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The boundary conditions are denoted and the scalar potential are computed and plotted
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The conductivity of overburden is denoted by σover(z) = σ0e
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method are used to solve the partial differential equation to get the potential functions.

The expression for the Wenner configuration is introduced to formulate the normalized

apparent resistivity. In order to determine the normalized apparent resistivity, numerical

solutions are computed to show the behavior of the curves by using Chave’s algorithm

while some parameters are given. The computation results of normalized apparent

resistivity are plotted against electrode spacing. An inverse problem via the use of
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be our third mathematical model. The Hankel transforms are introduced to solve the

magnetic fields which are expressed in the form of integral expression. In order to

determine the magnetic fields, numerical solutions are computed to show the behavior

of the field while some parameters are given. The inversion process, using the Newton-

Raphson method, is conducted to estimate the true conductivity variation parameter of

the ground.
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  เม่ือ b  และ l  เป็นค่าคงตวับวก และ l  ใชแ้ทนต าแหน่งท่ีสภาพน าไฟฟ้ามีค่าสูงสุด, z  
แทนความลึกของพ้ืนดิน และ 

0  เป็นค่าคงตวับวก ก าหนดจุดส่ีจุดเป็นจุดส ารวจบนพ้ืนดิน สองในส่ีจุดนั้นเป็น
จุดท่ีปล่อยไฟฟ้ากระแสตรงลงสู่พ้ืนดินและอีกสองจุดท่ีเหลือซ่ึงอยุ่ระหว่างสองจุดแรกใช้ส าหรับตรวจวดั
แรงดนัไฟฟ้า เง่ือนไขขอบเขตถูกก าหนดข้ึนเพ่ือน าไปสู่การค านวณหาศกัยไ์ฟฟ้าและน าค่าท่ีไดม้าเขียนกราฟโดย
ใชโ้ปรแกรม MATLAB ส าหรับแบบจ าลองทางคณิตศาสตร์แบบท่ีสองเป็นการพิจารณาผลของสภาพตา้นทาน
ปรากฎท่ีถูกนอมัลไลซ์จากการปล่อยไฟฟ้ากระแสตรงลงไปในพ้ืนดิน ซ่ึงสามารถน ามาใช้ในการส ารวจ
โครงสร้างพ้ืนดินของโลกได ้การวิเคราะห์หาค าตอบของสภาพตา้นทานปรากฎท่ีถูกนอมลัไลซ์ ค านวณจากการ
ปล่อยไฟฟ้ากระแสตรงลงบนพ้ืนดินท่ีมีโครงสร้างพ้ืนดินท่ีมีรูปแบบโครงสร้างพ้ืนดินเป็นสองชั้น โดยก าหนด
สภาพน าไฟฟ้าชั้นบนเป็น    
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  , 0 z d  , เม่ือ d  แทนความลึกของพ้ืนดินชั้นบน และสภาพ
น าไฟฟ้าของชั้นถดัลงไปถูกก าหนดโดยค่าคงตวัใหเ้ป็น   0host z  , z d  การแปลงฮนัเกลและวธีิการอนุกรม
ก าลังสองถูกใช้ในการแก้สมการเชิงอนุพนัธ์ย่อย ซ่ึงจะได้ค  าตอบอยู่ในรูปฟังก์ชันของศักยไ์ฟฟ้า โดยการ
ค านวณหาสภาพตา้นทานปรากฎท่ีถูกนอมลัไลซ์ใชว้ิธีการก าหนดค่าตามวิธีการของ Wenner โดยใชอ้ลักอริทึม
ของ Chave ค านวณหาค าตอบเชิงตวัเลขของสภาพตา้นทานปรากฎท่ีถูกนอมลัไลซ์เม่ือก าหนดค่าของพารามิเตอร์
บางค่าในสมการ แลว้น าค าตอบท่ีค านวณไดม้าเขียนกราฟเพื่ออธิบายพฤติกรรมของสภาพตา้นทานปรากฎท่ีถูก
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Chapter 1

Introduction

Nowadays, the natural resources are very useful for human. Most of the
natural resources buried under the earth surface which are difficult to explore.
Geomathematic is the science which applies the principles of mathematics and
physics to explore the ore under the earth surface. The subject involves taking
measurements at or near the earth’s surface those are influenced by the internal
distribution of physical properties. In the past few decade, there are many meth-
ods used in geophysical explorations, such as gravitational, magnetic, seismic,
electrical, electromagnetic, radioactivity, and well logging. The most commonly
used in mineral exploration are direct current resistivity and the magnetic meth-
ods because they are far less expensive than the most other investigation methods.

1.1 DC Resistivity Methods and Their Applica-

tions

Electrical prospecting method detects the ore under ground surface. The
method is produced by electric current flow under the ground. Using electrical
method, one may measure potential, current, and electromagnetic field that occur
naturally or are introduced artificially in the ground. The measurements data can
be made in a variety of ways to determine a variety of results. There is a much
greater variety of electrical and electromagnetic techniques available than in the
other prospecting methods, where only a single field of force or anomalous prop-
erty is used. Basically, it is the enormous variation in electrical resistivity found
in different minerals that makes these techniques possible [36].

Electrical method using direct current resistivity and induced polarization
(IP) are probably the most widely used near-surface geophysical techniques, par-
ticularly for environmental investigations [1]. In the early part of 20th century,
electromagnetic and direct current resistivity methods were brought first time to
use. The direct current resistivity method gained early acceptance because of less
requirement theoretical and instrumentation considerations. Direct current resis-
tivity methods have become the most popularly used geoelectrical method. These

1
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techniques are widely understood and accepted in term of the capabilities, and
limitations and the standardized.

The direct current resistivity method employ an artificial source of current,
which is introduced into the ground through point electrodes or long line contacts.
The procedure is to measure potentials at other electrodes in the vicinity of the
current flow. Because the current is measured as well, it is possible to determine
an effective or apparent resistivity of the surface [36]. The analysis and interpre-
tation are done on the basis of direct currents. The distribution of potential can
be related theoretically to ground resistivity. Their distribution for some simple
cases, notably, the case of a horizontally is stratified ground. The case of homoge-
neous masses are separated by vertical planes. Direct current resistivity survey can
be useful in detecting bodies of anomalous materials or in estimating the depths
of ground surfaces. Data from direct current resistivity surveys are customarily
presented and interpreted in the form of values of apparent resistivity. Apparent
resistivity is defined as the resistivity of an electrically homogeneous and isotropic
half-space that would yield the measured relationship between the applied current
and the potential difference for a particular arrangement and spacing of electrodes.

The direct current resistivity surveying problem is the use of apparent re-
sistivity values from field observations at various locations and with various elec-
trode configurations to estimate the true resistivities of the several earth materials
present at a site and to locate their boundaries spatially below the surface of the
site. An electrode array with constant spacing is used to investigate lateral changes
in apparent resistivity reflecting lateral geologic variability or localized anomalous
features. To investigate changes in resistivity with depth, the size of the electrode
array is varied. The apparent resistivity is affected by material at increasingly
greater depth as the electrode spacing is increased. Because of this effect, a plot
of apparent resistivity against electrode spacing can be used to indicate vertical
variations in resistivity. Schlumberger, Wenner, and dipole-dipole are the types of
electrode array that are most commonly used. There are other electrode configu-
rations that are used experimentally or for non-geotechnical problems or are not
in wide popularity today. The Wenner array configuration is used in our thesis. It
consists of four electrodes in line which is separated by equal intervals and all four
electrodes are moved between successive observations. The Wenner array was used
more extensively than Schlumberger array in the United States. This electrode ar-
ray demands less instrument sensitivity and reduction of data is marginally easier.

The traditional direct current resistivity method maps the electrical prop-
erties of the earth by measuring differences in potential at the earth’s surface
caused by galvanic current flow between two current electrodes. The magnetic
fields associated with these currents can also be measured with a class of geo-
physical techniques referred to here as magnetometric methods. These include
magnetometric resistivity (MMR) and magnetic induced polarization (MIP), and
a set of related ’total-field’ techniques known as sub-audio magnetics (SAM). The
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magnetometric resistivity method differs from the traditional method in that the
potential electrodes are replaced by a highly sensitive coil or magnetometer and
one or more the horiaontal components of the magnetic field are recorded [23].
Magnetometric resistivity is an electrical exploration method based on the mea-
surement of the low-level, low-frequency static magnetic fields associated with
noninductive current flow in the ground. The current electrodes may be located
on the surface or, for areas where targets are beneath conductive overburden which
penetrate the bedrock in order to increase current flow below the cover.

1.2 Outline of the Thesis

This thesis deals with development and application of mathematics tech-
niques for enhanced investigation in geophysical explorations. A horizontally strat-
ified structure of the earth is studied in this research work.

Chapter 2 presents a mathematical model for the scalar potential at various
positions. We assume that the earth structure is only one layer having exponential
conductivity. Four probes are located on the ground surface. Two of them are
direct current source and the another two probes are used for Voltage measure-
ments. The electrode spacing starts from 10m to 100m. We use Finite Element
Method (FEM) by applying Galerkin’s Method of Weighted Residuals to solve the
partial differential equation. Maple program is used to calculate and plot graphs
of the scalar potential at different depths and different electrode spacing.

