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Chapter 1

Introduction

Due to their rich algebraic structures and various applications, cyclic codes
over finite fields have been extensively studied for more than a half century
(see [1], [2], [4], [8] and references therein). The study of Euclidean and Her-
mitian duals of codes is another interesting problem since the duals play an
important role in applications and links to other objects-in Mathematics. Fs-
pecially, Euclidean (resp.,  Hermitian) self-dual-codes and Euclidean (resp.,
Hermitian) complementary. dual codes have been applied in constructions of
secret sharing schemes-and quantuni codes (see [1], [5],7[8], [9] and [10]). As
in the discussion above, cyclic codes, self-dual codes and complementary dual
codes are important classes-of linear codes.~These have motivated the study
of self-dual cyelic codes and complementary dual cyclic-codes in [2], [4] and
[12].

For a given finite field F,m, denote by Aut(F,=) the automorphism group of
Fym. It is well known (see [6, Theorem 2.21]) that Aut(F,m=) is a cyclic group of
order m generated by the Frobenius automorphism 6, where 6(a) = a for all
a € Fym. We introduce a generalized notion of the Euclidean and Hermitian
duals of a linear code C' of length n over F,m as follows. For each integer

0 < ¢ < m, the (-equivalent dual 0°(C*) of C is defined to be the set

04(CH) == {(0%(co), 0% (c1), . .., 0%(cn1)) | (o c1y ... Cnoy) € CH),



where C* denotes the Euclidean dual of C. It is not difficult to see that if
¢ =0 (resp., m is even and £ = ), then the (-equivalent dual of a code is just
its Euclidean (resp., Hermitian) dual.

In this thesis, we focus on the f-equivalent dual of cyclic codes. The alge-
braic structure of the f-equivalent dual of cyclic codes is investigated as well
as the characterization of the following two families of cyclic codes: 1) the
family of cyclic codes with the property that a code and its f-equivalent dual
are exactly the same, and, 2) the family of cyclic codes with the property that
a code and its dual are. complement of each other. The two families are gener-
alizations of self-dual cyelic codes and complementary dual cyclic codes called
C-1sodual cyclic codes'and (-complementary dual cyclic codes, respectively.

The thesis is organized as follows. Seme. definitions and basic properties
of polynomials and codes-over finite fields are recalled in Chapter 2. In Chap-
ter 3, the generator polynomial of f-equivalent dual of a cyclic code C' of length
n over F,m is studied., Cyclic-codes with ¢-isodual are studied in Chapter 4.
Necessary and sufficient conditions for a cyclic code of length n over a finite
field to be f-isodual are given as well as the characterization and enumeration
of f-isodual cyeclic-codes-of length-n over Fym -~ In Chapter 5, the characteriza-
tion of f~complementary dual eyclic codes is given in terms of their generator
polynomials. ‘In some cases, the enumeration of /-complementary dual cyclic

codes is provided as well.



Chapter 2

Preliminaries

In this chapter, we recall some basic properties of polynomials and codes over

finite fields and introduce the £-equivalent dual of a code.

2.1 Polynomials and Codes

Let F,n denote thefinite field of order p™, wherep is a prime and m is a
positive integer. A /linear code C ‘of length n over F,m is defined a subspace
of the Fym-vector space I}, A linear-code of length n over Fyn is called an
[n, k]m code if its Fym-dimension is-k. An-element ¢:=(cps¢1,.%.,¢p—1) in C
is called a‘codeword.

For w = (uy,us,. .. ju,) and v = (0,03, ,v,) inF}.., the Euclidean

inner product of u and-w_is defined to be

(u,v) = Zulvl
i=1
For a code C of length n over F,m, denote by C* the Euclidean dual of C, i.e.,
Ct={v el |(c,v)=0forall ceC}.

A code C is said to be Euclidean self-dual if C = C+ and it is said to be
Euclidean complementary dual if C N C+ = {0}.



If, in addition, m is even, then the Hermitian inner product of uw =

(w1, g, - ., up) and v = (v1, 02, ..., v,) in F} is defined to be

(u,v)y = Zuivf%.
i1
The Hermitian dual C+2 of C is defined to be the set
CH ={v €Fp | (c,v)y =0 for all c € C}.

A code C is said to be Hermitian self-dual if C = C1+# and it is said to be
Hermitian complementary dual if C-AC*H# = {0},

An [n, k],m code Cligcalled cyelicif, for each codeword ¢ = (¢, ¢1, ..., 1)
in C, the vector (¢,_1,€py: . + yn2) is-also a-codeword in C. It is well known [7,
Chapter 7] that every cyclic code of length n over Fym can be identified with an
ideal in the principal ideal ring F,m|[z] /{(z" — 1)." Moreover, a (non-zero) cyclic
code is generated by a unique monic divisor g(z) of #”—1. Such the polynomial
is called the generator polynomialof C'. A codeword.c = (co,cq,...,cp—1) will
be represented by-its-representation polynomialc(x) = co+ex—+- - -+cp_1a™ L.

A relation between. the dimension of a_cyelic code C and the degree of its

generator polynomial-is given-as follows.

Proposition 2.1 ([7,-Theorem 7.2.14]). Let C-be a cyclic code of length n
over Fym and g(x) be the generator polynomial-of C.’If g(x) ‘has degree n — k,
then dim(C) = k.

For each f(x) = apa’+ - -++ a1 + ap € Fym[z]of degree b with ag # 0, let

z) = ateE @) f (1)

T
b —b -1

:x(abx +-t+ax +a0)

_ b b—1

=aqor +tnx "+ -+ 1T + Qp.

The reciprocal polynomial of f(x) is defined to be f*(x) = aglf/(\;). In the

case where m is even, the conjugate-reciprocal polynomial of f(x) is defined to

: s

o3

m
2

f1(2) = ag?” (b 2"+ af

o3
o3

b—1 bl
Tt a) e+ al)



The generator polynomial of the Euclidean dual of a cyclic code can be

determined as follows.

Proposition 2.2 ([7, Theorem 7.3.7]). Let C' be an [n, k] cyclic code gen-

erated by g(x) and let h(x) = %. Then Ct is generated by h*(z).

Corollary 2.3. Let C be an [n, k| cyclic code generated by g(x) and let

h(z) = ’i;(;)l. Then C' is Euclidean self-dual if and only if g(x) = h*(z).

In the same fashion, the generator polynomial of the Hermitian dual of a

cyclic code can be obtained.

