F = F, and if ¥; # Y, then £, U F5 #{). Observe that G € .4 is a
connected 3-i-vertex-critical with a cutset {u; v} where w(G — {u,v}) = 2. Figure
3 illustrates our construction.

K>, — a perfect K>, — a perfect
matching matching
Y

G € A where Y=Y

K5, — a perfect
matching

G € M where Y1 #Y

Figure 3: The structure of a graph in .#



Class A4

For non-negative integers m and n; > 1 where 1 <17 < 6, let H be
a graph of order 2m + Zle 2n; + 5 where V(H) = X U U?:1 Y U{u,v,2,y, 2},
| X| = 2m and |Y;| = 2n,; for 1 < i < 6. Let H[Y;] = Kb,, — a perfect matching.
Further, for 4 < i < 6, let Y; = Y; UY, where H[Y;] = H[Y]| = K,,. Join u
to every vertex of X UY, UYs U Y, UY] UY{ U {y} ; join v to every vertex of
XUY,uYsuY/uUY;UY{U{x};join x,y to every vertex of X ; join z to every

vertex of Y = U?:l Y; and then add the edge zy.

Further, if X # (), then form a complete graph on X with a perfect match-
ing deleted. The class .4 consists of G, G% for 1 < i < 32, where G; and G are
constructed from induced subgraph'of H as follows

G1 = H[{u,v,z,y, 2z} U Yg]

Go = H[{u,v,z,y,z} U Y7 U Y]

Gs = Hl{u,v,z,y, 2z} U YT UY5]

G4 :H[{U,U,l‘,y,z}UYiUYéUYé]

G :H[{U,U,l’,y,Z}UY},UYE;]

G6 :H[{U,U,,I,y,Z}UKUY})UYé]

G7 = Hl{u,v,z,y, 2} UY; UYoUYs]

GS —H[{U7U,I,y,Z}UKU}/2UY})U}/6]
Gy = H{u,v,a,y,2} UY50Y)]
GlOZH[{uﬂ'%xay?Z}UYZIUYvG]

GH:H[{U,’U,(L',’LI/,Z}UY&UY&UY;I]

G1o = H[{u,vy2,9, 2} U Yo UY, U Y]

Gz =H[{u,v,z,y,2+UY; UY,; UYs]

Gy = H{uw,2,y,2} U UY; U Y, U Y]

G15:H[{U,U,$,y,Z}US/QUY})UH]

G16:H[{U7U7xay7z}UYE’>UY;LUYV6]

Gir = H[{u,v,z;y;2} UYe U Y3 U Y, U Y]

Gig = H[{u,v,%,y, 2} U] UY, UY3U Y]

Gig = H[{u,v,z,y,2pU YT U Y3 UY, U Y]

G20:H[{U,U,l‘,y,Z}UYiUY&UY},UY;LUYVG]

G21:H[{U,U,$,y,Z}UYZIUY},]

Goy = H[{u,v,z,y,2} UY; U Y5 U Y]

Gos = H[{u,v,z,y,z} UY; UY, UYj]

Goy = H[{u,v,2,y,2} UY; UY, U Y, U Y3]

G25:H[{u,v,x,y,z}USﬂU}@Ul@U%]

G26:H[{U7U7$>y7z}uiflUS/QUHUS{’)U%]

G27:H[{U7U7xay7Z}UYE’»UnUYv5]

Gogs = H[{u,v,z,y,z} UY; UY3 U Y, U Y3]

G29:H[{u,v,x,y,z}U%UﬁU%UYG]

Ggo:H[{U,'U,.T,y,Z}UYiUEUY},UHUYB]
HI

G31: {U,U,$,Z/,Z}UKU%UHU%U%]
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Gsy = H[{u,v,2,y,2} UY; UYo UY5U Y, U Y5 U Y]
G = H[{u,v,z,y,2} UX U Y]

GY = H[{u,v,z,y,2} UX UY] UY]

Gy = H[{u,v,7,y, 2} UX UY] UY)]

G = H[{u,v,z,y,2} UX UY; UYyU Yg]

Gy = H[{u,v,7,y, 2} UX UY3 U Y]

Gy = H[{u,v,2,y,2} UX UY; UY; U Y]

Gt = H{u,v,z,y,z} UX UY] UY;, UYs]

Gy = H{u,v,z,y,z} UX UY; UY, UY;U Y]

Gy = H[{u,v,2,y,2} UX UYo U Y]

Gy = H[{u,v,2,y,2} UX UY, UY]

Gy, = H{u,v,z,y,2} UX UY; WY U Y]
Gy = H{u,v,z,y, 2} U X UYoU¥, UYq]
Gy = H{u,v,z,y,2} U X UYL U¥,U Y]
Gy = H{u,v,z,y,2} U X UY, UY; U Y, U Y]
Gy = H{u,v,z,y, z} U XU Yy UY3 U Y]
Gl = H{u,v,z,y, 2 UX UY3U Yy U Yg]
G, = H{u,v,z,9,23U X UY, UY;UY, UYg]

Gy = H{u,v,2,y, 2} U X UY UY, U Y U Yy

Gl = H{u,v,2,y, 2} UX UY, UY; U Yy UYs]

Gy = H[{u, v, 2,y,2}UX UYrUY5 UY; UY, UY)

Gy = H[{u,v,27y, 2} U XU YyUY5)

Ghy = H{u,v,2,y,2} UX UY, U¥; U Yy

Ghy = H[{usv, 2,9,z UX UY] UY, UYs]

Gh, = H{u,vy2,y, 2} U X UY] U Y, U, U Ys]

Ghs = H[{w;v,0,9, 2} U X UYL U YU Y5 U Y]
GIZG:H[{uav7zay7Z}UXU}/1UYVQU}QU}%UYVG]

G, = H{uyw, zyy,2} UX UY; UY, U Yz]

Ghs = H{us v, %, 1,2 U X U YU YUY, U Ys]

Ghy = H{usv,x, y, 2} U XU Y3 U YU YsU Y]

Gy = H[{u, v, 2,92} UX WY1 U Y, 05U Y, U Y5

Ghy = H[{u, v;a,y,2} UX 0¥ UY3U Y4 U Y5 U Y5

Ghy = H[{u,v, 7,5, 230 XU Y, UV, UY; UYyU Y5 U Y]

Observe that GG; and G belonging to .4 are connected 3-i-vertex-critical
having {u,v} as a minimum cutset and w(G — {u,v}) = 2. Figure 4 shows the
graphs G4, G}, G99 and G,.

Class 0

For positive integers m,n and k, let G be a graph of order 2m +
2n + 2k + 3 where V(G) = X UY U Z U {u,v, z} where |X| = 2m, |Y| = 2n and
|Z| = 2k. Form complete graphs on XY and Z with a perfect matching deleted.
Join u to every vertex of X UY ; join v to every vertex of X UZ ; and finally join 2
to every vertex of YUZ. Let G' € & where V(G') = V(G) and E(G') = E(G)UE'
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where E' C {e = yz|y € Yand z € Z}. Note that if E' = (), then G’ = G. It is
easy to see that G’ € & is a connected 3-i-vertex-critical graph having {u, v} as a
minimum cutset and w(G’ — {u,v}) = 2. Figure 5 illustrates our construction

Ky, — a perfect
matching

U v
X X * *
xle 0Y20 Y x x| o *

X *wn

Y
z
z
!