Chapter 3, the analytical solution of normalized apparent resistivity from
DC source located on a two-layered earth model is formulated. Two-layered earth
structure with an overburden having exponentially varying conductivity is con-
sidered. The Hankel transforms and power series method are used to solve the
partial differential equation to find the potential functions. The expression for the
Wenner configuration is introduced to formulate the normalized apparent resis-
tivity. Numerical solutions are computed to show the behavior of the normalized
apparent resistivity by using Chave’s algorithm while some parameters are given.
The curves of computation results of normalized apparent resistivity are plot-
ted against electrode spacing. The inversion process, using the Newton-Raphson
method, is conducted to estimate the conductivity variation parameter.

In Chapter 4, presents an electrical method used for investigation of two-
layered earth structure. The method proposed here is based on the measurement
of low-level, low-frequency static magnetic fields associated with noninductive cur-
rent flow between two current electrodes on the earth’s surface. Analytical solu-
tions of the steady state magnetic field response from DC source located on a
two-layered are derived in this study. The earth structure having exponentially
varying conductivity is considered. The Hankel transform is applied to our prob-
lem and analytical result is obtained. Our solutions are expressed in the form
of integral expressions. Numerical solutions are computed to show the behavior
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of the magnetic field while some parameter are given approximately. An inverse
problem via the use of the Newton-Raphson optimization technique is introduced
for finding a conductivity parameter of the ground.

Finally, in Chapter 5, we summarize the results and contributions of this
thesis, and indicate future research directions.



Chapter 2

Finite Element Method for the
Scalar Potential Over an

Exponential Conductive Earth

2.1 Introduction

Nowadays, many countries try to make economy grows rapidly. One of
the ways to improve their economy is to use the natural resources. As a result,
the earth surface has been studied widely in order to utilize the natural resources
embedded beneath the earth. They use knowledge of geophysics which is a branch
of science concerned with the earth survey. The survey uses mathematics, physics
and the physical properties of the earth such as the resistivity, conductivity, elec-
tric potential, magnetic field and electric field to search for the natural resources.
Since the most natural resources embedded beneath the earth is hard to find, we
use a survey method to search for the natural resources beneath the earth surface
to differentiate the minerals from the others. We process the data obtained from
a geophysics survey to identify the location of minerals correctly. This geophysics
survey can be costly, so we seek for a mathematical model which is a method that
became famous because it is economical and costs less than the direct survey [36].

We formulate a mathematical model by using electromagnetic method to
determine the value of scalar potential beneath the earth surface. We assume
that the earth structure consists of horizontally stratified layers having exponen-
tial conductivities at certain depths except the last layer where the conductivity
having the same varying through the rest of the layer which was presented by
Chaladgarn and Yooyuanyong [32]. They derived the normalized apparent resis-
tivity by formulating the problem from the electric field as the gradient of a scalar
potential then solve a boundary value problem of a horizontally stratified layered
earth with homogeneous layers. Stoyer and Wait [7] studied the problem of com-
puting apparent resistivity for a structure with a homogeneous overburden and a
medium whose resistivity varies exponentially with depth. Banerjee et al.[5] gave
expressions for apparent resistivity of a multilayered earth with a layer having ex-

5



6

ponentially varying conductivity. Kim and Lee [16] derived a new resistivity kernel
function to calculate the apparent resistivity of a multilayered earth with layers
having exponentially varying conductivities. Chen and Oldenburg [18] derived
the magnetic field directly by solving a boundary value problem of a horizontally
stratified layered earth with homogeneous layers. However, in the real situation
there are cases where the subsurface conductivities vary exponentially, linearly
or binomially with depth. There exists a considerable amount of research about
mathematical modeling which assumes that the earth structure consists of hori-
zontally stratified multilayer with one or more layers having exponentially, linearly
or binomially varying conductivities at certain depths except the last layer where
the conductivity having the same varying through the rest of the layer. Siew and
Yooyuanyong [24] studied the electromagnetic response of a thin disk beneath an
inhomogeneous conductive overburden and expressions for the electric fields in the
overburden. Ketchanwit [25] studied the earth surface layers using time-domain
electromagnetic field by constructing three mathematical models having exponen-
tially varying and constant varying conductivities. Sripunya [34] derived solutions
of the steady state magnetic field due to a DC current source in a layered earth
with some layer having exponentially or binomially or linearly varying conductiv-
ity.

We present our mathematical model by using electromagnetic method. We
assume that the earth structure contains only one layer having exponentially vary-
ing conductivity. We use Finite Element Method (FEM) to find the numerical
solution of the scalar potential under the earth surface. We are seeking the scalar
potential at different depths and distances from the probe. This method is different
from the Hankel transform which is difficult to solve for some complex problems
such as all the research mentioned above. There are a few research used FEM by
applying the Galerkin’s Method of Weighted Residuals to find the solution of the
scalar potential. Therefore, we are interested finding the numerical solution of our
problem by using the Galerkin’s Method of Weighted Residuals.

2.2 Galerkin’s Method of Weighted Residuals

In this section, the method of weighted residuals is described and Galerkin’s
method of weighted residuals is emphasized as a tool for the finite element for-
mulation for any field problem governed by differential equations from Hutton
(2004)[9].

2.2.1 Method of Weighted Residuals

The method of weighted residuals(MWR) is an approximate technique
for solving boundary value problems that utilizes trial functions satisfying the
prescribed boundary conditions and integral formulation to minimize error, in an
average sense, over the problem domain [8]. The general concept is described here
in terms of the one-dimensional case. Given a differential equation of the general
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form
D[y(x), x] = 0 a < x < b (2.1)

where D is differential operator subject to homogeneous boundary condition

y(a) = y(b) = 0 (2.2)

the method of weighted residuals seeks an approximate solution in the form

y∗(x) =
n∑
i=1

ciNi(x) (2.3)

where y∗ is the approximate solution expressed as the product of the unknown,
constant, ci to be determined and the trial function, Ni(x). The major require-
ment placed on the trial functions is that they are admissible function; that is,
the trial functions are continuous over the domain of interest and satisfy the spec-
ified boundary conditions. In addition, the trial functions should be selected to
satisfy the “physics” of the problem in a general sense. Given these somewhat
lax conditions, it is highly unlikely that the solution represented by equation (2.3)
is exact. Instead, on substitution of the assumed solution into the differential
equation (2.1), a residual error (hereafter simply called residual) results such that

R(x) = D[y∗(x), x] 6= 0 (2.4)

where R(x) is the residual. Note that the residual is also a function of the un-
known parameters ci. The method of weighted residuals requires that the unknown
parameters ci be evaluated such that

b∫
a

wi(x)R(x)dx = 0 i = 1, . . . , n (2.5)

where wi(x) represents n arbitrary weighting functions. We observe that, on in-
tegration, equation (2.5) results in n algebraic equations, which can be solved for
the n values of ci. Equation (2.5) expresses that the sum (integral) of the weighted
residual error over the domain of the problem is zero. Owing to the requirements
placed on the trial functions, the solution is exact at the end points (the boundary
conditions must be satisfied) but, in general, at any interior point the residual error
is nonzero. As is subsequently discussed, the MWR map capture the exact solution
under certain conditions, but this occurrence is the exception rather than the rule.

Several variations of MWR exist and the techniques vary primarily in how
the weighting factors are determined or selected. The most common techniques are
point collocation, subdomain collocation, least squares, and Galerkin’s method.
As it is quite simple to use and readily adaptable to the finite element method,
we discuss only Galerkin’s method.
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In Galerkin’s weighted residual method, the weighting functions are chosen
to be identical to the trial functions; that is,

wi(x) = Ni(x) i = 1, . . . , n. (2.6)

Therefore, the unknown parameters are determined via

b∫
a

wi(x)R(x)dx =

b∫
a

Ni(x)R(x)dx = 0 i = 1, . . . , n (2.7)

again resulting in n algebraic equations for evaluation of the unknown parameters.

2.2.2 Elliptic Boundary Value Problems

In this section, we consider an elliptic-typed boundary value problems
(BVP)[6, 10]. Our goal is to determine a finite element solution of the problem.

−∇ · [k(x)∇u] + b(x)u = f(x) ,x ∈ Ω,

u(s) = û(s) , s ∈ ∂Ω1,

−k(s)
∂u(s)

∂n
= p(s) [u(s)− û(s)] = σ(s) , s ∈ ∂Ω2 (2.8)

Variational Statement

Consider the residual

R(x) = −∇ · [k(x)∇u] + b(x)u− f(x).

Method of weighted residual: ∫
Ω

R(x)vdx = 0 , v ∈ V ⊂ H1(Ω),

∫
Ω

[−∇ · [k∇u] + bu− f ] v dΩ = 0,

∫
Ω

(−∇ · [k∇u] v + buv − fv) dΩ = 0, (2.9)

where

H1(Ω) = {v | v ∈ L2(Ω), ∇v ∈ L2(Ω)} and L2(Ω) = {v |
∫
Ω

|v|2dx <∞}.