Proposition 2.4. Let m be an even positive integer and let C' be an [n, k]ym

cyclic code generated by g(x).-Let h(z) = “;(;)1. Then C+1 is generated by
hi(x).

Corollary 2.5. Let m be an even positive integer and let C' be an [n, k|ym

T

cyclic code generated by g(x). Leth(z) = grz;)l. Then C is Hermitian self-dual
if and only if g(a)="hi{z).

For each pair of nonzero polynomials” f(#). and g(«)in F,m[z], the greatest
common divisor-of f(a)-and g(x), denoted by ged(f(z);9(x)), is defined to be
a monic polynomial d(z) that divides f(z) and g(z) such that every common
divisor of f(«).and g(x).alsodivides d(x). Similarly, the least common multiple
lem(f(z), g(x))of f(z)and g(z) is defined to be-a monic polynomial m(z) that
is a multiple of f(z) and g(«) such that every common multiple of f(z) and
g(x) is a multiple of m(x).~The greatest.common divisor and least common
multiple of polynomials play an important role in determining the generator

polynomial of cyclic codes in Chapter 5.

2.2 The /-Equivalent Duals of Codes

Denote by Aut(F,m) the automorphism group of F,m. It is well known (see
[6, Theorem 2.21]) that Aut(F,m) = {0" | 0 < I<m}, where 6 is the Frobenius

automorphism defined by 0(a) = a? for all a € Fym.



For each 0 < ¢ < m, let 6° : Fpm — Fjm be a linear isomorphism on [Fy.

extended form 0° € Aut(F,m) by

06((00, Cly... ,Cn_l)) = (GK(CQ), 0€(01>, PN 70((0’”_1)).

Remark 2.6. For a linear code C, the map 6‘|c : C — 6Y(C) is a linear
isomorphism. Hence, dim(C) = dim(6°(C)).

For 0 < ¢ < m, we call 8°(C+)the (-equivalent dual of C. A code C is
said to be (-isodual if C' = §*(CF), and it is said to be (-complementary dual
if C'neCt) ={0}.

Example 2.7. Consider n =2, p =2-and-m = 3. Let Fys be the finite field
of order 8 with primitive element a.
Let C' = {00, lo, s 0a?, oo oo, a’al,af1} © F2; be a linear code of

length 2 over Fos. Then
Ct = 0%CEH) = {00, al, o’a, Pa?;ate?, o at aa’ 105,
01 (CH) = 100,621, ac?, aa* an’ aPa, a’a?, 1a°}
and .02(CH) = {00, o1, aa* 0’ a, a?a®, o®a? 00’ 16}

Remark 2.8. The concept of f-equivalent duals generalizes the concepts of

Euclidean and Hermitian duals, of codes as follows.

1. If £ = 0, then #°(C+).= C*. Hence, an f-isodual (resp., ~complementary
dual) code is just a.Euclidean'self-dual (resp., Euclidean complementary

dual) code.

2. If m is even and ¢ = 2, then #(C*) = C*+#. Hence, an (-isodual
(resp., ¢-complementary dual) code is just a Hermitian self-dual (resp.,

Hermitian complementary dual) code.
We have the following property of ¢-equivalent dual of codes.

Proposition 2.9. Let C be a linear code of length n over Fym. Then (0°(C))* =
04(CL) for all0 < £ < m.



(4 4

Proof. Let a € 04(C+) and let ¢ € 6(C). We have a = (a? ,a” ,...,d"_,) and

n—1
4 4

c= (cgz,c’f ,o.., b)) for some (ag,ay,...,a,_1) € Ct and (co,cp,...,cn 1) €
C. Then

¢ o0 VA ¢ ¢
(a,c) =ajcy +ai & +-- Fap 0,

¢
= (CL()CO +a1c1 + -+ an,lcn,l)p

= 0.
This implies that a € (#°(C))*, and hence, §¢(C+) C (#°(C))*. By Remark
2.6, we have
dim(6“(C))-=dim(C*),
and hence,
dim((0°(C)*) = n —dim(0°(0)) = n~ dim(C) = dim(C*) = dim(9°(CH)).
Therefore, (6°(C))+ = #(C) as desired. O

Corollary 2.10. Let.C be alinear code over Fym. ThenC is (-isodual if and
only if C+ isA-isodual.

Proof. Assume that C'is f-isodual. Then we have G = 94(C#+). By Proposition
2.9, we have C+ = (04(C4))+ = 0°((CH)1) = 04C). Thus, C+is f-isodual.
Conversely, suppose that C* is ¢-isodual.” We.obtain C+ = 0((C+)*) =
0‘(C). Then O = (CH)L = (04C))*+ = 0°(C*) by Proposition 2.9. Hence, C
is (-isodual. O

Corollary 2.11. Let C' be a linear-code-overF,m. Then C' is {-complementary

dual if and only if C* is (-complementary dual.

Proof. Assume that C is (-complementary dual. Then we have C' N §‘(C+) =
{0}. Since Fr, = {0} = (CNOY(CH))*t = CHa (0°(CH) = CL @ (C), we
have C+ N 0*(C) = {0}. Hence, C* is (-complementary dual.

Conversely, suppose that C* is /-complementary dual . We obtain C+ N
0(C) = {0}. Since Fp. = {0}* = (C* N OY(C))*" = C @ 04(C*), we have
C N O (Ct) = {0}. Therefore, C is f~complementary dual. O



Chapter 3

The /-Equivalent Duals of
Cyclic Codes

In this chapter, we focus on the /-equivalent dual of cyclic codes. The generator
polynomial of such codes)is determined.

Given a polynomial f(2) =apz’ + - - < + ajz 4 a9 € Fyr 2] and an integer
0 < ¢ < my denote by-0(f(x)) the image-of f(w) by applying 6° on the

coefficients of f(x), i.e.,
0°(f () =0(a)2" 4~ +8 (a)z + 0" (ao)-

Lemma 3.1. Let f(z)= Z a;x" and g(x) = Z bix’ be polynomials in Fpm[z].
i=0 i=0
Then the following. statements hold.

i) 0°(f (2)g(@) = 0°(F ()0 (g(x)) for all 0 < £ < m.
it) If ag # 0 and by # 0, then (f(x)g(x))* = f*(x)g*(z).

iii) If ap # 0 and by # 0, then 6° ((f(z)g(z))*) = 0° (f*(x)) 0" (¢*(x)) for all
0<?<m.

r+s
Proof. Since f(z)g(z) = Z ( Z aib]) 2¥ and 6% is an automorphism, we

k=0 \k=i+j



have

Therefore, ©) is proved.
To prove ii), assume that.ay # 0.and by # 0. Without loss of generality,

we assume that f(z) and g(z) have degree r and s, respectively. Then

(f(x)g(x))* = a"** (aoo) T* (Z ( > aibﬂ'> ‘”Jg)

k=0 \k=i+j
7 (x”aal Z aix_i> (msbgl Z bix_i>
=0 i=0
= [ ()9 (x)-
The statement 7i7)-follows immediately from 7)-and i1). O

The generator polynomial of the /-equivalent dual of a cyclic code is de-

termined in the following preposition.