* 1 —A * 1 —A % 1 —¢
x1-a f et-a | xl-e .,
Y, Y,|Y; Y Y5 Y,
z
Ky, — a perfect
matching
X 1 —A -1 -a * 1 —¢
et-a f -2 | xl-o .,
Y, Yi|Ys Y5 Yy Ys

! z
22

Figure 4: Some graphs in the class A4
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Ky —a Ky, —a Ky, —a
perfect perfect perfect
matching matching matching

Figure 5: The structure of a graph in & where £’ = ()

3.2 Characterizations of connected 3-i-vertex-
critical graphs with a minimum cutset S
where 1 < |5] <2

In this section 'we provide characterizations,of connected 3-i-vertex-
critical graphs with a cutset..S for.|S| = 1.and |S| = 2. We begin with an easy
useful result.

Lemma 3.2.1. For-a positive integern > 2, let G be_an n-i-vertez-critical graph.
Then, for each v.€ V(G), 1,0 Nglv] =0

Proof. Suppose to the contrary that I, M Ng[v] # 0.7 Then there is a vertex
x € I, N Nglv]. Clearly; x # w. Since x € I, and zv '€ E(G), it follows that
I, »=; G, a contradiction_sinee |I,| = n — 1 but i(G) = n. This proves our
lemma. [l

Theorem 3.2.2. Suppose G is-a_connected 3-i-vertex-critical graph with a cut-
vertex u. Then w(G —u) =2 and G belongs to F defined in Section 3.1

Proof. Claim 1 : w(G —u) = 2.

Suppose to the contrary that w(G —u) > 3. Consider G — u. Since |I,| = 2
and w(G —u) > 3, it follows that I, does not dominate some component of G — u,
a contradiction. Hence, w(G — u) = 2 as required. This proves our claim.

Now G — u contains exactly two components, say C; and C5. It is easy
to see that I, NV (Cy) # 0 and I, N V(Cy) # 0. Put I, N V(Cy) = {v} and
I, NV (Cy) = {w}. By Lemma 3.2.1, vu ¢ E(G) and wu ¢ E(G). Further,
v >=; V(C1) and w =; V(Cs). Since G is connected, N¢, (u) # 0 and N¢,(u) # 0.
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Claim 2 : For each © € Ng,(u), there exists a unique vertex y € Ng, (u) such
that y € I, and y >; V(Cy) — {z} and yz ¢ E(G).

Let x € N¢, (u). Consider G — z. By Lemma 3.2.1, {v,u} NI, = 0 since
vr,ur € E(G). Then I, NV(Cy) # 0 and I, NV (Cy) # 0. Put {y} = L, NV (CY).
Then y >; V(C) —{z}. Observe that N¢, [v] = V(C) and V(C;) —{z} C N¢,[y].
If y ¢ N¢,(u), then Ne,[y] = V(Cy) — {z} and thus N¢,[y] C N¢,[v], contra-
dicting Lemma 2.3. Thus yu € E(G). If there is ¥’ € N¢, (u) — {y} such that
I, NV (Cy) ={y'}, then Ng[y'|=(V(C1) — {z}) U{u}=Ng[y], again contradicting
Lemma 2.3. This proves our claim.

Claim 3 : N¢,(u) = V(Cy) — {v}.
If there is a vertex x € V(C})—={v} where z ¢ N¢, (u), then Ng[x] C Ng[v].
But this contradicts Lemma 2.3. Hence, Claim 3 is proved.

The following claim follows immediately from Claims 2 and 3.

Claim 4 : G[V(C}) — {v}] = Ks,,- a perfect matching for some positive integer
m.

By similar arguments as in the proof of Claims 2,3 and 4, we have following
claims.

Claim 5 : For each £ € Ng,(u), there exists a unique vertex y € Ng,(u) such
that y € I, and y >, V(Cy) — {z} and ya ¢ E(G).

Claim 6 : N¢,(u) =V/(C0s)—{w}.
Claim 7 : GV (C5) —{w}] = Ks, - a perfect matching for some positive integer n.

By Claims 3,4,6. and. 7, G _belongs to. . as required. This completes the
proof of our theorem. n

We now turn-our attention to a minimum cutset-S where |S| = 2.

Theorem 3.2.3. Suppose G is-a. connected 3-i-vertex-critical graph and S is a
minimum cutset in G with |S| = 2. Then

(1) w(G—S) <3.

(2) If w(G — S) = 3, then there are exactly 2 singleton components in G — S and
G belongs to £, defined in Section 3.1.

Proof. Let S = {u,v} and let Cy, ...,Cy be components of G — S.

Claim 1 : Suppose t = w(G — S) > 3. If a € V(C;) for some 1 < i <t where
[V(C;)| > 2, then a ¢ Ng(u) N Ng(v).

Suppose to the contrary that a € Ng(u) N Ng(v). Then I, N {u,v} =0 by
Lemma 3.2.1. Thus, I, € J!_, V(Cy). Since |I,| = 2, ¢ > 3 and [V(C;) —{a}| > 1,
it follows that there is a component of G — S which is not dominated by I,, a
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contradiction. This proves our claim.
We are ready to prove (1).

(1) Suppose to the contrary that ¢t = w(G—95) > 4. lf uv € E(G), then v ¢ I, and
thus |I,| > 3, a contradiction. Thus uv ¢ E(G). Note that u € I, and v € I, since
w(G — S) > 4. Consider G —u. Then v must dominate at least ¢ — 1 components.
We may suppose without loss of generality that v >; UZ:Q V(C;). We next consider
G —wv. Since v =; J_, V(Ci) I,nU._, V(C;) = 0 by Lemma 3.2.1. Tt follows that
I, N V(Cy) # 0. Then u must dominate | J/_, V(C;). By Claim 1, |V(C;)| = 1 for
2 <i <t Let {z} = V(Cy). Then I,N{u;v} = @ and thus I, C J/_, V(Ci) — {z}.
But this is not possible since |I,| = 2/and ¢ = w(G — S) > 4. This proves (1).

(2) We now suppose that t = w(G —.5) =3I |[V(Cy)| = |V(Cy)| = |V(Cs)| =1,
then i(G) < 2 since S is a minimum cutset, a contradiction. Without loss of gen-
erality, we may assume that |V/(C4)| > 2. Choose 2 € N¢, (u). By Claim 1, zv ¢
E(G). Consider G — z. Clearly, v € I, since w(G— S) = 3and |V (Cy) —{z}| > 1.
Put {¢'} = I, — {v}. Wefirst-suppose that 2z’ ¢ V(C;). Without loss of generality,
assume that 2’ € V(Cy). Thenwv »; (V(Cy)—{2})UV(Cs). By Claim 1, N¢, (u) =
{z}. Now consider G — v. By Lemma 3.2.1, I, n/((V(Cy) — {2}) UV (C3)) = 0.
Since w(G — S) = 3, u € I, otherwise no vertex of I; dominates V' (C3). Then
the only vertex of I, — {u} dominates V (C}) — {z} since N¢,(u) = {z}. Con-
sequently, I, — {u}/={z}._ But this contradicts the fact that [, is independent
since z € N¢, (u). Hence; 2" € V(C}). Thusv =, V{(Cy) UV (C3). Since S is a
minimum cutset, N (u) #-0.for 1< 4 < 3.-It then follows, by Claim 1, that
V(Co)] = IV (Co)f =,

Put {a} = V(Cy) and {y} =V (C3). Since S isa minumum cutset, Ng(x) =
Ne(y) = {u,v}eSince w(G=.5) = 3, we I,and thusuv ¢ E(G). Consider G — z.
Then I, N {u, v} =40. Since N¢(y)={u, v}y €T, Put {w}=1,~{y}. Clearly,
w € V(Cy) since {y} = V(C5). Further, w >=; V(Cy). If uw€ E(G), then, by
Claim 1, vw ¢ E(G) and thus {w;v} is an independent dominating set for G, a con-
tradiction. Thus uw ¢ E(G). Similarly, vw ¢ E(G)«If there is w' € V(C}) such
that w'u ¢ F(G) and w'v ¢ E(G), then Ng[w'| C Nglw], contradicting Lemma
2.3. Hence, {w} = V(C}) — (N¢, (u) U N¢, (v)) or Ne, (u) UN¢, (v) =V (Cy) —{w}.
It follows by Claim 1 that N¢, (u) N Ne, (v) = 0.