We aim to reduce the 2nd - order terms to the 1st order by integration by parts.
Using the product rule for differentiation

∇ · (vk∇u) = k∇u · ∇v + v∇ · (k∇u)
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equation (2.9) becomes∫
Ω

[k∇u · ∇v −∇ · (vk∇u) + buv − fv] dΩ = 0.

From the divergence theorem, ∫
Ω

∇ · (vk∇u) dΩ =

∮
∂Ω

vk∇u · n ds

=

∮
∂Ω

vk
∂u

∂n
ds

∫
Ω

[k∇u · ∇v + buv − fv] dΩ−
∮
∂Ω

vk
∂u

∂n
ds = 0.

Choosing v(x) such that v(x) = 0 on ∂Ω1, i.e. Choose V = {v ∈ H1(Ω) : v =
0 on ∂Ω1} and using the boundary condition, we obtain∫

Ω

[k∇u · ∇v + buv − fv] dΩ +

∫
∂Ω2

puv ds−
∫
∂Ω2

pûv ds = 0, ∀v ∈ V. (2.10)

Variational statement :

Find u ∈ H1(Ω) such that∫
Ω

[k∇u · ∇v + buv − fv] dΩ +

∫
∂Ω2

puv ds−
∫
∂Ω2

pûv ds = 0 ,∀v ∈ V. (2.11)

Finite Element Approximation

We pose the variational statement on a finite dimensional subspaces
Vh ⊂ V and Ṽh ⊂ H1(Ω) to formulate a finite element approximation of u.

Finite element approximation:

Find uh ∈ Ṽh such that∫
Ω

(k∇uh · ∇v + buhv − fv) dΩ +

∫
∂Ω2

puhv ds−
∫
∂Ω2

pûv ds = 0 ,∀v ∈ Vh. (2.12)

Let {ϕi(x)}ni=1 be the basis functions of Ṽh and Vh such that

ϕj(xi) = δij =

{
1, if i = j,

0, if i 6= j.
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Then our solution uh and v can be expressed as

uh(x) =
n∑
j=1

ujϕj(x), v(x) =
n∑
i=1

βiϕi(x).

By choosing suitable set of values for βi’s, the finite element approximation be-
comes

n∑
j=1

∫
Ω

(k∇ϕj · ∇ϕi + bϕjϕi)uj − fϕidΩ +
n∑
j=1

∫
∂Ω2

pϕjϕiujds−
∫
∂Ω2

pûϕids = 0,

for each i = 1, . . . , n,

n∑
j=1

∫
Ω

(k∇ϕj · ∇ϕi + bϕjϕi) dΩ +

∫
∂Ω2

pϕjϕids

uj =

∫
Ω

fϕidΩ +

∫
∂Ω2

pûϕids,

for each i = 1, . . . , n.
(2.13)

Equation (2.13) can be represented by a linear system

AU = F, (2.14)

where

A =

∫
Ω

(k∇ϕj · ∇ϕi + bϕjϕi) dΩ +

∫
∂Ω2

pϕjϕids


(n×n)

,

U = [uj](n×1),

F =

∫
Ω

fϕidΩ +

∫
∂Ω2

pûϕids


(n×1)

.

2.3 Mathematical Modeling

2.3.1 Formulation of the Problem

In this section, we introduce a mathematical model and find a numerical
approximation of the scalar potential at various positions by using Finite Element
Method (FEM). Assuming that the earth structure contains only one layer having
exponential conductivities. There are a source providing a direct-current (DC)
voltage and a receiver on the ground surface which is assumed to contain only
homogeneous surface layer. In this model, we follow Wenner array method which
used nodes 1 and 4 for current electrodes, nodes 2 and 3 for potential electrodes;
and a is the electrode spacing which is the distance for which the receiver picks
up to signal. From Figure 2.1, the receiver picks up the signal at node r =
10, 20, . . . , 100m where r is the electrode spacing which picks up the signal.
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Figure 2.1: The model of conductivity profile

Since we are considering DC voltage, we may represent the electric field as
the gradient of a scalar potential:

~E = −∇ψ, (2.15)

where ~E is the electric field in Volts per meter (V/m), ∇ is the gradient operator,
and ψ is the scalar potential. Since the divergence of the current density is zero
[7], by using Ohm’s law, ~J = σ ~E, we obtain that

∇ · ~J = 0,

∇ · σ ~E = 0,

−∇ · σ∇ψ = 0, (2.16)

where ~J is the current density in Ampere per square meters (A/m2), σ is the elec-
trical conductivity of the medium in Siemens per meter (S/m) which is assumed
to be a function of z only.
Thus, we have

∇ · σ∇ψ = 0

this yields
σ∇ · ∇ψ + (∇ψ) · (∇σ) = 0. (2.17)

Since

∇ · ∇ψ =

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
,

=

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
,

= ∇2ψ,

and

(∇ψ) · (∇σ) =

(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
·
(
∂

∂x
σ~i+

∂

∂y
σ~j +

∂

∂z
σ~k

)
,

=
∂ψ

∂z

∂σ

∂z
,
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thus, we have

σ∇2ψ +
∂ψ

∂z

∂σ

∂z
= 0. (2.18)

We define the residual for the problem as

R(x) = σ∇2ψ +
∂ψ

∂z

∂σ

∂z
− 0

= σ∇2ψ +
∂ψ

∂z

∂σ

∂z
.

Method of weighted residual : ∫
R(x)vdx = 0. (2.19)

In a cylindrical coordinate system (r, φ, z), we have

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+
∂2ψ

∂z2
,

=
1

r

(
r
∂2ψ

∂r2
+
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+
∂2ψ

∂z2
.

The probe is used and located on the ground surface. The potential around the

probe is symmetric and independent of φ, i.e.
∂ψ

∂φ
= 0. It follows that

∂2ψ

∂φ2
= 0

in the real physical situation.

Therefore,

∇2ψ =
1

r

(
r
∂2ψ

∂r2
+
∂ψ

∂r

)
+
∂2ψ

∂z2
.

Hence from the equation (2.18), we have,

σ∇2ψ +
∂ψ

∂z

∂σ

∂z
= 0,

σ

[
1

r

(
r
∂2ψ

∂r2
+
∂ψ

∂r

)
+
∂2ψ

∂z2

]
+
∂ψ

∂z

∂σ

∂z
= 0,

1

r

(
r
∂2ψ

∂r2
+
∂ψ

∂r

)
+
∂2ψ

∂z2
+

1

σ

∂ψ

∂z

∂σ

∂z
= 0,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2
+

1

σ

∂ψ

∂z

∂σ

∂z
= 0. (2.20)

The next step, we use finite element method to establish a numerical solu-
tion of our problem by applying the Galerkin’s Method of Weighted Residuals to
equation (2.20). Recall the Laplace equation in three-dimension with the electric
charge on the cylinder

∇2ψ = 4ψ =
1

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r

∂2ψ

∂φ2
+
∂2ψ

∂z2
. (2.21)
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Since the potential is independent of φ. Substituting (2.21) into (2.20), we obtain

4ψ +
1

σ

∂ψ

∂σ

∂σ

∂z
= 0 (2.22)

where r ∈ [10, 100], z ∈ [0, 90].

Let

V ={v ∈ H1
0 : v is a continuous function on Ω,

∂v

∂r
and

∂v

∂z
are piecewise

continuous on Ω and v = 0 on ∂Ω}.

By transforming the system into cylindrical coordinates (r, φ, z) [11] and use (2.22),
the weighted residual in (2.19) becomes∫

R(r, φ, z)vrdrdφdz = 0. (2.23)

The weak formulation of (2.22) is

(4ψ, v) +

(
1

σ

∂ψ

∂z

∂σ

∂z
, v

)
= 0, v ∈ V,

or ∫
Ω

4ψvdΩ +

∫
Ω

1

σ

∂ψ

∂z

∂σ

∂z
vdΩ = 0. (2.24)

Since ∇2ψ = 4ψ and from equation (2.24), we have∫
Ω

4ψvdΩ =

∫
Ω

∇2ψvdΩ =

∫
Ω

v∇2ψdΩ.

Note that

∫
Ω

v∇2ψdΩ =

∫
Ω

v∇ · ∇ψdΩ together with the product rule for differ-

entiation

∇ · (v∇ψ) = ∇ψ · ∇v + v∇ · ∇ψ
v∇ · ∇ψ = ∇ · (v∇ψ)−∇ψ · ∇v,

we have ∫
Ω

v∇2ψdΩ =

∫
Ω

(∇ · (v∇ψ)−∇ψ · ∇v) dΩ.