Proposition 3.2. Assume that ™— 1= g(x)h(x) in Fym[z], where g(z) and
h(x) are monic polynomials. If C is a cyclic code of length n with the generator

polynomial g(x), then 0°(CL) is generated by 6°(h*(x)).

Proof. Assume that dim(C) = k. Let g(z Zgla: and h(x Zh x',

where g; = 0 for all i>n — k and h; = 0 for all 1>k. In the quotlent ring



10

Fym[z]/(z™ — 1), we have

0=2"—-1
= g(z)h(z)
= (9o + 12 + goa® + -+ -+ gn k2" "+ gugz" )
X (ho + hix 4+ how® + -+ hy 2" F 4o £ By 2™
= (g0ho + g1hn—1+ -+ + gn—1h1) 4 (goh1 + giho + gohp—1 + -+ - + gn_1ho)x

+ooet (gohn—l + glhn—Q + 4 - A gn_lho)x"_l,

Then goh; + g1hi—1+ -+ +GgnAhp—1s; =0 foralli=0,1,... n. It follows that
the polynomial representation of ~(h;, f;21; o s hy_144) is in C*. Since C* is

also cyclic, we have that the polynomial representation of (h, 1, hn_o,. .., hg,

..y ha, hy, ho) s l;(\;) and it is in C+. Hence, Ge(hf(;)) € 0°(C*). Therefore,

A

(O (" ())) = {6°((z))) € B(C). Strice
dim((0° (" (x)))) = n-—deg(0°(h"(w))) =n~k = dim(0°(C")),
the generator polynomial of 0°(C+) is §°(h*(x)). O

From-the-definition of §°(f(z)), the O-equivalent dual of.a-cyclic code is
just its Euclidean dual generated by h*(z). In‘addition, if m is even, then the

F-equivalent dual of a eyclic code is its Hermitian dual generated by hi(x).

Example 3.3. Letn =7, p = 3 and m = 4. Let a.be a primitive element of
Fg; = F34. The polynomial 27 —1 can be factorized into a product of monic

irreducible polynomials over Fg; of the form
27— 1= (z+2)@° + a2 + o™z + 2)(2® + a®2? + oz + 2).
Let C' be the cyclic code of length 7 over Fg; generated by

g(x) = 2 + a2? + ™z + 2.
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Since h(r) = sl = (z +2)(2® + a®2? + o™z + 2), we have

T 23+al022+4+a 0242 T

0°(CH) = C* = (0°(h*(2))) = (h*(2)) = ((z + 2)(z* + "2 + ™z + 2)),

(z +2)(z® + a®2* + 'z + 2)),

(z +2)(2® + a2 + a2 + 2)),




Chapter 4

¢-Isodual Cyclic Codes

In this chapter, the characterization of /-isodual cycliecodes over finite fields
is given as well as necessary and sufficient conditions for cyclic codes to be

(-isodual. The enumeration of such codes is also completely determined.

4.1 Characterization of /~-Isodual Cyclic Codes

The characterization of f-isodual cyclic codes is given as follows.

Proposition 4.1." Assume that ™ —1 = g(x)h(x) in Fm([z]. Let C be a

cyclic code «of dength n-generated by g(x).~Then C isl-isodual if and only if
g(x) = 0°(h™(2)).

Proof. Assume that €.is (-isodual:". Then ¢ =-64(C+). Since C' = (g(x))
and 0°(Ct) = (6°(h*(z))), we have {g(z)) = (#°(h*(x))). Thus there exist
p(z),q(z) € Fym|z] such that g(x) = 0°(h*(z))p(x) and 6°(h*(z)) = g(x)q(x).
Hence, g(z) = g(x)p(z)q(x), i.e., p(x)q(x) = 1. Since g(z) and 6°(h*(z))
are monic polynomials, it follows that p(x) = 1 and ¢(x) = 1. Therefore,
g(x) = 0°(h*(x)).

Conversely, assume that g(x) = 0°(h*(x)). Then we have (g(z)) =
(0°(h*(z))) which implies that C' = 6*(C*). Therefore, C' is f-isodual. O

12
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Example 4.2. Let n = 14, p = 2 and m = 3. Let a be a primitive element of
Fs. Then x'* — 1 can be factorized into a product of irreducible polynomials

over Fg as
e = 1= (z+ 1)z +a)(z+a?)?(z+a®)(z + ') (z +a”)(z + ).

Let g(z) = (z + 1)(z + a)?(z + o?)*(z + a*)?. Then we have

h(z) = a’;(;)l — (& +A) (@ + 02z + 02z + o).

For 0 < /<3, by direct computation, we conclude that

of (i () = 92
Hence, (g(z)) is an ¢f-isedual cyclic code for all 0-< £<3.

Theorem 4.3. Let m and n-be positive integers and let 0 < ¢ < m be an
integer. Then there exists an l-isodual cyclic_code oflength n over Fpm if and

only if p =2 and n_is-even.

Proof. Assume that o™ — 1.="g(z)h(z), where g(x) and h(x) are monic poly-
nomials. Let C' be a-cyelic code of length n over [, generated by g(z).

Assume that C' isf-isodual. Then C-=-{(g(x)) and #°(C+) = (0°(h*(x))).
Since C' =¢°(Ch); we have dim(C) = dim(94(CL)). Therefore,

n — deg(g(z)) = dim(C) = dim(g"(C*)) = dim(C*)
=n —deg(h*(x)) =n — deg(h(z)).

Hence, deg(g(z)) = deg(h(x)). Since deg(h(z)) = n — deg(g(z)), we have

n = 2deg(g(x))
which implies that 2|n. Hence, n is even and deg(g(z)) = deg(h(x)) = 3.
Write n = np”, where p{7n and 0 < v. Since

v

g(@)h(z) =" — 1= (z = )" (f(x))"
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for some f(z) € Fym|[z], we have (z — 1)|g(z) or (x — 1)|h(z).