Claim 2 : For each a € N, (u), there exists a unique vertex b € N¢, (u) such that
bel, and b >; N¢, (u) — {a}.

Let a € Ng,(u). Then au € E(G) and aw € E(G). By Claim 1,
av ¢ F(G). Consider G — a. It is easy to see that v € I,. Put {b} = I, — {v}.
Clearly, b € V(C,) — {a}. Then bv ¢ E(G) and thus b € N¢,(u). Note that
b >; N¢,(u) — {a} since N¢, (u) N Ng, (v) = (. If there is b’ € N¢, (u) — {b} such
that I, = {v,0'}, then Ng[V'| C Ng[b], contradicting Lemma 2.3. This proves our
claim.
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By similar arguments, we have the following claim.

Claim 3 : For each a € Ng, (v), there exists a unique vertex b € N¢, (v) such that
bel, and b>; N¢,(v) — {a}.

It follows by Claims 2 and 3 that G[N¢, (u)] & Ky, - a perfect matching
and G[Ng¢, (v)] 2 K, - a perfect matching for some positive integers m and n.
Therefore, G belongs to #Z. This completes the proof of our theorem. n

Lemma 3.2.4. Let G be a connected 3-i-vertez-critical graph with a minimum
cutset S where |S| = 2 and w(G — S)' = 2. Suppose S = {u,v} and G[S] = K.
Let Cy and Cy be the components of G —S. Then

(1) There exist x1, 9 € V(C) andy € V(Cy) such that Nglxi) = V(Cy) U {v},
Nelzo] = V(Ch1) U {u} and Nely] = VI(Cq).c Purther, V(Cy) — {x1, 22} =
Ne, (u)NNg, (v) and V (Cy)—{y}-= Ne, (0)UNgy (v). Consequently, N, (u) =
V(Cy) — {x1} and Ng,(v) =V (Ch) = {za}

(2) If |V (Cy)—{x1, 22} > 15 then GV (Ch) —{zi, 25} = Ks,- a perfect matching
for some positive integern.

(3) u=; V(Cy) — {y}or v=; V(Cy) ={y}.
(4) GV (Cy) — {y}] & Kom=a perfect matching for-some positive integer m.

Proof. (1) Consider G—u. Clearly, by Lemma 3.2.1,0-¢ I, and then I,NV (C}) # ()
and I, N V(Cy) % 0. Put-I, N V(Cy) = {z,} and I, 0V (Cy) = {y}. Then
x1 = V(C1)yy =i V(Cy)and {x1,y} © Ng(u). Since I, must dominate v, with-
out loss of generality, we may assume that-z,0 € F(G). Now consider G — v.
Clearly, I, N {u;z1} = 0 by Lemma 3.2.1. Further; I, @ (V(C,) — {x1}) # 0
and [v N V(OQ) # @ Put {ZEQ} — Iv @ (V(Cl) . {Il}) and {yl} == [v N V(OQ)
So xy »; V(Cy) and yy =; V(Os). Clearly, - asv, yyv-¢ E(G). If zou ¢ E(G),
then Nglxa] C Nglzi), contradicting Lemma 2.3.- Thus-zou € FE(G). Hence,
Nelz1] = V(Cy) U {v} and Nglzo] = V(C1) U {u}.

We now show that V(Cy) — {z1, 22} = N¢,(u) N Ne, (v). Clearly, N¢, (u) N
Ne,(v) C V(Cy) — {x1,22}. Let 2 € V(Cy) — {x1,22}. If 2z ¢ Ng(u) U Ng(v),
Ne¢lz] € Nglzy], contradicting Lemma 2.3. Hence, z € Ng(u) U Ng(v). Suppose
2z € Ng(u) but z ¢ Ng(v). Then Ng[z] C Nglzs], again a contradiction. Hence,
z € Ng(u) N Ng(v). By similar arguments, if z € Ng(v), then z € Ng(u) and
thus Ng(u)UNg(v) = Ng(u)NNg(v). Hence, V(Cy) —{z1, 22} = N¢, (u)NN¢, (v).

Recall that {y} = I, NV (Cy). Clearly, yv ¢ E(G) otherwise {y, 2} »; G.
We next show that y; = y. Suppose this is not the case. Then y,u € F(G) other-
wise Ngly1] € Ngly]. Tt then follows that {z1,y;} >; G, a contradiction. Hence,
y1 = y as required. Since {y} = [, NV(Cs) and {y, } = I, NV (Cy), it follows that
y € V(Cy) — (Ngy(u) U Ney(v)). Thus Ngly] = V(Cy). By Lemma 2.3, it is easy
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to see that V(Cq) — (Ngy(u) U Ne,y (v)) = {y}. This proves (1).
We now let xy,z9 and y are vertices in (1).

(2) By (1), 1 »; V(Cy) and z9 »; V(C1). Suppose V(C1) — {1,202} # 0.
Let z; € V(C1) — {z1,22}. Then 2z, € Ng (u) N N (v) by (1). Consider
G — z. By Lemma 3.2.1, {z1,29,u,v} N I,, = (. Thus I,, N V(Cy) # 0 and
L,NV(Cy) # 0. Let {21} = I, N V(Cy). Then 2| € V(C}) — {x1,29, 21}
Thus 2] >=; V(Cy) — {#z} and {Z]u, zjv} C F(G). Consider G — z|. By Lem-
ma 3.2.1, Iy N ((V(C1) — {=1}) U {u,v}) = 0 then {21} = L, nV(Cy). If
V(Cy)—A{x1, 29, 21, 21} # 0, then, continuing in this fashion, G[V (C)—{z1, z2}] =
K5, - a perfect mathching for some positive integer n > 1. This proves (2).

(3) Since S is a minimum cutset and {y} ="V (C5) = (N, (u) U Ng, (v)), it follows
that |N¢,(u) U N¢,(v)| > 2-and thus [V(C3)| > 3. Consider G — y. By Lemma
3.2.1, I, N V(Cy) = 0. Since |V(Cy)| >3, 1, S # 0. However, [I,NS| =1s
ince wv € E(G). Therefore, w >; V(Cy)—{y} or v >; V(Cy)={y}. This proves (3).

(4) By (3) suppose, without loss of generality, that u »=; V(C3) — {y}. Choose
wy; € V(Cy) — {y}. Clearly, w1y € F(G) and wiu € E(G). Consider G — w;.
If v € I,,, then the only vertex of I, —{v} must.dominate {z5,y}. But this
is not possible since z3 € V(Cy)-andy € V(Cy):  Hence, v ¢ I,,. It follows
that I, N V(Cy) #-0-and L, N V(Cy)-# 0.0 Suppose {wi} = L, N V(Cs).
Then w| »=; V(05) ~ {wi}- Tt.is-easy to see that {wy} = [, N V(C5). Then
wy >=; V(Cq) — {w! }. IF V(Ca) —~ {y,w, w)} #0, then, continuing in this fashion,
GV (Cy) —{y}] = Kop - a perfect-matching for some positive integer m > 1. This
proves (4) and.completes. the proof of our lemma. ]

Theorem 3.2.5. Let. G be a connected 3-i-vertex-critical graph with a minimum
cutset S where |S| = 2 and w(G — S).=2. Suppose G[S| = K5 and C,,Cy are
components of G—'S. Then G-belongs to A defined in Section '5.1.