From the divergence theorem,∫
Ω

∇ · (v∇ψ) dΩ =

∮
∂Ω

v∇ψ · ~nds.
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Therefore,∫
Ω

4ψvdΩ =

∫
∂Ω

v (∇ψ · ~n) ds−
∫
Ω

∇v · ∇ψdΩ

=

∫
∂Ω1

v (∇ψ · ~n) ds+

∫
∂Ω2

v (∇ψ · ~n) ds+

∫
∂Ω3

v (∇ψ · ~n) ds

+

∫
∂Ω4

v (∇ψ · ~n) ds−
∫
Ω

∇v · ∇ψdΩ.

Since v ∈ V, v = 0 on ∂Ω1, ∂Ω2, ∂Ω3 and ∂Ω4, then∫
Ω

4ψvdΩ = −
∫
Ω

∇v · ∇ψdΩ. (2.25)

Substituting equation (2.25) into equation (2.24), we obtain

−
∫
Ω

∇v · ∇ψdΩ +

∫
Ω

1

σ

∂ψ

∂z

∂σ

∂z
vdΩ = 0. (2.26)

−
∫
Ω

r∇ψ · ∇vdrdφdz +

∫
Ω

r
1

σ

∂ψ

∂z

∂σ

∂z
vdrdφdz = 0. (2.27)

Since the problem is axisymmetric and independent of φ in cylindrical coordi-
nate we divide equation (2.27) by 2π and derive the following formulation in the
cylindrical coordinate (r, z) :

−
∫
Ω̃

r∇ψ · ∇vdrdz +

∫
Ω̃

r
1

σ

∂ψ

∂z

∂σ

∂z
vdrdz = 0 (2.28)

where Ω̃ is the two-dimensional cross-section of domain Ω (φ is fixed); i.e. Ω̃ =
{(r, z) ∈ R2|10 ≤ r ≤ 100, 0 ≤ z ≤ 90}. The boundary conditions (BC) of prob-
lem (2.22) and the notation of the potential in the domain which is refined using
bilinear rectangular elements are shown in Figure 2.2
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Figure 2.2: Boundary condition of the earth structure.

The values of potential on the surface at z = 0m are obtained by generat-
ing the potential from the mathematical model of Chaladgarn and Yooyuanyong,
(2013)[32] when b = 0.0005m−2, l = 10m, d = 90m (the thickness of the earth
layer). The potential decreases to zero as the depth increases, i.e we assume that
the potential is zero at z = 90m. The values of the potential on ∂Ω2 and ∂Ω4 are
obtained from the approximation by linear function,
g1 (r, z) = −6.11× 10−5z + 0.0055 on ∂Ω4 and g2 (r, z) = −7.78× 10−6z + 0.0007
on ∂Ω2, respectively.

Next, we consider the domain of equation (2.28) in two-dimensions. By
dividing the domain into rectangular elements. We discretize r into 9 subintervals
and, discretize z into 9 subintervals equally. Let (ri, zj) be a node of Ω on the
non-overlapping rectangular grids such that the horizontal and vertical edges of
these rectangles are parallel to the r− and z− coordinate axes, respectively. As a
result,

rk = 10k,

zk = 10(k − 1), k = 1, . . . , 10.

Since the form of equation (2.28) suggests that the finite elements can have an arbi-
trary shape and position in space computing integrals over their element domains
is a bit tricky. To overcome this difficulty one uses a projection method which
maps the coordinates of a well known reference element to the coordinates of an
arbitrary element in space. Computing an integral on the local reference element



16

(e.g. it’s area) is easy. One just has to capture the effect of the mapping (defor-
mation, stretching, shearing) to get the right value of the integral for the global
element domain. During the mapping process the points in the local coordinate
system ξ, η (here : parent domain) get mapped to points in the global coordi-
nate system r, z by a mapping the values range from -1 to +1, and the reference
coordinates are transformed to (ξ1, η1) = (−1,−1), (ξ2, η2) = (1,−1), (ξ3, η3) =
(1, 1), (ξ4, η4) = (−1, 1), as shown in Figure 2.3(b).

Figure 2.3: Reference and transformed coordinates of the boundary.

By using a transformation in Figure 2.3, we have

r = rk +
h

2
(1 + ξ) , dr =

h

2
dξ

z = zk +
h

2
(1 + η) , dz =

h

2
dη.

And from Figure 2.3(b), the basis functions Nγ, γ = 1, 2, 3, 4 in (ξ, η) coordinates
which have the relationship with coordinate (r, z) are defined as

r = N1r1 +N2r2 +N3r3 +N4r4,

z = N1z1 +N2z2 +N3z3 +N4z4 (2.29)
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such that basis functions can be written in the form of ξ and η as follows

N1 (ξ, η) =
1

4
(1− ξ) (1− η) ,

N2 (ξ, η) =
1

4
(1 + ξ) (1− η) ,

N3 (ξ, η) =
1

4
(1 + ξ) (1 + η) ,

N4 (ξ, η) =
1

4
(1− ξ) (1 + η) . (2.30)

For convenience, we rename the potential at the node (ri, zj) to Ψi, so we have
{Ψ}100

i=1 as the potential at the nodes of the element in Ω. For simplicity and to
avoid any confusion, we use Ψi for Ψ(Xi), 1 ≤ i ≤ 100. In other words, we define
nodes Xi for (ri, zj), 1 ≤ i, j ≤ 10. For each Xi, i = 1, 2, ..., 100, we define the
basis function βj such that

βj (Xi) =

{
1, if i = j

0, if i 6= j

and function v ∈ V can be written in the form of linear combination of trial
function βi

v (X) =
100∑
i=1

αiβi (X) .

We obtain v (Xi) = αi, by choosing appropriate values of αi and equation (2.28)
becomes

−
∫
Ω̃

r∇ψ · ∇βidrdz +

∫
Ω̃

r
1

σ

∂ψ

∂z

∂σ

∂z
βidrdz = 0 (2.31)

and from σ(z) = σ0e
−b(z−l)2

2 such that σ0, b, and l are constants, we have

−
∫
Ω̃

r∇ψ · ∇βidrdz +

∫
Ω̃

rb (l − z)
∂ψ

∂z
βidrdz = 0 (2.32)

for i = 1, 2, ..., 100. Next, we consider the solution in the form of linear combination
of trial function βj

ψ (X) =
100∑
j=1

Ψjβj (X)

when Ψj is the unknown. The equation (2.32) can be written in the form of linear
combination as follows for each i = 1, 2, ..., 100,

100∑
j=1

Ψj

−∫
Ω̃

r∇βj · ∇βidrdz +

∫
Ω̃

rb (l − z)
∂βj
∂z

βidrdz

 = 0. (2.33)



18

After that by using a transformation in Figure 2.3, we will consider the value of∫
Ω̃

r∇βj · ∇βidrdz by using Chain rule, thus

∫
Ω̃

r∇βj · ∇βidrdz =

∫
Ω̃

r

[
∂βj
∂r

∂βi
∂r

+
∂βj
∂z

∂βi
∂z

]
drdz,

=

1∫
−1

1∫
−1

r

[(
∂β̂j
∂ξ

∂ξ

∂r
+
∂β̂j
∂η

∂η

∂r

)(
∂β̂i
∂ξ

∂ξ

∂r
+
∂β̂i
∂η

∂η

∂r

)]

+ r

[(
∂β̂j
∂ξ

∂ξ

∂z
+
∂β̂j
∂η

∂η

∂z

)(
∂β̂i
∂ξ

∂ξ

∂z
+
∂β̂i
∂η

∂η

∂z

)](
h

2

)2

dξdη,

=

1∫
−1

1∫
−1

(
2

h

)2

r

[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)](
h

2

)2

dξdη,

=

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη

(2.34)

where k = 1, 2, ..., 9.

Consider the value of

∫
Ω̃

rb (l − z)
∂βj
∂z

βidrdz by using chain rule and Jacobian

transform, we obtain

∫
Ω̃

rb (l − z)
∂βj
∂z

βidrdz

=

1∫
−1

1∫
−1

rb (l − z)

[(
∂β̂j
∂ξ

∂ξ

∂z
+
∂β̂j
∂η

∂η

∂z

)]
β̂j

(
h

2

)2

dξdη,

=

1∫
−1

1∫
−1

rb (l − z)

[(
∂β̂j
∂ξ

(0) +
∂β̂j
∂η

(
2

h

))]
β̂j

(
h

2

)2

dξdη,

=

1∫
−1

1∫
−1

rb (l − z)

(
h

2

)
∂β̂j
∂η

β̂jdξdη,

=

(
bh

2

) 1∫
−1

1∫
−1

r (l − z)
∂β̂j
∂η

β̂jdξdη,
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thus,∫
Ω̃

rb (l − z)
∂βj
∂z

βidrdz

=

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη

(2.35)

where k = 1, 2, ..., 9. Therefore,

−
∫
Ω̃

r∇βj · ∇βidrdz +

∫
Ω̃

rb (l − z)
∂βj
∂z

βidrdz

= −
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη

+

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη (2.36)

where k = 1, 2, ..., 9.