Case 1 (z — 1)|g(z). Since g(x) = 6°(h*(x)), we have (z — 1)|0°(h*(z)).
Note that z — 1 = 6*((z — 1)*). Hence, 0°((x — 1)*)|0*(h*(x)). Tt follows
that (z — 1)|h(z). From the discussion, for each 1 < r < p¥, we note that
(x—1)"|g(x) if and only if (x —1)"|h(x). Therefore, the exponents of (z —1) in
h(z) and g(x) are exactly the same, denoted by A. Then 2\ = p”, and hence,

p is even.

Case 2 (v — 1)|h(x). Since g(x) = 0°(h*(z)) and
g(2)h(z) =" = V=0 (2" =11)) = 0(g" ()0 (h*(2)),

we have h(z) = 0°(g*(z)). Hence, (z — 1)|6*(g*(z)). Similar to Case 1, we have
(x — 1)|g(z), and hence, the exponents of (x = 1)-in h(z)and g(z) are exactly
the same, denoted by A. Therefore, 2\ = p”, and hence, p is even.

Conversely, assume p-= 2 and n-is even. Then the polynomial ™ — 1 can
be written as

r=l=u2"F1l= (x%—l—l)QEIFgm[x].

Choose g(r) =23 4+ 1. Then h(¢) = x3 + 1. Since
eI D = 0 5 +4))
=01+ 2%) =T+ 25=g(a),

by Proposition 4.1, we have that C' = (g(z)) is an (-isodual cyclic code of
length n over Fom. O

4.2 Enumeration of /-Isodual Cyclic Codes

In this section, we focus on the enumeration of /-isodual cyclic codes of length

n over F,m. Some necessary tools are introduced and proved.

Definition 4.4. For a given integer >0, let S5(i) denote the largest integer
2% such that 2F|i.
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Lemma 4.5. Let m be an even integer and { be an integer such that 0<{<m.

Then

ged(m, 20) = ged(m, £)  if So(€) > Sy(m),

2gcd(m, £) if Sa(£)<Ss(m).

Proof. We distinguish the proof into two cases.

Case 1 Sy(¢) > Sg(m). Let d ="gcd(m,2(). Clearly, gcd(m 0)|d. Since
Sy(d) = Sa(m) < Sh(l), 5 is odd’and Sy (d)|¢. Note that d) |2¢. Tt follows
that o (d |¢. Since (/= Q(d) - Sold) and gcd( Sg(d)> =1
Hence, d|¢. Therefore, d| ged(m,?). Thus, ged(m, 26) = ged(m, 0)
Case 2 S5(¢)<Sy(m). ~Let.d = ged(m, (). Clearly, ged(m,2()|2d. Since
So(d) = Sg(€)<52(m), we have

l
L S@lm@

#@1) is odd but % is_even. Since SLM) =

s 2 and 55 ] S we have SL(),Z 5.qaj - Mt/ follows that d|%s, and hence,
2d| ged(m, 26). Therefore, ged(m; 20) = 2 ged(m; ). O

Remark 4.6. We note that if . is odd, then Ss(£) > Sa(m) for all 0<l<m.
Hence, in this case, ged(m,20) = ged(m, £).

Definition 4.7. Forintegers ¢ and m such that 0-< /<m, let
Fix(6")y= {a.eFpm | 0'(a) = al.
Lemma 4.8. Let ! and m be integers such that-0 < ¢<m. Then
Fix(0%) = Fpscaim.o .

Proof. Let a € Fix(#*). Then 6‘(a) = «a. There exist a,b € Z such that
ged(m, £) = am + bl and

ged(m,2) am-+bl am \ bl
aP —aP = (a?"" )P

Since

am m ,m(a—1) m(a—1) m(a—2) m(0)
Oép :(Oép )P :Oép :Oép _,,,:aP —
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cd(m,0) be 0y, 0(b—1) £(b—1) 0(b—2) £(0)
we have a?* =af = (o )P =a? =a? =...=af =

pgcd(m,Z)

Hence, « = . Therefore, a € Fpzcam.0)

On the other hand, assume that o € Fpecamsy. Then a?* " — 0 We

have

0'(a) = o'

/4
pgcd(m,é)» 2ed(m,0)

=

gcd(m,f)(mil)

ged(m,0) \ P
= (¢2)

(£~ged(m,0))
=P }

S G

. . 0
Continue this process, we have 0°(a) == af = a. Hence,

a € Fix(0). Therefore, we have Fix(69) = Fiaomo as desired. O

We next give a characterization of /-isodual cyclie codes of length n over

Fom in terms.-of Euclidean and-Hermitian self-dual cyclic codes over some

subfield of Fom.

Lemma 4.9. Let n and m be positive integers and let ¢ bevan integer such
that 0 < {<m. Let g(a) € Fom|x] be a divisor of ™ —1. Then the following

statements hold.

i) If £ =0 or Sy(€) > Ss(m), then the cyclic code C' of length n over Fom
generated by g(x) is L-isodual if and only if g(x) € Fygeaem.n[x] and the

cyclic code of length n over Fogcaim.y generated by g(z) is Fuclidean self-

dual.

it) If >0 and S3(£)<Sy(m), then the cyclic code C of length n over Fom
generated by g(x) is (-isodual if and only if g(x) € Fozgeaemo[x] and the

cyclic code of length n over Fosgeaim.ey generated by g(x) is Hermitian self-

dual.
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Proof. To prove i), assume that Sy(¢) > Se(m) or £ = 0.

Suppose that the cyclic code C' of length n over Fom generated by g(x) is ¢-
isodual. Then g(z) = 6*(h*(x)), which implies that 6™ *(g*(z)) = h(z). Since
C is (-isodual, by Corollary 2.10, we have that C* is f-isodual. Hence h*(x) =
0°(g(z)). Then h(z) = 0°(g*(x)). It follows that 6°(g*(x)) = 0™ *(g*(x)),
ie., 0%(g(z)) = g(x). It means that g(z) € Fix(0*)[xr] = Foscamao[z] by
Lemma 4.8. Since h(z) = %, we have h(z) € Fageammaon[z]. By Lemma
4.5, we have ged(m,2¢) = ged(m, ) since So(¢) > Sa(m) or £ = 0. Hence,
h*(2) € Foscawmn [2] = Fix(0°)[z] by Lemma 4.8. Therefore, g(x) = §°(h*(x)) =
h*(z) € Fogeaem.o [x]. Thus, C' is Euclidean self-dual over Fyecaem,y by Corollary
2.3.