Proof. Let S = {u,v} where'uv € E(G). By Lemmas 3.2:4(1) and 3.2.4(2), there
exist z1,x9 € V(C1) and y € V(Cy) such that Ng[z,] = V(C1) U {v}, Nglza] =
V(Cy)U{u} and N¢[y] = V(Cy). Further, if V/(Cy) —{z1, 22} = N¢, (u)NNe, (v) #
0, then G[V(C1)—{z1,x2}] = Koy - a perfect matching for some positive integer n.
Again, by Lemmas 3.2.4(1) and 3.2.4(4), G|V (Cs) — {y}] = G[N¢,(u) U Ng, (v)] =
Ky, - a perfect matching for some positive integer m. Let F' be such a perfect
matching in G[V (Cy)—{y}]. We may now assume that u >=; V (Cy)—{y} by Lemma
3.2.4(3). Since S is a minimum cutset, ) # N¢,(v) C V(Cy) — {y}. Put F} =
{22 € F|z,7' € N¢,(u) — Ne,(v)}, Fo = {22' € Flz,2' € Ng,(u) N Ne,(v)} and Fy
={z2' € F|z € N¢,(u) — N¢,(v), 2" € Ng,(u)NNg,(v)}. Clearly, F{UF,UF; = F.
If Ney(v) = V(Cs) — {y}, then FF = F, and if Ng,(v) # V(C3) — {y}, then
Fi U F3 # (0. In either case, G belongs to .#. This completes the proof of our
theorem. O

Lemma 3.2.6. Let G be a connected 3-i-vertez-critical graph with a minimum
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cutset S where |S| = 2. Suppose S = {u,v} is an independent set and C; and Csy
are components of G — S. If v ¢ I, then

(1) There exist x #y € V(C1) and z € V(Cy) such that x -; V(C1), y >=; V(Cy)
and z =; V(Cy). Further, Ng, (u) = V(Cy) — {z}, N¢,(v) = V(Cy) — {y},
and {z} = V(C2) = (Ney(u) U Ne, (v)).

(’Q) NC2(U) - NC2(U) 7£ 0 and NCQ(U) - NC2(U) 7£ 0.

(3) If |V(Cy) — {z,y}| > 1, then V(Cy) — {z,y} is isomorphic to a Koy, - a
perfect matching for some positive_ integer m.

(4) V(Cy) — {z} is isomorphic to a Ks, - a perfect matching for some positive
nteger n.

Proof. Since S is independent, uv- ¢ F(G). Consider G — u. Since v ¢ I, it
follows that |I, N V(C})| = 1 and |I, 0V (Cy)} = 1. Put {z} = I, N V(C}) and

(1) Since {z} = I, N V(Cy) and {z} = I, NV (Cq), it follows that zu, zu ¢ E(G)
and z >=; V(Cy), z =; V(C3). Note that |V (C1)] > 2 otherwise v becomes a
cut-vertex. Since I, = {z,z} and I, >=; G'—u = V.(Cy) UV(Cs) U {v}, we may
assume that zv € E(G). Consider G = . Since o >,V (C)) and zv € E(G),
it follows that u € A, and-u > V(C1) = {z}. 'So Neu) =V (Cy) — {z}. We
next show that vz ¢ E(G). Suppose to the contrary that vz € F(G). Consider
G — z. Then, u € I, by Lemma 3.2.1 since 2z >, V(Cs).and vz € E(G). Thus
u =; V(Cq) — {2z} It follows that u >; (V(C\) — {z})U (V(C3) — {z}) and
{zv,zv} C E(G). Henee,{u,v} »; G, a contradiction. Therefore, vz ¢ F(G)
and thus z ‘€ V(Cy) = (N¢,(u) U Ne,(v)) Observe that if there is a vertex
z* € V(Cq) — (Ney(u) U Ng, (v). U {2}), then Ng[2*]-C N¢[z] since z =; V(Cy),
contradicting Lemma 2.3 Hence, {2} = V{(Co)—(Ncy(u) UNg, (v)).

We now consider G=v. If w € I, then the only vertexof I, —{u} must domi-
nate x and z. But this is not.possible since x and z belongs to different components
of G — {u,v}. Thus u ¢ I, and it follows that I, NV (Cy) # 0 and L, NV (Cy) # 0.
Let {y} = I, N V(Cy) and {y*} = I, N V(Cy). Clearly, yv,y*v ¢ E(G) and
y = V(C1) and y* =; V(Cs). If y* # 2, then Ng,[2] C Ng,[y*]. So y* = z. Since
y'u = zu ¢ F(G), yu € F(G). Hence, y # x since ux ¢ F(G). Consider G — y.
Since y »; V(C;) and yu € E(G), it follows that v € I, and v >; V(C1) — {y}.
Hence, N¢, (v) = V(Cy) — {y}. This proves (1).

In what follows we now assume that z,y and z are vertices of V(G) —{u, v}
satisfying (1)

(2) It is easy to see that v € [, and I,—{v} C V(Cy). Put {y*} = I,—{v}. Clearly,
y*v ¢ E(G). Since uv ¢ E(G), uy* € E(G). This proves that N¢,(u) — N, (v) #
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(). By similar arguments, N¢,(v) — Ng,(u) # 0. This proves (2)

(3) Let x; € V(Cy) —{x,y}. Then x; € N¢, (u) N N, (v) by (1). Consider G — ;.
Clearly, {u,v,z,y}N I, =@. Thus I,, N (V(C)—{z,y}) # 0 and I,, NV (Cy) # 0.
Put {z}} = I,, NV (C4). Then 27 € V(Cy) —{z1,z,y}. Soa} >=; V(Cy)— {1} and
thus Ng[z7] = (V(C1) U{u,v}) — {x1}. It is easy to see that {z,} = L, NV (C)).
Then 1 »; V(Cy) — {x3}. It V(Cy) — {x,y,z1, 27} # (), then, continuing in this
fashion, G[V(Cy) — {z,y}] = Ky, - a perfect matching for some positive integer
m > 1. This proves (3).

Recall that I, N V(Cy) # 0./ Let {y1} = I, N V(Cy) where y; >,

V(Cy). If y4 # z, then Ng,[z] C Neylyi]. Hence, I,, = {z7,2}. Morever, if
V(Cl) - {l’, wal;'T){} # ®7 for each Ti & V(Cl) U {'/E? Ys L1, l‘{}, Il?z = {'T;ka Z} where
x; € V(C1) — {z,y, 21, 27,24} By similar argument; I,- = {x;, z}.

(4) By (2), Ng,(v) — Ngj(u) # @-and Nej(u)— Ne, (v) # 0. Let a € Ng,(v) —
Ne¢,(u). Consider G — a. If w €'I,, then the only vertex of I, — {u} dominates
x and z. But this is not-possible since x and z belong to different components.
Hence, u ¢ I,. Tt follows that 7, N V(C;) # 0.and T, AV (Cs) # 0. Note that,
by (3), it is easy to see that either I, NV (Cy) = {z} or I, N V(Cy) = {y}.
Let I, N V(Cy) = {a*}. Clearly, a* # z,/aa* ¢ E(G) and a* »; V(Cy) — {a}.
Observe that a* € (Ngy(u) = Ne, (v))U(Ne, (v) =Ny (u))U (Ne, (u) N Ne, (v)). If
V(Cy) — {z,a,a*} #0, then, continuing in-this fashion, G[V(Cy) — {z}] = Ks, - a
perfect matching for some positive-integer n > 1.-This proves (4) and completes

the proof of our lemma.
]

Theorem 3.2.7. Let G be a connected 3-i-vertex-critical graph with a minimum
cutset S where |S| =2. Suppose S = {u,v}-is an'independent set and C1,Cy are
components of G'— 8. Ifwv & I, then G belongs.to' N _defined in Section 3.1.