Consider the value of

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη in

(ξ, η) coordinate, for the corresponding Linear rectangular elements on [−1, 1] ×

[−1, 1], the approximation

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη

can be divided into nine cases which in following table.



20

The values of

∫ ∫
Ω̃

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη in coordinate (ξ, η)

Elements Cases The values of

∫ ∫
Ω̃

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη in coordinate (ξ, η) Solutions

i = j

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N3

∂ξ

∂N3

∂ξ
+
∂N3

∂η

∂N3

∂η

)
+

(
∂N2

∂ξ

∂N2

∂ξ
+
∂N2

∂η

∂N2

∂η

)]
dξdη 1

6
(80 + 160k + 8h)

+

1∫
−1

1∫
−1

(
rk+1 +

h

2
(1 + ξ)

)[(
∂N4

∂ξ

∂N4

∂ξ
+
∂N4

∂η

∂N4

∂η

)
+

(
∂N1

∂ξ

∂N1

∂ξ
+
∂N1

∂η

∂N1

∂η

)]
dξdη

i = j +1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N4

∂ξ

∂N3

∂ξ
+
∂N4

∂η

∂N3

∂η

)
+

(
∂N1

∂ξ

∂N2

∂ξ
+
∂N1

∂η

∂N2

∂η

)]
dξdη −1

6
(20k + h)

i = j -1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N3

∂ξ

∂N4

∂ξ
+
∂N3

∂η

∂N4

∂η

)
+

(
∂N2

∂ξ

∂N1

∂ξ
+
∂N2

∂η

∂N1

∂η

)]
dξdη −1

6
(20k + h)

i = j +M

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N3

∂ξ

∂N2

∂ξ
+
∂N3

∂η

∂N2

∂η

)]
dξdη

−1

6
(10 + 20k + h)

+

1∫
−1

1∫
−1

(
rk+1 +

h

2
(1 + ξ)

)[(
∂N4

∂ξ

∂N1

∂ξ
+
∂N4

∂η

∂N1

∂η

)]
dξdη

i = j -M

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N2

∂ξ

∂N3

∂ξ
+
∂N2

∂η

∂N3

∂η

)]
dξdη

−1

6
(10 + 20k + h)

+

1∫
−1

1∫
−1

(
rk+1 +

h

2
(1 + ξ)

)[(
∂N1

∂ξ

∂N4

∂ξ
+
∂N1

∂η

∂N4

∂η

)]
dξdη
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The values of

∫ ∫
Ω̃

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη in coordinate (ξ, η)

Elements Cases The values of

∫ ∫
Ω̃

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη in coordinate (ξ, η) Solutions

i = j +M+1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N4

∂ξ

∂N2

∂ξ
+
∂N4

∂η

∂N2

∂η

)]
dξdη −1

6
(20k + h)

i = j -M-1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N2

∂ξ

∂N4

∂ξ
+
∂N2

∂η

∂N4

∂η

)]
dξdη −1

6
(20k + h)

i = j +M-1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N3

∂ξ

∂N1

∂ξ
+
∂N3

∂η

∂N1

∂η

)]
dξdη −1

6
(20k + h)

i = j -M+1

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
∂N1

∂ξ

∂N3

∂ξ
+
∂N1

∂η

∂N3

∂η

)]
dξdη −1

6
(20k + h)

where k = 1, 2, . . . , 9.
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Then, from the values of∫ ∫
Ω̃

(
rk +

h

2
(1 + ξ)

)[(
∂β̂j
∂ξ

∂β̂i
∂ξ

)
+

(
∂β̂j
∂η

∂β̂i
∂η

)]
dξdη

in coordinate (ξ, η) can be written in the form of matrix as follows

−



A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 A3 s1 A4 s2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0
0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 t 0 0 0 0 0 0 0 0 0 0
0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0 0
0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 t 0 0 0 0 0 0
0 0 0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0 0
0 0 0 0 0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 A6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0
0 0 0 0 0 0 0 0 0 0 0 0 s3 A4 s1 A3 A6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1





ub1
u1

ub2
u2

ub3
u3

ub4
u4

ub5
u5

ub6
u6

ub7
u7

ub8
u8

ub9



= 0

or

ÂÛ = 0

where

Â = −



A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 A3 s1 A4 s2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0
0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 t 0 0 0 0 0 0 0 0 0 0
0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0 0
0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 t 0 0 0 0 0 0
0 0 0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 s2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0 0
0 0 0 0 0 0 0 0 0 0 s3 A4 s1 A3 s1 A4 A6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0
0 0 0 0 0 0 0 0 0 0 0 0 s3 A4 s1 A3 A6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1



,
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Û = [ub1 u1 ub2 u2 ub3 u3 ub4 u4 ub5 u5 ub6 u6 ub7 u7 ub8 u8 ub9]T and 0 = [0]1×100 such that

ub1 = [Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 Ψ11]T ,
ub9 = [Ψ90 Ψ91 Ψ92 Ψ93 Ψ94 Ψ95 Ψ96 Ψ97 Ψ98 Ψ99 Ψ100]T ,
up = [Ψ10p+2 Ψ10p+3 Ψ10p+4 Ψ10p+5 Ψ10p+6 Ψ10p+7 Ψ10p+8 Ψ10p+9]T ,

ubq = [Ψ10q Ψ10p+1]T , for all p = 1, 2, . . . , 8, q = 2, 3, . . . , 8,

s1 = −1

6


0 (20(1)+h)
0 0
0 0
0 0
0 0
0 0
0 0

(20(9)+h) 0

 , s2 = −1

6


0 0
0 0
0 0
0 0
0 0
0 0
0 0

(20(9)+h) 0

 , s3 = −1

6


0 (20(1)+h)
0 0
0 0
0 0
0 0
0 0
0 0
0 0

 ,

A1 =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

 , t =

[
1 0
0 1

]
,

A2 = −1

6


(20(1)+h) (10+20(1)+h) (20(2)+h) 0 0 0 0 0 0 0 (20(1)+h)

0 (20(2)+h) (10+20(2)+h) (20(3)+h) 0 0 0 0 0 0 0
0 0 (20(3)+h) (10+20(3)+h) (20(4)+h) 0 0 0 0 0 0
0 0 0 (20(4)+h) (10+20(4)+h) (20(5)+h) 0 0 0 0 0
0 0 0 0 (20(5)+h) (10+20(5)+h) (20(6)+h) 0 0 0 0
0 0 0 0 0 (20(6)+h) (10+20(6)+h) (20(7)+h) 0 0 0
0 0 0 0 0 0 (20(7)+h) (10+20(7)+h) (20(8)+h) 0 0
0 0 0 0 0 0 0 (20(8)+h) (10+20(8)+h) (20(9)+h) 0

 ,
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A3 = −1

6


−(80+160(1)+8h) (20(2)+h) 0 0 0 0 0 0

(20(2)+h) −(80+160(2)+8h) (20(3)+h) 0 0 0 0 0
0 (20(3)+h) −(80+160(3)+8h) (20(4)+h) 0 0 0 0
0 0 (20(4)+h) −(80+160(4)+8h) (20(5)+h) 0 0 0
0 0 0 (20(5)+h) −(80+160(5)+8h) (20(6)+h) 0 0
0 0 0 0 (20(6)+h) −(80+160(6)+8h) (20(7)+h) 0
0 0 0 0 0 (20(7)+h) −(80+160(7)+8h) (20(8)+h)
0 0 0 0 0 0 (20(8)+h) −(80+160(8)+8h)

 ,

A4 = −1

6


(10+20(1)+h) (20(2)+h) 0 0 0 0 0 0

(20(2)+h) (10+20(2)+h) (20(3)+h) 0 0 0 0 0
0 (20(3)+h) (10+20(3)+h) (20(4)+h) 0 0 0 0
0 0 (20(4)+h) (10+20(4)+h) (20(5)+h) 0 0 0
0 0 0 (20(5)+h) (10+20(5)+h) (20(6)+h) 0 0
0 0 0 0 (20(6)+h) (10+20(6)+h) (20(7)+h) 0
0 0 0 0 0 (20(7)+h) (10+20(7)+h) (20(8)+h)
0 0 0 0 0 0 (20(8)+h) (10+20(8)+h)

 ,

A5 = −1

6


0 0 0 0 0 0 0 0 0 0 (20(1)+h)
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 , A6 = −1

6


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

(20(9)+h) 0 0 0 0 0 0 0 0 0 0

 .
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Since we know the value of the potential at the boundary Ψ1, Ψ2, Ψ3, . . . Ψ11, Ψ90,
Ψ91, Ψ92, . . . ,Ψ100 and Ψ10q, Ψ10q+1 for all q = 2, 3, . . . , 8 the system can be writ-
ten as

−



A3 A4 0 0 0 0 0 0
A4 A3 A4 0 0 0 0 0
0 A4 A3 A4 0 0 0 0
0 0 A4 A3 A4 0 0 0
0 0 0 A4 A3 A4 0 0
0 0 0 0 A4 A3 A4 0
0 0 0 0 0 A4 A3 A4