Conversely, suppose that g(z) € Foseatnio [2] and the-eyclic code C of length
n over Foecam,ry generated by g(x) is Euclidean self-dual. Then g(x) = h*(x) €
Foeaimn[2]. Since h*(2) € Foseaenpy[z], we have 64(h*(z)) = 0540 (h*(z)) =
h*(x) = g(x). Since Figeatmey S Fom, g(x) =0 (h* (1)) € Fom[z]. Hence, C is
(-isodual over-Fom by Proposition 4.1.

To prove i), assume that.Ss(£)< Sy (m)-and £>0.

Assume that-the eyclic code € of-length n over-Fsm generated by g(x)
is (-isodual. . Then g(x) = 0“(h*(z)). Similar-to the proof of i), we have
g(x) = 0°(h*(2)) € Fix(6?") = Fogeagm 20]z) by Liemma 4.8. Since Sy(¢)<Sy(m),
by Lemma 4.5;.we obtain gcd(m;26)-=2gcd(msL). Thus, g(z) = 0°(h*(z)) €
Fo2 gcaim.e) [2].  Since ged(m, )¢, we have ¢ = gcd(m, () - k for some k € N.
Note that #2848 = id € Aut(Fy2geaims). Then

(1 (2) = gecd(mO) (p*(x)) if k is odd,
h*(x) if k is even.
If k is even, then h*(x) € Fogeaim.o) [x]. Hence, 64(h*(z)) = h*(z) = 6540 (p*(x)).
In both cases we have g(z) = 0°(h*(z)) = 62«49 (h*(z)) = hf(z). Thus, C is
Hermitian self-dual over Fy2ecaim.y by Corollary 2.5.

Conversely, suppose that g(z) € Fyracatme[z] and the cyclic code C' of
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length n over Fozgeaem.y generated by g(z) is Hermitian self-dual. Then g(z) =
&m0 (R*(2)) € Fozpcaeme[x]. Since So(€)<Sy(m), by Lemma 4.5, we have
ged(m, 20) = 2ged(m, £). Thus, g(z) = 054D (h*(2)) € Fogeaiman[z]. Simi-
larly, we have 6¢(h*(x)) = 620" (h*(2)). Thus, g(z) = 0(h*(x)) € Fam|x]
because Fogcaim20 C Fom. Therefore, C' is ¢-isodual over Fom by Proposition

4.1. [l

Example 4.10. Let n = 14, p = 2’and m = 3. Let a be a primitive element
of Fg. Then 2'* —1 can be factorized into a product of irreducible polynomials

over Fg as
1‘14 . 1 — (l‘—i— 1)2(1’—I—O{)Q(l‘—|—Oé2)2($—|—043)2(.13+()é4)2(.’]3+045)2(1’+0é6)2.

Let g(z) = (x+ 1) (2 +a)?(x + a?)?(z +a*)?. From Example 4.2, we have that
C = (g(z)) is an ¢-isodual cyclic.code for all 0 < ¢<3. Note that Sy(¢) > S3(3)
for all 0 < ¢<3. By Lemma 4.9, we have that for each 0 < (<3, g(z) €
Foecas.o [z] and the eyclic code of length 14 over Fyeca(s,n generated by g(x) is

Euclidean selfdual.

Example 4.11.Let n.=14, p = 2. andm =4. Then w**~ 1 can be factorized

into a product of irreducible polynomials over Fyg as
S et 1)2(2 + 7 L DAT RNV

Let g(x) = (z + 1)(2*+a + 1)*. Then we have

h(z) = = (x4 1)(z* + 2% +1)%
For 0 < /<4, by direct computation, we conclude that
0 (h*(x)) = g(x).

Hence C' = (g(x)) is an f-isodual cyclic code for all 0 < ¢<4. Note that
So(£)<Sy(4) for all 0 < £<4. By Lemma 4.9, we conclude the following results.

1. If £ =0, then the cyclic code C of length 14 over F4 generated by g(z) is
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Euclidean self-dual.
2. If 1 < ¢ < 3, then we have g(x) € Fy2scaary and the cyclic code of length 14

over Fosgeaary generated by g(x) is Hermitian self-dual.

The number of /-isodual cyclic codes of length n over Fom can be determined
in terms of the numbers of Euclidean self-dual and Hermitian self-dual cyclic

codes of length n over some subfields of Fom.

Theorem 4.12. Let n and m be positive integers and let £ be an integer such
that 0 < f<m. Then the number of {-isodual cyclic codes of length n over Fom

equals

i) the number of Euclidean self-dual cyclic codes. of length n over Fogeaim.o) if

Sa(m) < So(l) or €=0, or;

i1) the number of Hermitian self-dual cyclic. codes of length n over Fozgcaim.o

if Sa(m)>S>(€) and 0.
Proof. 1t follows immediately from Lemma 4.9: ]

For completeness, we recall some results_concerning the numbers of Eu-

clidean self-dual and Hermitian self-dual-cyclic codes from [2] and [3].

Definition 4.13. Let.j be-an odd positive integer and let k& be a positive
integer. The pair (4, 2%).is said to be oddly good. if j divides (2¥)* + 1 for
some odd integer s > 1,.and evenly good if j divides (2¥)* + 1 for some even
integer s > 2. It is said to be good if it is oddly good or evenly good, and bad

otherwise.

Definition 4.14. Let O be a set of odd positive integer and let x, A : O xN —
{0, 1} be defined by

0 if (4,2%) is good,
X0, k) =
1 otherwise,
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and

. 0 if (j,2%) is oddly good,
A( k) =

1 otherwise.
Definition 4.15. Let j and i be positive integers such that ged(j,7) = 1 and
let Z7 be the unit group of Z;. The order of 7 in Z7 is the smallest integer e
such that j|(i® — 1), denoted by ord; (7).

Theorem 4.16 ([2, Theorem 3]). Let n = 2"™n be positive integer such that
n > 11is odd and v(n) > 1. Then the-number of self-dual cyclic codes of length

n over Fom is
(14 2%@)%2,;‘\&?((]}711)%'
Theorem 4.17 ([3, Corollary.3.7]). Let-n = 2“™n be_positive integer such

that i > 1 is odd and'v(n) > 1. Then the number of Hermitian self-dual cyclic

codes of length n over Fozm is

(1 oyt S by )

Corollary 4.18. Letn = 2"™n be positive integer such thatn > 1 is odd and
v(n) > 1. Let'm be a positive integer and { be an integer such that 0 < (<m.
Then the number of (~isodual cyclic codes of length n over Fom is

% E]\ﬁ X(jngd(mve))

b))
i) (14 2v™) oy 20 it Sa(m) < Sy(l)vord = 0,

% E]\ﬁ A(]ang(m7£)) o'rdj( 16

it) (14 2v™) ort; (286A0n0) g G ()= Se(0) and €>0.