Proof. By Lemma 3.2.6(1), there exist x,y € -V (Cy) and z-€ V(Cs) such that
z =; V(Cy), y »=; V(Cy) and z =; V(Cs). Moreover, N¢, (u) = V(Cy) — {z},
Ne,(v) = V(Cy) — {y} and {2} = V(Cy) —(N¢,(u) U N, (v)). By Lemma
3.2.6(3), if V(C1) — {z,y} # 0, then V(C1) — {z,y} is isomorphic to a complete
graph without a perfect matching. By Lemma 3.2.6(2), N¢,(v) — Ne,(u) # 0
and Ng,(u) — N, (v) # 0. By Lemma 3.2.6(4), V(C3) — {2} is isomorphic to a
complete graph without a perfect matching. Let F' be such a perfect matching in
V(Cy) — {z}. Put

Y) = {x € N¢,(u) — N¢, (v)]| there is y € N¢,(u) — N, (v) such that zy € F}
Y, = {z € N¢,(v) — Ne,(u)| there is y € N¢, (v) — Ng, (u) such that zy € F}

Y5 = {z € N¢,(u) N Ng, (v)] there is y € Ng,(u) N Ne, (v) such that xy € F'}
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Y, =Y, UY] where
= {x € N¢,(u)—Ng,(v)| thereis y € N¢,(u)NNe, (v) such that zy € F}
Y/ = {z € N¢,(u)NN¢,(v)| there isy € N¢,(u)—Ne,(v) such that zy € F'}

Ys; = Y. U Y where
= {2 € N¢,(v) —Ng¢, (u)| thereis y € N¢,(u)NNe, (v) such that zy € F'}
Y) = {z € N¢,(u)NN¢,(v)| there is y € N¢,(v)—Ng, (u) such that zy € F'}

Ye = Y{ U Y] where
= {x € N¢,(u)—Ng¢, (v)| thereis y-& N, (v)— N¢, (u) such that zy € F'}

Yy = {x € N¢,(v)-— Ne¢,(u)] there 'is 'y € N¢,(u) = N¢,(v) such that
zy € F}.

Note that V(Cy) — {2} = > Viand ¥,mY; =0, 1 <i #j < 6. We
distinguish two cases.

Case 1: N¢,(u) N Ney(v) = 0.

Then V(Cs)— {z} =Y UY5UYs. We first suppose that Ys = (). By Lemma
3.2.6(2), Y1 # 0 and Y5 # . Thus G & G; if V{(C) — {x,y} = 0 or G = Gy if
V(Cy) — {z,y} #0.-We now suppose that Y5 # (). Then

Then
G & {G17G25G4}7 if V( ) {37 y} @
{G1GY, Gy}, V(O = {zy) # 0.
Case 2 : N¢,(u) N Neg(v) # 0. Thus YaU YU Yz # 0.
Subcase 2.1 : Y3 # () but Y, = Y5 = 0.
Then either Ys # 0 or Y7 # () and Y5 # (). Thus

GE{{Gs,GG,...,GS}, ifV(Cy) — {z,y} =0
{GL.GL,..,GLY, i V(C)) — {x,y} #0.



Subcase 2.2 : Y, # 0 but Y3 = Y; = (.
Then Y5 U Yy # 0 and thus

G e {Gy,Grg, ...,Gua}, i V(C
{Gy, Gl -, G}, I V(C

Subcase 2.3 : Y3 £ 0, Y, # () but Y5 = 0.

Then Y5 U Y # (). Thus

G e {G15;G167~-~7G20}7 1fV(
{G5, G, -4, G}y i V(O

Subcase 2.4 : Y, # 0, Y5 # 0 but Y3 = 0.
Then

G e {G21;G227~-~7G26}7 1fV(
{G,217G,227“~;G,26}7 lfV(

Subcase 2.5 : Y3.£0, Y0 and Yz £ 0.

Then

Oc {Go7;Gag, s Gao}, V(O
{G27>G,287~-->Gg2}7 lfV(

Therefore, G' belongs to .4". This completes the proof of our theorem.

1) -
1) —

1) &
1) =

1) =
1102

i) =
) 2

{z,y} =0

{z,y} #0.

{z,y} =10

{z,y} # 0.

{o,y} =10

{ziy) # 0.

{r,y} =0
{z,y} #0.
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Lemma 3.2.8. Let G be a connected 3-i-vertez-critical graph with a minimum
cutset S where |S| = 2. Suppose S = {u,v} is an independent set and C; and Csy

are components of G — S. If v € I, and |V (C;)| > 2 for 1 <i <2, then

(1) V(C1) € Ng(u) N Ng(v).

(2) For each a € V(C,), there exists unique b € V(Cy) such that b € I, and

b>; V(Cy) —{a}.

(8) V(C1) =2 Ko, - a perfect matching for some positive integer m.
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(4) There exists z € V(Cy) such that {z} = N¢,(u) N Ne,(v) and 2z =; V(Cs)
and V(Cy) = (Ne, (u) = Now () U (Ne, (v) = Ne, (u) U {2}

Put A = N¢,(u) — N¢,(v), B = Ng,(v) — N, (u).

(5) For each a € A, there exists unique b € A — {a} such that b € I, and
b= (A—A{a})U{z}. Consequently, G[A] = Ko, - a perfect matching for
some positive integer n.

(6) For each a € B, there exists unique b € B — {a} such that b € I, and
b>=; (B —{a})U{z}. Consequently, G|B] = Ko - a perfect matching for
some positive integer k.

Proof. (1) Since v € I, v must dominate at least 1 component of G — 5. Without
loss of generality, we may assume that-v.>; V(Cy).| Consider G — v. Clear-
ly, I, N V(Cy) = 0 and then w € L. So u »=; V(O;)« Therefore, V(Cy) C
Ng(u) N Ng(v).

(2) Let a € V(C}). Since V(CY) C Ng(u) N Ng(v), au € E(G) and av € E(G).
Consider G —a. By Lemma 3.2.1, I,0{w, v} =10. Since |V (Cy)| > 1, I,NV(Cy) #
(0. Let b € I, NV (CY). Then b =; V.(Cy) = {a}. If thereis b’ € V(C}) —{a, b} such
that 0’ € I, NV (C}), then N [V] =(V(Cy) —4a}) U{u, v} = Ng[b], contradicting
Lemma 2.3. This proves (2)-

(3) follows by (2).