0 0 0 0 0 0 A4 A3





u1

u2

u3

u4

u5

u6

u7

u8


=



a1

a2

a3

a4

a5

a6

a7

a8


or

AU = P

where

A =



A3 A4 0 0 0 0 0 0
A4 A3 A4 0 0 0 0 0
0 A4 A3 A4 0 0 0 0
0 0 A4 A3 A4 0 0 0
0 0 0 A4 A3 A4 0 0
0 0 0 0 A4 A3 A4 0
0 0 0 0 0 A4 A3 A4

0 0 0 0 0 0 A6 A3



and U = up = [Ψ10p+2 Ψ10p+3 Ψ10p+4 Ψ10p+5 Ψ10p+6 Ψ10p+7 Ψ10p+8 Ψ10p+9]T ,

P = [a1, . . . , a8]T for all p = 1, 2, . . . , 8
and

a1 = −1

6


(20(1)+h)(0.0055)+(10+20(1)+h)(0.0037)+(20(2)+h)(0.0027)+(20(1)+h)(0.0049)+(20(1)+h)(0.0043)

(20(2)+h)(0.0037)+(10+20(2)+h)(0.0027)+(20(3)+h)(0.0021)
(20(3)+h)(0.0027)+(10+20(3)+h)(0.0021)+(20(4)+h)(0.0017)
(20(4)+h)(0.0021)+(10+20(4)+h)(0.0017)+(20(5)+h)(0.0014)
(20(5)+h)(0.0017)+(10+20(5)+h)(0.0014)+(20(6)+h)(0.0011)
(20(6)+h)(0.0014)+(10+20(6)+h)(0.0011)+(20(7)+h)(0.0009)
(20(7)+h)(0.0011)+(10+20(7)+h)(0.0009)+(20(8)+h)(0.0008)

(20(8)+h)(0.0009)+(10+20(8)+h)(0.0008)+(20(9)+h)(0.0007)+(20(9)+h)(0.00062)+(20(9)+h)(0.00054)

 ,

a2 = −1

6


(20(1)+h)(0.0049)+(20(1)+h)(0.0043)+(20(1)+h)(0.0037)

0
0
0
0
0
0

(20(9)+h)(0.00062)+(20(9)+h)(0.00054)+(20(9)+h)(0.00047)

 ,
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a3 = −1

6


(20(1)+h)(0.0043)+(20(1)+h)(0.0037)+(20(1)+h)(0.0031)

0
0
0
0
0
0

(20(9)+h)(0.00054)+(20(9)+h)(0.00047)+(20(9)+h)(0.00039)

 ,

a4 = −1

6


(20(1)+h)(0.0037)+(20(1)+h)(0.0031)+(20(1)+h)(0.0024)

0
0
0
0
0
0

(20(9)+h)(0.00047)+(20(9)+h)(0.00039)+(20(9)+h)(0.00031)

 ,

a5 = −1

6


(20(1)+h)(0.0031)+(20(1)+h)(0.0024)+(20(1)+h)(0.00018)

0
0
0
0
0
0

(20(9)+h)(0.00039)+(20(9)+h)(0.00031)+(20(9)+h)(0.00023)

 ,

a6 = −1

6


(20(1)+h)(0.0024)+(20(1)+h)(0.0018)+(20(1)+h)(0.0012)

0
0
0
0
0
0

(20(9)+h)(0.00031)+(20(9)+h)(0.00023)+(20(9)+h)(0.00016)

 ,

a7 = −1

6


(20(1)+h)(0.0018)+(20(1)+h)(0.0012)+(20(1)+h)(0.0006)

0
0
0
0
0
0

(20(9)+h)(0.00023)+(20(9)+h)(0.00016)+(20(9)+h)(0.00008)

 ,

a8 = −1

6


(20(1)+h)(0.0012)+(20(1)+h)(0.0006)

0
0
0
0
0
0

(20(9)+h)(0.00016)+(20(9)+h)(0.00008)

 .

Next we consider the value of(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη

in coordinates (ξ, η) as in the following tables
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The values of

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη in coordinate (ξ, η)

Elements Cases The values of

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j

∂η
β̂jdξdη in coordinate (ξ, η) Solutions

i = j

1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
l − zk −

h

2
(1 + η)

)
∂N2

∂η
N2 +

(
l − zk+1 −

h

2
(1 + η)

)
∂N3

∂η
N3

]
dξdη

−
bh

18
(30 + h) (10 + 20k + h)

+

1∫
−1

1∫
−1

(
rk+1 +

h

2
(1 + ξ)

)[(
l − zk −

h

2
(1 + η)

)
∂N1

∂η
N1 +

(
l − zk+1 −

h

2
(1 + η)

)
∂N4

∂η
N4

]
dξdη

i = j +1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
l − zk −

h

2
(1 + η)

)
∂N1

∂η
N2 +

(
l − zk+1 −

h

2
(1 + η)

)
∂N4

∂η
N3

]
dξdη −

bh

72
(30 + h) (20k + h)

i = j -1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)[(
l − zk −

h

2
(1 + η)

)
∂N2

∂η
N1 +

(
l − zk+1 −

h

2
(1 + η)

)
∂N3

∂η
N4

]
dξdη −

bh

72
(30 + h) (20k + h)

i = j +M
1∫

−1

1∫
−1

(
l − zk −

h

2
(1 + η)

)[(
rk +

h

2
(1 + ξ)

)
∂N3

∂η
N2 +

(
rk+1 +

h

2
(1 + ξ)

)
∂N4

∂η
N1

]
dξdη −

bh

18
(h− 3l + 30m− 30) (10 + 20k + h)

i = j -M
1∫

−1

1∫
−1

(
l − zk −

h

2
(1 + η)

)[(
rk +

h

2
(1 + ξ)

)
∂N2

∂η
N3 +

(
rk+1 +

h

2
(1 + ξ)

)
∂N1

∂η
N4

]
dξdη

bh

18
(2h− 3l + 30m− 30) (10 + 20k + h)
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The values of

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη in coordinate (ξ, η)

Elements Cases The values of

(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j

∂η
β̂jdξdη in coordinate (ξ, η) Solutions

i = j +M+1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂N4

∂η
N2dξdη −

bh

72
(h− 3l + 30m− 30) (20k + h)

i = j -M-1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂N2

∂η
N4dξdη

bh

72
(2h− 3l + 30m− 30) (20k + h)

i = j +M-1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂N3

∂η
N1dξdη −

bh

72
(h− 3l + 30m− 30) (20k + h)

i = j -M+1
1∫

−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂N1

∂η
N3dξdη

bh

72
(2h− 3l + 30m− 30) (20k + h)

where k = 1, 2, . . . , 9 and m = 1, 2, . . . , 9.
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The value of(
bh

2

) 1∫
−1

1∫
−1

(
rk +

h

2
(1 + ξ)

)(
l − zk −

h

2
(1 + η)

)
∂β̂j
∂η

β̂jdξdη

are obtained in the form of matrix as follows

B1 C2 0 0 0 0 0 0
D2 B1 C3 0 0 0 0 0
0 D3 B1 C4 0 0 0 0
0 0 D4 B1 C5 0 0 0
0 0 0 D5 B1 C6 0 0
0 0 0 0 D6 B1 C7 0
0 0 0 0 0 D7 B1 C8

0 0 0 0 0 0 D8 B1





u1

u2

u3

u4

u5

u6

u7

u8


= −



c1

c2

c3

c4

c5

c6

c7

c8


or

BU = Q

where

B =



B1 C2 0 0 0 0 0 0
D2 B1 C3 0 0 0 0 0
0 D3 B1 C4 0 0 0 0
0 0 D4 B1 C5 0 0 0
0 0 0 D5 B1 C6 0 0
0 0 0 0 D6 B1 C7 0
0 0 0 0 0 D7 B1 C8

0 0 0 0 0 0 D8 B1



and U = up = [Ψ10p+2 Ψ10p+3 Ψ10p+4 Ψ10p+5 Ψ10p+6 Ψ10p+7 Ψ10p+8 Ψ10p+9]T ,

Q = [c1, . . . , c8]T for all p = 1, 2, . . . , 8 and

B1 = −bh
72



4b1 f2 0 0 0 0 0 0
f2 4b2 f3 0 0 0 0 0
0 f3 4b3 f4 0 0 0 0
0 0 f4 4b4 f5 0 0 0
0 0 0 f5 4b5 f6 0 0
0 0 0 0 f6 4b6 f7 0
0 0 0 0 0 f7 4b7 f8

0 0 0 0 0 0 f8 4b8


,

where bk = (30 + h)(10 + 20(k) + h),
fk = (30 + h)(20(k) + h) for all k = 1, 2, . . . , 8,
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Cg =
bh

72



4bg,1 fg,2 0 0 0 0 0 0
fg,2 4bg,2 fg,3 0 0 0 0 0
0 fg,3 4bg,3 fg,4 0 0 0 0
0 0 fg,4 4bg,4 fg,5 0 0 0
0 0 0 fg,5 4bg,5 fg,6 0 0
0 0 0 0 fg,6 4bg,6 fg,7 0
0 0 0 0 0 fg,7 4bg,7 fg,8
0 0 0 0 0 0 fg,8 4bg,8