Proof. 1t follows immediately from Theorems 4.12, 4.16 and 4.17. O

Example 4.19. Let n = 14, p = 2 and m = 3. Let ¢ be an integer such that
0 < ¢<m. Note that S3(3) < S5(¢) for all 0 < ¢<3. By Corollary 4.18, we
have that the number of /-isodual cyclic codes of length 14 over Fy is

1 ; ¢(4)
3 247 X(],ng(3af))ng(3,g))

(1+2Y

If £ =0, then the number of O-isodual cyclic codes of length 14 over Fg is

3 X517 X(:3) orfﬁ;:a)

(1+2h
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Since
1 9(j) 1 9(1) o(7)
22 X0 3 (X(1’3)ord1(8) (7 3)ord7(8))
1 (1)(6)
=3 (0 * T)
=3

the number of O-isodual cyclic codes of length 14 over Fg is (1 + 2')* = 27,

If £ =1, then the number of 1-isodual cyclic codes of length 14 over Fg is

2 D X(j71)orj;z;1)

(1429
Since
1 A ) L o(1) (7)
2 il X 1)Ordj(21) TR (X(l’ 1)ord1(2) (L, 1)ord7(2))
_ 1 (1)(6)
e (0 J T)

=1,

the number of 1-isodual eyclic codes of length-14 over Fy\is (1 + 2')! = 3.
If ¢ = 2, then the number of 2-isodual ¢yclic codes of length 14 over Fg is

(1 _|_ 21)% Z]|7X(‘7’1) orjj(?;l) )

Since

32 X0, 1)0rdj(21) N % (X(l’ 1)01:2(51(11()2) s 1)0521(77()2))

S

=1

the number of 2-isodual cyclic codes of length 14 over Fg is (1 + 2')! = 3.

Example 4.20. Let n = 14, p = 2 and m = 4. Let ¢ be an integer such that
0 < {<m. Note that S5(4)>S55(¢) for all 0 < £<4. By Corollary 4.18, we have
that the number of 0-isodual cyclic codes of length 14 over Fyq is

15 j.ecd (4,0 ¢(5)
(1 + 21) B) Z]|7 x(7,8¢ ( )) ordj(Qng(470)) ‘
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Since

I e 1 o(1) ?(7)
3 X(]’4>ordj(24) =3 <X(1’4)W+X(7’4)m)

3o

=1

Y

the number of 0-isodual cyclic codes of length 14 over Fy4 is (1 + 2')! = 3.
For 1 < ¢ < 3, by Corollary 4.18 'we have that the number of /-isodual cyclic

codes of length 14 over 4 is

1 : #(5)
2 Z )‘(ngCd(47£))
(1 + 21) 2 Jl7 Ordj(22gcd(4,ﬁ)) ]

If / =1, then the number of 1-isodual ¢yclic codes of length 14 over Fy4 is

(1 + 21)% Zj|7 )\(‘7’1) orccf;{;2) .

Since

, ] (1) (1)
22 AU 1)0rdj(22) ~9 (/\(1’ 1)ord1(4) Y 1)0rd7(4)>
)i (1)(6)

(o

4 7

the number of 1-isodual eyclic codes of length 14 over Fyq is (1 4 2')! = 3.
If £ = 2, then the number-of 2-isodual cyclic eodes of length 14 over F4 is

(1 + 21)% Z]|7>\(‘]’2) or:‘lﬁ;{;‘l) .

Since

(1) ¢(7)
()\(1’ 2) ord; (16) +A(T2) ordz(16) )
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the number of 2-isodual cyclic codes of length 14 over Fyg is (1 + 21)! = 3.
If ¢ = 3, then the number of 3-isodual cyclic codes of length 14 over Fy4 is

(14 21y 0

Since




Chapter 5

(-Complementary Dual Cyclic
Codes

In this chapter, we focus on a generalization of complementary dual cyclic
codes over [F,,m, namely, f-complementary dual eyclic codes, where 0 < ¢ < m.
The characterization-and enumeration of such codes are given together with

some illustrative examples.

5.1 [Characterization of /-Complementary Dual

Cyclic Codes

Recall that a linear code (C of length n over F,= is-called ¢-complementary
dual if C N #(C*) = {0}. The characterization of (-complementary dual

cyclic codes is given as follows.

Lemma 5.1. Assume that 2™ — 1 = g(x)h(x) in Fym|x], where g(x) and h(z)
are monic polynomials. Let C be a cyclic code of length n over Fym with
the generator polynomial g(x) and let 0 < € < m be an integer. Then C is
(-complementary dual if and only if ged(g(z), 0°(h*(x))) = 1.

Proof. Note that the generator polynomial of the cyclic code C N §¢(C*) is
f(z) = lem(g(z), 0°(h* (x))).

24
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Assume that C is f-complementary dual. Then we have C' N (C+) = {0}.
Then f(x) has degree n and

f(@) = lem(g(x), 0(h*(x)))
@ (@)
ged(g(x), 0°(h*(x)))’
Since g(x)0*(h*(x)) has degree n, it follows that ged(g(x), 0°(h*(x))) = 1.
Conversely, assume that ged(g(z), 6¢(h*(x))) = 1. Then

f @) = Jen(g(x), 0°(h*(2)))

/gt @)
ged(9(2) 01 (a))

= g()0°(hF (),

Hence, deg(f(z)) =n.<Since f(x) is the generator polynomial of the cyclic
code CNOY(CH), we'conclude that f(z)= 2"~ 1, and hence, CNH*(C*+) = {0}.

Therefore, C' is -complementary dual as desired. n

Theorem 5.2./Let-C be a-cyclic code-of length n-over Fpm. with the generator
polynomial g(x) and let 0 < ¢-<m be an integer:. Then C' is £-complementary
dual if and onlyif g(x) = 0%(g*(x)) and every monic irreducible factor of g(x)

has the same multiplicity in g(z) and in z"™ = 1.

Proof. Write n = np”, where pf nrand 0 < v is an integer.. Assume that
" — 1= g(x)h(x) in Fym|z]:
Assume that C"is /-complementary dual: By Lemma 5.1, we have

ged(g(@), 0(h*(2))) = 1.

By Lemma 3.1, we have

g(@)h(z) = 2" =1 =0"(g"())0" (h"(x)).