(4) Let x € V(Cy). By (2), there is y € V(C,) such that'y € I, and y >,
V(Cy) —{z}. Put I, = {y} ={z}. Then; by-Liemma 3.2.1 and (1), z € V(C3) and
z =i V(Cy). Consider G'— z. Since z >, V(Cy), Iy N {u;v} # 0. Without loss of
generality, we may assume that.u € I,. Clearly, uz ¢ E(G). lfzv € E(G), then
{z,u} =; G, a contradiction. So zv ¢ E(G). Itfollows that '€ N¢,(u) N Ne,(v).
If there is 2’ € (N¢, (u) YN, (v)) = {2}, Ne,[2'] € Ne,l2], a contradiction. Hence,
Ne¢,(u) N Ne,(v) = {2}. We next-show that" N, (u) N Ng,(v) = 0. Suppose
to the contrary that Ne,(u) N Ng,(v) # 0. Let a € Ng,(u) N Ney(v). Then
I, N {u,v} = 0. It follows that I, N V(Cy) # 0 and I, N V(Cy) # O. Thus
the only vertex of I, N V(C}) must dominate V(C}), contradicting (2). Hence,
Ne,(u) N Ney(v) = @, Since S is minimum cutset and Ng,(u) N Ne,(v) = 0,
it follows that Ng,(u) — Ng,(v) # 0 and Ng,(v) — Ne,(u) # 0. Therefore,
V(C2) = (Ne, (u) = Ne, (v)) U (Ne, (v) — Ny (u) U {2}

(5) Let a € A. Clearly, au € E(G) and av ¢ E(G). Consider G — a. By (3), if
v ¢ I, |[I, N V(Cy)| > 2 and thus no vertex of I, dominates V(C5) — {a} since
|I,| = 2, a contradiction. Hence, v € I,. Because vz ¢ E(G), I, N V(Cs) # 0. In
fact, I, NV (Cy) C Ng,(u) since vu ¢ E(G). Put {b} = I, — {v}. Since I, is inde-
pendent, b ¢ N¢,(v). Thus b € A—{a}. Clearly, bz € E(G) and b >; A—{a}. We
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next show that there exists unique b € A — {a} such that b € I,. Suppose to the
contrary that there exists o € A—{a, b} such that ¥’ € I, and b’ =; (A—{a})U{z}.
Consider G — V. By similar arguments as above, v € Iy and I, — {v} C A. Tt
then follows that I, — {v} = {a}. But then no vertex of Iy, dominates b, a con-
tradiction. Hence, (5) is proved.

By similar arguments as in the proof of (5), (6) follows. This completes

the proof of our lemma.
]

Theorem 3.2.9. Let G be a connected 3-i-vertex-critical graph with a minimum
cutset S where |S| = 2. Suppose S =A{u,v} is an independent set and Cy,Cy are
components of G — S. If v € I, and |V(C;)| > 2 fori.€ {1,2}, then G belongs to
O defined in Section 3.1

Proof. By Lemma 3.2.8(1), V.(Cy) € Ng(u) N Ng(v). Moreover, V(C}) = Koy, - a
perfect matching for some positive integer m by Lemma 3.2.8(3). Note that m > 2
otherwise w(G — S) = 3. By Lemma 3.2.8(4), there exists 'z € V(Cy) such that
{2} = New(u) N Ny (v), 23V (Co) and Vi(G) = (Ne, (v).—Ne, (v) U (Ne, (v) —
Ne,(u)) U{z}. Further,by Lemma 3.2.8(5) and 3.2.8(6), G[N¢,(u) — N¢,(v)] =
Ky~ a perfect matching for some positive integer n and G[N¢, (v) — Ne, (u)] =2 Ko,
- a perfect matching for some positive integer k Therefore, G belongs to &'. This
completes the proof of our theorem. O

We conclude this chapter by pointing out that.if we have hypothesis as in
Theorem 3.2.9 buf, one of the components in G = S is singleton, then we still do
not know the structure of such graphs.



Chapter 4

Matching property and toughness

results in 3-i-vertex-critical graphs

In this chapter, we present properties-of 3-i-vertex-critical graphs G with a min-
imum cutset S where A(G[S]) < 1in terms of w(G = S): In fact, we show that
w(G@ —S) < |S| — 1 with some condition on |S|. We also-provide a sufficient
condition for G to have a perfect matching.

4.1 Results on toughness

Theorem 4.1.1. Let G be-a connected 3-i-vertex-critical with a minimum cutset
S where |S| = 3. Then w(G-—S)<3

Proof. Suppose to the contrary that w(G = S) = ¢ > 4.-Since w(G — 5) > 4,
I, NS # 0 foreach x € V(G). Let S ={xy, a3, T3}

Claim 1: |E(9)| <1

Suppose to.the contrary that |E(S)|. >2. Without loss of generality, we
may assume that ;20€ B(G) and xex3.€ E(G). Consider G—x5. Since I,NS # ()
for all z € V(G), I, N {x1;a3} # (." But this contradicts Lemma 3.2.1. Hence,
|E(S)| < 1. This settles our claim.

Claim 2 : For each z € |JI_, V(C)), there exists a vertex 2’ € S such that
za' ¢ F(G).

Suppose to the contrary that every vertex in S is adjacent to z. It then

follows that I, NS = (). But this contradicts the fact that I, N.S # (). This settles
our claim.

Claim 3 : For 1 <i <t¢, |V(C;)| > 2

Claim 3 follows by Claim 2 and the fact that S is a minimum cutset.

23
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Let y; € Ng,(z1). Consider G — y;. Without loss of generality, we may
assume that zo € I,,,. So zoy1 ¢ E(G). Put {y} = I, — {22}

Case 1: y, € V(C})

Then y1y, ¢ E(G) and yozs ¢ E(G). So z9 =; Ji_, V(C;). Since S is a
minimum cutset, N, (x;) # @ for 1 <i <3 and 1 < j <t. Choose y3 € Ng, (1)
and yq4 € Ngg(21). Then {ysz1, yax1, Y322, yaxo} € F(G). By Claim 2, ysz3 ¢
E(G) and ysz3 ¢ E(G). Consider G — y;. By Lemma 3.2.1, 3 € [,,. Since
w3y & B(G), I, NV (C3) # 0. Tt follows that a3 =; Ul_, V/(Ci) — (V(C3) U {ys}).
Then all vertices in C} is adjacent to zg and x3. So no vertex in C} is adjacent to
xy1 by Claim 2. It follows that {zs, 23} is'a cutset, contradicting the fact that S is
a minimum cutset. Hence, this case cannot. occur.

Case 2: 1, € UEZQ V(C;)

Without loss of generality, we may assume that y, € V(Cs). Then ysxo ¢
E(G). So xy = (V(Cy) ={y:}) UL, Vi(C;).. Since Sis minimum cutset,
Ne,(z;) # 0 for 1 < i < 3-and 1 < j <'t.  Choose ys € Neg,(21) and yy €
Ne,(x1). Then {ysz1,ysx1, ysxs,ys22} C E(G). By Claim 2, ysz3 ¢ F(G) and
ysxs ¢ E(G). Consider G —ys. Itiis-easy to see that'zs € I,,. Since x5 € I,
and z3ys ¢ E(G), it follows, that L, NV (Cy) # O Let {ys} = I,, — {x3}. Then
Ys € V(C4) Thus &3 >; U;?:l V(CZ) — (V(C4) U {yg}) Then Y13 € E(G) and
ypx3 € E(G). Consider G = y4. By Lemma 3.2.1, @3 € I, since ysx1,ysxy €
E(G). Since z3y3 & E(G), I, NV(Cs) # . Because x5 V(Cs) — {ys},
I, N V(C5) = {ys}~ It then follows'that z3 >; V(C4s) ={ys}. It follows that
ys = ys. We now have Iz, U§:1V(Ci) — {ys;y4}. Consider. .G — x3. Ob-
serve that {wy,y3}t; {z1, ya}, {22, y3} and {zo 94} are not independent. Thus
Ly & {{z ks {0, vat, {ma, 43}, {20, 04t }o Sinee x5~ U;l V(Ci) — {vs, ya},
I, = {@1, 22} Recall that zy = (V(C)) ={y1}) U, V(Ch). Then V(Cs) —
{ys} € Ng(x2) WNg(xs)and V(Cy).— {ya}-< Ng(xz) N Ng(z;). By Claim 2,
Ney(z1) = {ys} and Ng, (z1) ={yu}: Choose z € V(Cy)— {y1}. Observe that
29, zx3 € E(G). Then IAS = {z{} and thus the only vertex of I, — {x}
dominates (V(C3) UV(Cy)) — {ys, ya}. But this is not possible. Hence, this case
cannot occur.