,

where bg,k = (2h− 3L+ 30(g)− 30)(10 + 20(k) + h),
fg,k = (2h− 3L+ 30(g)− 30)(20(k) + h) for all k = 1, 2, . . . , 8, g = 2, 3, . . . , 8,

Dg = −bh
72



4Eg,1 Fg,2 0 0 0 0 0 0
Fg,2 4Eg,2 Fg,3 0 0 0 0 0

0 Fg,3 4eg,3 Fg,4 0 0 0 0
0 0 Fg,4 4Eg,4 Fg,5 0 0 0
0 0 0 Fg,5 4Eg,5 Fg,6 0 0
0 0 0 0 Fg,6 4Eg,6 Fg,7 0
0 0 0 0 0 Fg,7 4Eg,7 Fg,8
0 0 0 0 0 0 Fg,8 4Eg,8


,

where Eg,k = (h− 3L+ 30(g)− 30)(10 + 20(k) + h),
Fg,k = (h− 3L+ 30(g)− 30)(20(k) + h) for all k = 1, 2, . . . , 9,
and g = 1, 2, 3, . . . , 8.

c1 = −bh
72



F1,1(0.0055) + E1,1(0.0037) + F1,2(0.0027) + f1(0.0049)− f2,1(0.0043)
F1,2(0.0037) + E1,2(0.0027) + F1,3(0.0021)
F1,3(0.0027) + E1,3(0.0021) + F1,4(0.0017)
F1,4(0.0021) + E1,4(0.0017) + F1,5(0.0014)
F1,5(0.0017) + E1,5(0.0014) + F1,6(0.0011)
F1,6(0.0014) + E1,6(0.0011) + F1,7(0.0009)
F1,7(0.0011) + E1,7(0.0009) + F1,8(0.0008)

F1,8(0.0009) + E1,8(0.0008) + F1,9(0.0007) + f9(0.00062)− f2,9(0.00054)


,

c2 = −bh
72



F2,1(0.0049) + f1(0.0043)− f3,1(0.0037)
0
0
0
0
0
0

F2,9(0.00062) + f9(0.00054)− f3,9(0.00047)


,
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c3 = −bh
72



F3,1(0.0043) + f1(0.0037)− f4,1(0.0031)
0
0
0
0
0
0

F3,9(0.00054) + f9(0.00047)− f4,9(0.00039)


,

c4 = −bh
72



F4,1(0.0037) + f1(0.0031)− f5,1(0.0024)
0
0
0
0
0
0

F4,9(0.00047) + f9(0.00039)− f5,9(0.00031)


,

c5 = −bh
72



F5,1(0.0031) + f1(0.0024)− f6,1(0.0018)
0
0
0
0
0
0

F5,9(0.00039) + f9(0.00031)− f6,9(0.00023)


,

c6 = −bh
72



F6,1(0.0024) + f1(0.0018)− f7,1(0.0012)
0
0
0
0
0
0

F6,9(0.00031) + f9(0.00023)− f7,9(0.00016)


,
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c7 = −bh
72



F7,1(0.0018) + f1(0.0012)− f8,1(0.0006)
0
0
0
0
0
0

F7,9(0.00023) + f9(0.00016)− f8,9(0.00008)


,

c8 = −bh
72



F8,1(0.0012) + f1(0.0006)
0
0
0
0
0
0

F8,9(0.00016) + f9(0.00008)


.

Therefore, equation (2.36) can be written in the form of matrix as follows

(−A+B)



u1

u2

u3

u4

u5

u6

u7

u8


=



a1 − c1

a2 − c2

a3 − c3

a4 − c4

a5 − c5

a6 − c6

a7 − c7

a8 − c8


or

(−A+B)up = (a− c)

where up = [Ψ10p+2 Ψ10p+3 Ψ10p+4 Ψ10p+5 Ψ10p+6 Ψ10p+7 Ψ10p+8 Ψ10p+9]T ,

P = [a1, . . . , a8]T ,
Q = [c1, . . . , c8]T for all p = 1, 2, . . . , 8.

2.3.2 Numerical Experiments

Numerical result of potential at various positions of the earth’s struc-

ture with one layer having exponentially conductivity σ(z) = σ0e
−b(z−l)2

2 from
equation (2.20) are obtained by using the finite element method. We use the
potential at the ground surface together with linear approximation to find the
value of the scalar potential in the domain Ω̃. There are a source providing a
DC voltage and a receiver on the ground surface which picks up the signal from
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r = 10m to r = 100m. We discretize the depth into 9 subintervals equally of
the size h = 10m, i.e. we consider z = 0, 10, 20, . . . , 90m. We use constant
b = 0.0001, 0.0005, 0.001, 0.005 m−2 and l = 0, 5, 10, 30, 50m. The suitable range
for b in our program is 0 < b < 0.01m−2. The numerical solution of the potential
at each node is calculated by using Maple program version 14 which is used in
laboratory of the Department of Mathematics, Faculty of Science, Silpakorn Uni-
versity.

Figures 2.4, 2.5 and 2.6 show the graphs of the relationship between the
values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m−2 where l = 0m.

Figure 2.4: The graph of potential when 10 ≤ r ≤ 100m and 0 ≤ z ≤ 90m
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Figure 2.5: The graph of potential against r when z is fixed, i.e. z =
0, 10, 20, . . . , 90m



35

Figure 2.6: The graph of potential against z when r is fixed, i.e. r =
10, 20, . . . , 100m

Figure 2.4 represents the scalar potential as r and z vary. It shows the
behavior of the value of scalar potential while the value of b is adjusted but the
value of l is fixed (l = 0m). For the small values of b, all of the potential surfaces
are in the same exponential pattern except the case when b = 0.005 m−2, some of
the value of potential surfaces becomes negative. In each graph, the potential is
at its highest when r = 10m, z = 0m which is the closet location on the ground
surface to the probe. It then decreases exponentially as shown in Figure 2.4.
Figure 2.5 represent the scalar potential against electrodes spacing. It shows ten
curves of scalar potential while the value of b and z are adjusted but l is fixed.
All of our curves give very large response in the scalar potential when z is at the
smallest. The value of potential decrease exponentially as r increases and it is a
straight line where z = 90m (the bottom edge of the domain). It starts decreasing
rapidly at the small values of r and then decreases slowly at the large value of
r. Figure 2.6 shows the value of scalar potential against depth (z). The curves
when r = 10, 100m (at the boundary) decrease linearly as z increases and they
decrease exponentially for the cases when r = 20, 30, . . . , 90m. For b = 0.005 m−2,
the curves have a different behavior from the other values of b. We can see that
some of curves intersect and some of the values of scalar potential are less than
zero.
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Figures 2.7, 2.8 and 2.9 show the graphs of the relationship between the
values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m−2 where l = 5m.

Figure 2.7: The graph of potential when 10 ≤ r ≤ 100m and 0 ≤ z ≤ 90m.
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Figure 2.8: The graph of potential against r when z is fixed, i.e. z =
0, 10, 20, . . . , 90m.
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Figure 2.9: The graph of potential against z when r is fixed, i.e. r =
10, 20, . . . , 100m.

In this case, the graphs show the behavior of the scalar potential while
the value of l is fixed at 5m but the value of b is adjusted. Curves of the scalar
potential have similar response to the previous case when l = 0m but the values
of the scalar potential when l = 5m are greater than as l = 0m.



39

Figures 2.10, 2.11 and 2.12 show the graphs of the relationship between
the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m−2 where l = 10m.

Figure 2.10: The graph of potential when 10 ≤ r ≤ 100m and 0 ≤ z ≤ 90m.
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Figure 2.11: The graph of potential against r when z is fixed, i.e. z =
0, 10, 20, . . . , 90m.
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Figure 2.12: The graph of potential against z when r is fixed, i.e. r =
10, 20, . . . , 100m.

Figure 2.10 through 2.12 represent the behavior of the scalar potential
while the value of l is fixed at 10m but the value of b is adjusted. The behavior of
all values of the scalar potential are similar when l is fixed at 0m and 5m and the
values of the scalar potential are greater than as l = 0m and l = 5m.



42

Figures 2.13, 2.14 and 2.15 show the graphs of the relationship between
the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m−2 where l = 30m.

Figure 2.13: The graph of potential when 10 ≤ r ≤ 100m and 0 ≤ z ≤ 90m.
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Figure 2.14: The graph of potential against r when z is fixed, i.e. z =
0, 10, 20, . . . , 90m.
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Figure 2.15: The graph of potential against z when r is fixed, i.e. r =
10, 20, . . . , 100m.