Then g(x)|0%(g*(x))0(h*(z)). Since ged(g(x),04(h*(x))) = 1, it follows that
g(2)]0%(g*(x)). Since g(z) and §°(g*(z)) are monic polynomials of the same
degree, we have g(r) = 6°(g*(z)). Consequently,

ged(0°(g* (2)), 0°(h*(2))) = ged(g(@), 0°(h" (x))) = 1.
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Hence, ged(g(z), h(z)) = 1. Since 2" — 1 = g(z)h(z) = (2 — 1)P", every monic
irreducible factor of g(x) has the same multiplicity in g(z) and in 2™ — 1.
Conversely, assume that g(z) = 0(¢g*(z)) and every monic irreducible fac-

tor of g(x) has the same multiplicity in g(z) and in 2™ — 1. Since
g(@)h(z) = 2" =1 = 6"(g" (x))0"(h* (),

it follows that h(z) = 6°(h*(z)). Since g(z)h(z) = 2" — 1 = (2" — 1)?" and
every monic irreducible factor of g(x) has the same multiplicity in g(x) and in

" — 1, we have

1 = ged(g (@) b)) = ged(g(2).0°(h* (2)))-
By Lemma 5.1, C' is (-complementary dual. O]

In the case wherep t n, 2" — 1 contains no-repeated irreducible factors in

F,m[z], and hence, the next corollary follows.

Corollary 5.3. Let.0 < ¢ <. m be an integer and let-n be a positive inte-
ger such that pt n.—Let C be a cyclic code of length n over Fym with the

generator polynomial g(x). Then C is £-complementary dual if and only if
g(x) = 0%(g*(x)).
Example 5:4. Let n =7, p =3 and m =4. Let-a be a primitive element of
Fg; = Fss. The polynomial 27 — 1 can be factorized into a _product of monic
irreducible polynemials over Fg; of the form
" — 1= (x4 2)(z® + 2>+ a1 + 2)(2® + o2 + 02 + 2).

Then we have the following results.

i) Let gi(x) = x + 2. Since 2 and 1 are fixed by #° for all i = 0,1,2,3, we

have
gi(z) =222 +1) =2 +2,

and hence,

0°(gi(2)) = g1(z), 0'(g1(2)) = g1(), 0*(g7(2)) = g(x)
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and

0*(gi(x)) = g1 ().
Therefore, the cyclic code of length 7 over Fg; generated by g;(x) is 0-
complementary (Euclidean complementary) dual, 1-complementary dual,

2-complementary (Hermitian complementary) dual and 3-complementary

dual.

ii) Let go(z) = 2® + '%2% + ™2+ 2. Then we have

0%(g3(w)) = g>()
=2022° +aP2? £ a2 + 1)
. S = DN R
# g2(),
0 (g5(2))=0(2(22° + a™2* + oz + 1))
= @*+ o A4 e2m: 2)
w3 ) 1042/ J5700/7
= g2(),
02(g5(x)) = 07(2(22° 4 %% + o' + 1))
= P a2 0% 19)
e ST R

#92()

and

03(g5(x)) = *(2(22° + a™2* + o'z + 1))
= P2 + a*2* + a7 + 2)
— 3 al02 4 00 19
= go(x).
Therefore, the cyclic code of length 7 over Fg; generated by go(z) is 1-

complementary dual and 3-complementary dual but the code is neither
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0-complementary (Euclidean complementary) dual nor 2-complementary

(Hermitian complementary) dual.

i11) Let g3(z) = 23 + a®2? + oz + 2. Similar to i7), we have

0°(g3(w)) # gs(x), 0'(g5(2)) = gs(x), 0%(g5(x)) # gs(x),

and

0°(g3(2) = g5(2).

Therefore, the cyclie code of length 7 over Fg; generated by gs(z) is 1-
complementary dual and 3-complementary dual but the code is neither
0-complementary (Euclidean complementary) dual'nor: 2-complementary

(Hermitian complementary) dual.

5.2 Enumeration of /-Complementary Dual

Cyclic Codes

In this section, we focus on the enumeration of ¢-complementary dual cyclic
codes of length n over Fym.

An /-complementary dual cyclic code-becomes Eucidean complementary
dual if £ = 0 and it'becomes Hermitian complementary dual if m = 2¢. Here,
we extend the study to-the case where m = 4¢ and focus on the enumeration
of {-complementary dual cyclic codes of length n over F .

Let n = p™n be a positive integer, where p f 7 and v(n) > 0. Since
" —1= (2" — 1)pu(n)7 the number of /-complementary dual cyclic codes of
length n over Fju is independent of p’™ by Theorem 5.2. Therefore, the
number of /-complementary dual cyclic codes of length n over IF . equals the
number of divisors g(x) of 2™ — 1 such that g(x) = 6°(¢*(x)) by Theorem 5.2.

We note that there does not exist f(z) € Fpu[z] such that f(z) # 0°(f*(z))
and f(x) # 6%(f(x)) but f(x) = 03(f*(z)). To see this, suppose that the
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statement is false. Then f(z) = 0%(f(z)) = 0°(03(f(z))) = 6°(f*(x)), which
is a contradiction. Then there exist nonnegative integers r, s and ¢ such that

the factorization of 2 — 1 can be rearanged in the form of

" —1=[]fitw) Hh )0 (5 (e Huk (2)0" (ug ()07 (un (2)) 0 (i (),
(5.1)

where f;(z)’s, h;(z)’s, and ui(z)’s are distinct irreducible factors of 2™ — 1

such that
o fi(x) =0f;(z)) for all 1 <i <,
hj(x) # 0°(h3(x)) and hj(x)= 62“(h;(2)) forall 1 <7j < s, and

o up(z), 0%(uj(x)), 0% (ux(z)), and @3 (uj(x)) are distinct for all 1 < k <
t.

The empty produet in (5.1) will be regarded as 1.
It is not difficult to see that-a divisor g(a)-of ™ =1 has the property that
g(z) = 0%(g*(x)) if and only if

where A;’s, B;’s, and C}’s are.in {0, 1}.

From the discussion above and Theorem 5.2, the next theorem follows.

Theorem 5.5. Let n = p*"™n be such that p{ i and let £ be a positive integer.
If 2™ — 1 is decomposed as in (5.1), then the number of {-complementary dual

cyclic codes of length n over Fu is 27 where r, s, and t are defined in

(5.1).