Case 3: 9y, €S

Then I,, = {x2,z3}. Clearly, y123 ¢ E(G) and zox5 ¢ E(G). Without loss
of generality, we may assume that z129 € E(G). Since S is a minimum cutset,
Ne,(z;) # 0, for 1 <i<3and 1< j <t Let y3 € Ng,(1). By Claim 1, we have
z1x3 ¢ E(G). Consider G — xy. It is easy to see that x5 € I,,. Since y; € V(Cy)
and y123 ¢ E(G), I, N V(Cy) # 0. Then x5 =; U!_, V(Cy). So w3 € E(G)
because y3 € V(Cs). By Claim 2, we have yszy ¢ E(G). Consider G — y3. Clearly,
zy € I,. Since y; € V(Cy) and yz2 ¢ E(G), it follows that I,, N V(Cy) # 0.
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Thus 3 =; Ui_, V(C;) — {y3}. Therefore, each vertex of V(C3) is adjacent to x5
and z3. By Claim 2, no vertex of V(C3) is adjacent to xy. It follows that {zo, x5}
is a cutset, contradicting the fact that S is a minimum cutset. Hence, this case
cannot, occur.

Hence, w(G — S) < 3. This completes the proof of our theorem. ]

It is easy to see that Kj 3 satisfies the hypothesis in Theorem 4.1.1. Hence,
the bound on the number of components in Theorem 4.1.1 is best possible.

Theorem 4.1.2. Let G be a connected 3-i-vertex-critical graph with a minimum

cutset S where |S| > 4 and A(G[S]) =0. Then w(G —S) < |S|—1.

Proof. Suppose to the contrary that w(G— ) = t > k = |S|. Since |S| > 4,
w(G — S) > 4. It follows that I, M S # B-for each x € V(G). Let Cy,Cy, ...,C} be
components of G — S.

Claim 1 : For each x € V(G), |, N.S| =1

Since w(G — S) > 4.t is not difficult to see that [, N S # () for all
z € V(G). If I, C S for some x € V(G) then there exists at least one vertex in S
is not dominated by I, since S'is independent and.|S| > 4. Hence, I, Z S and
thus |1, NS| =1 as required. This settles our claim:

The next two claims follow-by Claim 1, Lemma 3:2.1 and the fact that S
is a minimum cutset.

Claim 2 : For each z-&-UJi_, V/(C)); there exists a.vertex 2’ € S such that
za' ¢ F(G).

Claim 3 : Forl <i< ¢, |V(C))}-=> 2.
Claim 4 : If x € V(C;) where 1:<i-< £, then I, — S C V(C;) — {z}.

Consider G — z. By Claim 1, |[I, 0S| = 1. Put {a;} = I, N S. Let
{zf} = I, — {x;}. Suppose to the contrary that z} ¢ V(C;). Then =} € V(C})
where j # i. Then z is adjacent to every vertex of S—{z;} since S is independent
and 2; =; U,_, V(C)) — (V(C;) U {2}). Consider G — z}. Since z} is adjacent to
every vertex of S — {x;}, I NS = {z;} by Claim 1 and Lemma 3.2.1. Since
vz ¢ E(G) and z € V(C;), it follows that I,- NV (C;) # 0. Then I,: —{z;} = {z}
because z; >; V(C;) — {z}. So z is adjacent to every vertex of S — {x;} and
z; =i V(C;) — {2t} Now =; is adjacent to every vertex of |J_, V/(C;) — {=,z}}.
Consider G — ;. Since x; >=; ;_, V(C)) — {x,x}}, either x € I, or x} € I,.. By
Claim 1, I, N (S — {x;}) # 0. But this contradicts the fact that I, is independent
since S — {z;} C Ng(z) N Ng(z}). Hence, xf € V(C;) as required. This settles
our claim.
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Claim 5: For 1 <i# j <t,if {z;} = 1,,nS and {x;} = I,,NS where y; € V(C;)
and y; € V(C;), then z; # x;.

Put {Zz} = Iyi — {l‘l} By Claim 4, z; € V(CZ) Then z; =; U?:l V(Cl) —
V(C;). Thus z;y; € E(G). By Lemma 3.2.1, z; # x;. This settles our claim.

For 1 < i <, choose y; € V(C;). It follows by Claims 1 and 5 that ¢t = k
since |S| = k. Put S = {z1, 29, ..., 2 }. We may assume without loss of generality
that I,, NS = {x;}. Put {%} = I, — {z;}. By Claim 4, 2z, € V(C;) and thus
i = Uj_, V(Cy) — V(Cy). Since S is independent, 2z =; S — {x;}.

We now consider G — z;. By Lemma 3.2.1 and Claim 1, I,, NS = {x;}.
Observe that each vertex of V(C;) —= {u;, z;} is adjacent to either z; or z; since
I,, = {z;, z;}. It then follows by Claim 4 that I, ={x;,y;}. Because I, and I,
are independent, {x;,y;, z;} is independent. Since S is a minimum cutset, there
exists w € V(C;) — {u;, z;} such that wz; € B(G). Consequently, w is adjacent
to every vertex of S since z; =4 Uy V(€)) = Vi(C;) for 1 < i < k. But this
contradicts Claim 2 and completes the proof of our theorem. O

Theorem 4.1.3. Let G be a connected 3-i-vertex-critical graph with a minimum

cutset S where |S| > 6 and A(G[S]) = 1. then w(G'— S) < |S| — 1.

Proof. Suppose to the contrary that w(G — S) = t > |S| = k. Since |S| > 6,
w(G — S) > 6. It follows.that I, .S # ) for each x' € V(G)-Let Cy,Cy,...,Cy be
components of G — S.

By similar arguments as.in-the proof of Theorem 4.1.2; we have following
claims.

Claim 1 : For each ¢ € V(G) and |S| > 6, ;0S| =1

Claim 2 : For.each » e |Ji_, V(C)), there exists a vertex 2/ € S such that
za' ¢ F(G).

Claim 3 : For 1 <i <t, |V(Cy|.>.2.

Claim 4 : If y;,y; € Ule V(C) such that y; and y; are in different components,
then I,, NS # I, NS.

Let y; € V(C;) and y; € V(C;) where i # j. Suppose to the contrary
that I,, NS = I, NnS. Put {z} = [, NS = [, NS. By Lemma 3.2.1,
vy, xy; ¢ E(G). Then I, — {z} C V(Cj) and I, — {x} C V(C;). It follows that
x =i U, V(C) —{yi, y;}. We now consider G —x. Then I, C {y;,y,}U(S—{z}).
Since |I, N S| =1, by Claim 1, either y; € I, or y; € I,. Put {2} = I, — {yi,y,}
Then z € S — {z} and zz ¢ E(G). We first suppose that I, = {z,y;}. Since
I, = {z,y:}, and zx ¢ E(G), it follows that zy; € E(G). But this contradicts
the fact that I, is independent. Hence, I, # {z,y;} and thus I, = {z,y;}. By
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similar arguments as above and the fact that I,, = {z,y;}, zy; € E(G), again a
contradiction. This settles our claim.

Claim 5 : If y; € V(C;) for some 1 < < ¢, then I,, — S C V(C;) — {v}.