The rest of this section, we devote for the determination the values of r, s,

and t in (5.1).
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Definition 5.6. Let 7 be a positive integers such that p{n and let a > 0 be

an integer. The cyclotomic coset of p** modulo 7 containing a is defined to be

Cpu(a) ={a-p* modn|j=0,1,2,...}.

For a given irreducible polynomial f(z) € Fj|x], it is well known [7] that
f(z) = Hiecp42 (@(x — a') for some interger a > 0 and a in some extension

field of Fpa. In this case, we say that f(x) is induced by Cpu(a).

Lemma 5.7. Let f(x) be an irreducible polynomial in Fpac|x] and let a > 0 be

an integer. Then f(x).is induced by Cyic(a).if and only if 6°(f*(x)) is induced

by Cpue(—pla).

Proof. Assume that f(z)= [l;cc (@~ at) for some @ in some extension
ae

field of [ ae. Then

Fr@) =2 O T A-a) T (i—d)

€0 40 (a) i€C 1 (a)
Z H )T H (1—0/95)
iECp4g(a) iECpu(a)
J1 ) B
iECp4e(a)
=TTl
iECp4g(—a)

Hence,

iecpu(—a)

= I (")
zECp4g(—a)

= (z —a')

The converse can be obtained by using similar arguments. O
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Definition 5.8. Let &,0: {p' | i € N} x N — {0,1} be defined by

(

A 0 if there exists M € N such that d|(p"“M~Y + 1),
§(p',d) = |
1 if for all M € N, d { (p'4M=Y) 4 1),
\
and
)
‘ 0 if there exists M € N such that d|(p'®M~Y — 1),
o(p',d) = |
|1 if for all M &N, d (p'M=1 1),

Lemma 5.9. Let 1 be'a positive integer such that pt in. If x™—1 is decomposed

as in (5.1), then
d
S D)

Proof. Let d|n be a_positive integer. For each element 0 < a < 7n of order d
modulo 7, let f(z) be induced by Cpa(a): Then f(z) = 6°(f*(x)) if and only
if Cpue(a) = Cpue(=p'a) by Lemma5.7. Equivalently, there exists M € N such
that dp*™ +p; ie., dlp’(p" ™=+ 1) Since ged(d,p’) = 1, we have that
f(z) = 6°(f*(x))if and only-if there exists M & N.such-that.d| (p® MY +1).

Note that the number of elements in {0;1;2,.+. %=1} of order d modulo
n is ¢(d) and the degree of the polynomial induced by Cpu(a)ds |Cpae(a)| =
ordy(p*) for every element.a of order d modulo s Hence, the number of

irreducible factor of 2™ — 1 of degree ordg(p*) is =29

ordg(p**)
By the definition of &, we have
¢(d)
= 1—£(pt,d)————
r an:( f(p ) ))Ol“dd(pu)
as desired. O

Lemma 5.10. Let n be a positive integer such that ptn. If 2™ — 1 is decom-

posed as in (5.1), then

¢(d)

5= S0\ )1 - o™ d) g

djn
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Proof. Let d|fi be a positive integer. For each element 0 < a < 7 of order
d modulo 7, let h(z) be induced by Cpuc(a). Then h(z) # 6‘(h*(z)) and
h(z) = 0*(h(z)) if and only if Cpue(a) # Cpu(—p‘a) and Cpu(a) = Cpu(p*a)
by Lemma 5.7. Equivalently, d { (p**™ + p?) for all M € N and there exists
N € N such that d|(p**™ — p?*). Since ged(d,p’) = 1, we have that h(x) #
0‘(h*(z)) and h(z) = 0% (h(z)) if and only if d { (p*“ = 4-1) for all M € N
and there exists N € N such that d|(p?*N—1 —1).

From the proof of Lemma 5.9, for-each d|n, the number of irreducible factor

#(d)
ordg(pt) "

of 2™ — 1 of degree ordy(p*) is

By the definitions of ¢ and o, we -have

¢(d)

= €('d)(1- "(p%’d))W

d|n
as desired. O
Lemma 5.11. Let i be a positive-integer such that p4 n. If 2™ — 1 is decom-

posed as in (5.1), then

> Zo_(p%’ d) gb(d)

% dordy(p*t).

Proof. Let d|n be a positive integer. For each element 0 < a.< n of order
d modulo. 72,/ let _h(x) be induced by. Cpac(a).” We-note that the statement
u(x), 04(u*(x)), 0*(up(x)), and-03(u*(x))are distinct is equivalent to u(x) #
0% (u(x)). Then u(x)s 0% (u(z)) if and only if Cpu(a) # Cpu(p*a) by Lemma
5.7. Equivalently, d { (p** — p?*) for all M € N. Since ged(d, p*) = 1, we have
that h(x) # 0% (h(x)) if and only if d { (p*M=1 — 1) for all M € N.

From the proof of Lemma 5.9, the number of irreducible factor of 2™ — 1

¢(d)
ordg(ptt) "

of degree ordy(p*) is

By the definition of o, we have

— Za(p%,fb ¢(d)

e dordg(p*)’
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The results can be sumarized as follows.

Theorem 5.12. Let n = p*™n be such that p 4 7 and let ¢ be a positive
integer. Then the number of -complementary dual cyclic codes of length n

over Fae is 2751 where

9(d)
r=> (1- §(Péad))ma

dln
¢(d)
20rdy(p*)’

s=> 0’ d) (1= o(p*, d))

dj

and

t — Za(p%,d) ¢(d)

{1 dord,(p¥)
Example 5.13. Let n = 24, p = 2 and /= 1. Then 7= 3 and the number of

1-complementary dual eyclic codes of length 24 over F ¢ is 2"t where

r = =g 1) 2D L

- ord(p*)

¢(1)
0rd1(24)

NI =g

¢(3)

LT ords(24)

# [V-L0)

¢(d)

2ordy(p*) Y a

5 £ YA Fo@d)

dn
and

t = Za(p%,d)ﬁ% =

djn
Hence, the number of 1-complementary dual eyclic codes of length 24 over Fig4

is 23 = 8.

Example 5.14. Let n =18, p =3 and ¢ = 1. Then nn = 2 and the number of

1-complementary dual cyclic codes of length 18 over Fg; is 2"t where

_ . ¢(d)
r= %TL: (1 g(p 7d))ordd(p4g)
= (- 0)01’?584) + (1= 0)0r§i?3’>4)

—1+1=2
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5= %,;ﬁ(pZ d)(1—o(p*,d) 2ord,(pif) ’
and
- o(d)
t= g 0(p2£’d dordy(p*) .

IFSl is 22 =4.
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