Consider G — y;. By Claim 1, |[,, N S| =1. Put {z;} = I,, N S. Suppose
to the contrary that I,, — S Z V(C;) —{v;}. Let I,, — S = {y;} where y; € V(C})
and j # 4. So i, vy, ¢ E(G) and z; =; U,_, V(C) — (V(C;) U {y}). Since
Consider G — y;. By Claim 4, I,, NS # {x;}. Suppose that I, NS = {z;}.
Since I, = {z;,y;} = G —y; and y;z; ¢ E(G), it follows that z,z; € E(G). Since
A(G[S]) = 1, z; is not adjacent to any vertex of S—{xz;, z,;} and z; is not adjacent
to any vertex of S — {z;,x;}. Hence, |S"\ =k —2and S' =S5 — {z;,z;}. Put
{z} = 1,, — {z;}.Then zz; ¢ E(G). We-distinguish four cases.

Case 1: z =y,

Then x; =; U V(C) — (V(Ci) U{y;})- Since S-is minimum cutset,
Ne, (z) # 0 for 1 <1 <k and 1 < I" <. Let yp € Ng,(x;). Consider G — y;.
By Claim 4 and the fact that «; € I, it follows that x; ¢ I, ,. Clearly, by Lemma
3.2.1, z; ¢ I,, because y;x; € E(G) Then [,, N'S.C S’ Let I, NS ={z;}.
Observe that |S {miyzj,mp}| (=% =3 and |w(G SH — |{CZ,C H=t—-2
For 1 < A < ¢ where A ¢ {i;7}, let ya € V(Cy).  Clearly, [{ya]ll < A < ¢t
and A ¢ {i,7}}) =t =2 By Claim 1, |I,; 0-S| = 1. Further, by Claim 4,
I,, NS C S —{a;, x5z} Sinee t >k, t — 2>k — 3. By Pigoenhole principle
(Theorem 1.1), there-exist. gy € V(Cyi) and yyr € V(Cyr ) where 1 < A # A" < ¢,
{A A"y N {i,j} = 0, such that 1, , NS =1, NS But this contradicts Claim 4.
This proves Case 1.

Al

Case 2 : z € V.(C;) = {yi }-

Since z; =; Uz, V(C)) = (V(Cy) U {yid), 2z € B(G). TFurther, z; =;
Ui, V(C)) — (V(Cy) U {y;P-and z =,.5". Thus, Ng(z) = S — {z;}. Consider
G —z. By Lemma 3.2.1, {z;} = I.NS. But this contradicts Claim 4 since z; € I,
and y; € V(C;). This settles Case 2.

Case 3: z € V(C;) — {y,}-

Then, zy; ¢ E(G). So z; =i (U_, V(C1)) — V(C;) and 2 =; S’. Since S
is minimum cutset, Ng, (2;) # 0 for 1 <1 <k and 1 <1' <t. Let yy € Ng, ().
Consider G' — yy. By Claim 4, ij, NS C S'. Then applying similar arguments as
in the proof of Case 1, we have a contradiction. This proves Case 3.

Case 4: z € (U_, V() — (V(C)) UV (Cy)).
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Let z € V(C,,). Recall that I,, = {z;,y;}. Since z € V(C,), z;z € E(G)
because x; =; U;_, V(C)) — (V(C;) U {y;}). Further, since z;2; € E(G) and
A(G[S]) = 1, it follows that z >; S’. Thus, z >=; S — {z;}. It then follows that
I.NS = {z;} by Claim 1. But this contradicts Claim 4 since {z;} = I,, N .S and
y; € V(C;). This proves Case 4 and settles our claim.

It then follows from Claims 1 and 4 that ¢t = k. For 1 < i < k, choose
y; € V(CZ) Put {l’z} = Iyi NS for 1 <i<k. Then z; =; Ullf:l V(Cl) — V(Cl)
by Claim 5. Since S is a minimum cutset, there exists w € N¢,(x;). But then

w »; S. But this contradicts Claim 2 and completes the proof of our theorem.
m

We now post the following conjecture.

Conjecture Let GG be a connected 3-i-vertex-eritical graph with a minimum cut-
set S where |S| > 4. Then w(G —=5) < S| — 1.

We conclude this section by pointing out that if G is a connected 3-i-
vertex-critical graphs, then tough(G) < % by our results-in Chapter 3 and in this
section.

4.2 Results on matching

We now present a property.of a 3-i-vertex-critical graph with a perfect matching.

Theorem 4.2.1. If G is a connected K, 7-free 3-i-vertez-critical graph of even
order, then G _has a perfect-matching.

Proof. Suppose to the contrary that G has no perfect matching: Then by Tutte’s
Theorem (Theorem 1.2)-and the fact that |V (G)| s even, there is'a subset S C
V(@) such that w,(G —:5)>S| + 2. Among of those sets, choose S, such that
wo(G —S,) > 1S,|+2.and S, is the minimum cutset. It follows by Theorems 3.2.2,
3.2.3 and 4.1.1 that |S,| >4. So'w,(G —S,) > 6. Since-S, is minimum cutset, for
each x € S,, N¢,(z) # 0. It follows-that w(G="S,) < 6 because G is K 7-free.
Thus |S,| = 4 and w,(G — S,) =6 = w(G — S,). Since w(G —S,) =6 and |I,| =2
for all z € V(G), we have the following claim.

Claim 1: I, NS, # 0 for all z € V(G).

If there is a vertex x € S, where dg, (z) = 3, then I, N S, = ) by Lemma
3.2.1 which contradicts Claim 1. Thus A(G[S,]) < 2. If A(G[S,]) = 0, then
w(G — S,) < 3 by Theorem 4.1.2 which contradicts the fact that w(G — S,) = 6.
Hence, 1 < A(G[S,]) < 2. We now put S = {x,x9,23,24}. Without loss of
generality, we may assume that z125 € E(G). Consider G — z;. It is easy to see
that I, N {x3, 24} # 0. We distinguish two cases.
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Case 1l: |I,, NS, =1

Without loss of generality, we may assume that I,, NS, = {z4}. Then
I, — {z,} € U, V(C;). Without loss of generality, we may assume that I, —
{4} CV(C). It follows that @4 =; s, V(C;). For 2 <4 <6, let y; € Ng, (z3).
Then y;z3, y;z4 € E(G). By Claim 1 and Lemma 3.2.1, either I,, NS, = {z;}
or I,, N S, = {x2} since I, is independent. By Pigoenhole Principle (Theo-
rem 1.1), either z; or xs belongs to at least three independent dominating sets,
say I,,, 1, and I,,, where {7’ i" "} C {2,3,...,6}. Let z* € {z1, 72} where
vt e l,, N1, N1,,. Then v*yy, a*ym, vy ¢ E(G). Thus the only vertex of
I,, — {z*} which belongs to US_, V(Ci) =~ {y»} dominates {i, i }. But this is
not possible. Hence, Case 1 cannot occur.

Case 2: |I,, N S,| =2

Then I,, = {x3,24} Without-loss of generality, we may assume that
zoxg € F(G). Consider G = x5. By Claim 1 and Lemma 3.2.1, I,, N S, = {24}
and I, — {z4} C U, V(C)). Suppose that I,, — {ax} C V(C,). Thus x4 >=;
U?:g V(C;). Choose y; € Ngj(x3) for 2:< 4 < 6. Then y;x3,y;x4 € E(G). By
Claim 1 and Lemma 3.2.1, either I, 'S, = {@1} or I,, NS, = {x2}. By similar
arguments as in the proof of Case 1, Case 2 cannot occor.

This completes the proof of our theorem:
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