Figure 2.13 through Figure 2.15 show the behavior of the value of scalar
potential while the value of l is fixed at 30m but the value of b is adjusted. For
the small value of b, all of our curves are of the same pattern. In Figure 2.14, the
value of potential decreases exponentially as r increase and it is a straight line
when z = 90m. In Figure 2.15, our curves decrease linearly where r = 10m and
r = 100m as z increases while the value of scalar potential of other r decreases
exponentially as z increases. Note that in Figure 2.15, for b = 0.005 m−2, we
see that the value of the scalar potential decreases rapidly when the value of z is
greater than l, (z > 30m).



45

Figures 2.16, 2.17 and 2.18 show the graphs of the relationship between
the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m−2 where l = 50m.

Figure 2.16: The graph of potential when 10 ≤ r ≤ 100m and 0 ≤ z ≤ 90m.
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Figure 2.17: The graph of potential against r when z is fixed, i.e. z =
0, 10, 20, . . . , 90m.
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Figure 2.18: The graph of potential against z when r is fixed, i.e. r =
10, 20, . . . , 100m.

In the last case, all the graphs show the behavior of the scalar potential
while the value of l is fixed at 50m, but the value of b is adjusted. For the small
values of b, the curves are of similar pattern as in the previous case when l = 30m.
However, the values of the scalar potential in this case are greater than that when
l = 30m. The values of the scalar potential decreases rapidly when the value of z
is greater than l, (z > 50m).

2.4 Conclusions and Discussion

The value of scalar potential decreases exponentially to zero as the depth
of ground increases whereas it decreases exponentially to zero as the electrode
spacing on the ground surface increases. For l = 0, 5, 10m, the value of scalar
potential decreases when b increases whereas for l = 30, 50m meters, it increases
when b increases.

When z is fixed, the value of scalar potential decreases exponentially as
r increases and it starts to decrease rapidly at the early of r and then decreases
slowly at the lately of r.

When r is fixed, the value of scalar potential decreases linearly on the
boundary and decreases exponentially for the case when 10 < r < 100m (not
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at the boundary). The curves drop down slowly when depth is small and they
decrease rapidly when the value of z is greater than l.



Chapter 3

Inversion of Direct Current for a
Conductive Host with a Bulge

Overburden

3.1 Introduction

The direct current resistivity method is introduced to investigate the
ground structure for geo-informatic data through point electrodes. The proce-
dure is to measure potentials at other electrodes in the vicinity of the current
flow. Because the current is measured, it is possible to determine an apparent
resistivity of the subsurface [36]. The mathematical models for the preparation
of curves for the normalized apparent resistivity response from the earth’s surface
layer are considered. The earth structure usually can be denoted by horizontally
stratified earth [5], where each layer having homogeneous and isotropic electrical
properties. In this chapter, two layered earth model is considered. The conduc-
tivity of overburden is denoted by σover (z) = σ0e

−b(z−l)2/2, 0 ≤ z ≤ d, where b
and l are positive constants and l is used to locate the peak of the bulge, d is
the thickness of overburden and σ0 is a positive constant. This bulge conductivity
profile could be used to inform the subsurface that rich with water table according
to the canal, pond and river nearby [29]. The conductivity of host medium, z > d,
is denoted by a constant and is given by σhost(z) = σ0. The curves of normalized
apparent resistivity against electrode spacing can be used to predict the depth of
the underground water that could damage to the foundation of old building.

3.2 Formulation of the Problem

We now consider an essentially Direct Current sounding method. We may
represent the electric field as the gradient of a scalar potential [7] as

~E = −∇ψ, (3.1)

where ~E is the vector electric field, ∇ is the vector gradient operator, and ψ is the
scalar potential.

49
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The divergence of the current density is zero, and we can express this in
terms of the electric field, using Ohm’s law, ~J = σ ~E. Thus, the governing equation
can be denoted by

∇ · ~J = 0,

∇ · σ∇ψ = 0, (3.2)

where ~J is the current density in Ampere per square meters (A/m2), σ is the elec-
trical conductivity of the medium in Siemens per meter (S/m) which is assumed
to be a function of z only. Using vector calculus, the left hand side of equation
(3.2) can be rewritten as

∇ · σ∇ψ =

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
[
σ

(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)]
,

=

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
(
σ
∂

∂x
ψ~i+ σ

∂

∂y
ψ~j + σ

∂

∂z
ψ~k

)
,

=
∂

∂x

(
σ
∂

∂x
ψ

)
+

∂

∂y

(
σ
∂

∂y
ψ

)
+

∂

∂z

(
σ
∂

∂z
ψ

)
,

∇ · σ∇ψ = σ
∂2ψ

∂x2
+ σ

∂2ψ

∂y2
+ σ

∂2ψ

∂z2
+
∂ψ

∂z

∂σ

∂z
,

= σ

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
+
∂ψ

∂z

∂σ

∂z
,

= σ

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
+

(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
·
(
∂

∂x
σ~i+

∂

∂y
σ~j +

∂

∂z
σ~k

)
,

= σ∇ · ∇ψ + (∇ψ) · (∇σ),

this yields
σ∇ · ∇ψ + (∇ψ) · (∇σ) = 0. (3.3)

For simply, since we denote σ as a function of z only, thus, the above equation
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becomes

∇ · ∇ψ =

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
,

=

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
,

= ∇2ψ,

and

(∇ψ) · (∇σ) =

(
∂

∂x
ψ~i+

∂

∂y
ψ~j +

∂

∂z
ψ~k

)
·
(
∂

∂x
σ~i+

∂

∂y
σ~j +

∂

∂z
σ~k

)
,

=
∂ψ

∂z

∂σ

∂z
,

thus, we obtain

σ∇2ψ +
∂ψ

∂z

∂σ

∂z
= 0. (3.4)

In cylindrical coordinate system (ρ, φ, z), the probe is used and located on
the ground surface. The potential around the probe is symmetry and independent
of φ. Thus, we can rewrite the equation (3.4) as

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2
+

1

σ

∂ψ

∂z

∂σ

∂z
= 0. (3.5)

We shall use the Hankel transforms [2] defined by

f (λ, z) =

∞∫
0

λρψ (ρ, z) J0 (λρ) dρ, (3.6)

and the inverse Hankel transforms of f (λ, z) which is defined as

ψ (ρ, z) =

∞∫
0

f (λ, z) J0 (λρ) dλ, (3.7)

where J0 is the Bessel function of the first kind of order zero and λ is the Hankel
variable. Taking the transformation on both sides of equation (3.5), we obtain

∞∫
0

λρ

(
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2
+

1

σ

∂ψ

∂z

∂σ

∂z

)
J0 (λρ) dρ =

∞∫
0

λρ (0) J0 (λρ) dρ,
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or

∞∫
0

λ

(
ρ
∂2ψ

∂ρ2
+
∂ψ

∂ρ

)
J0 (λρ) dρ+

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ

+
1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ = 0,

or

∞∫
0

λ
∂

∂ρ

(
ρ
∂ψ

∂ρ

)
J0 (λρ) dρ+

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ

+
1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ = 0,

or

lim
a→0+

1∫
a

λ
∂

∂ρ

(
ρ
∂ψ

∂ρ

)
J0 (λρ) dρ+ lim

b→∞

b∫
1

λ
∂

∂ρ

(
ρ
∂ψ

∂ρ

)
J0 (λρ) dρ

+

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ = 0.

Integrating by parts on the first and second terms of the above equation yields

lim
a→0+

(
λρ
∂ψ

∂ρ
J0 (λρ)

)
|
1

a

− lim
a→0+

1∫
a

λρ
∂ψ

∂ρ

d

dρ
J0 (λρ) dρ

+ lim
b→∞

(
λρ
∂ψ

∂ρ
J0 (λρ)

)
|
b

1

− lim
b→∞

b∫
1

λρ
∂ψ

∂ρ

d

dρ
J0 (λρ) dρ

+

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ = 0,

or

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

− lim
a→0+

1∫
a

λρ
∂ψ

∂ρ

d

dρ
J0 (λρ) dρ− lim

b→∞

b∫
1

λρ
∂ψ

∂ρ

d

dρ
J0 (λρ) dρ = 0.
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Integrating by parts again on the third and fourth terms of the above equation,
we obtain

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

− lim
a→0+

(
λρψ

d

dρ
J0 (λρ)

)
|
1

a

+ lim
a→0+

1∫
a

λψ
d

dρ

(
ρ
d

dρ
J0 (λρ)

)
dρ

− lim
b→∞

(
λρψ

d

dρ
J0 (λρ)

)
|
b

1

+ lim
b→∞

b∫
1

λψ
d

dρ

(
ρ
d

dρ
J0 (λρ)

)
dρ = 0,

or

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

+ lim
a→0+

1∫
a

λψ
d

dρ

(
ρ
d

dρ
J0 (λρ)

)
dρ+ lim

b→∞

b∫
1

λψ
d

dρ

(
ρ
d

dρ
J0 (λρ)

)
dρ = 0,

or

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

+

∞∫
0

λψ
d

dρ

(
ρ
d

dρ
J0 (λρ)

)
dρ = 0,

or

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

+

∞∫
0

λψ

(
ρ
d2

dρ2
J0 (λρ) +

d

dρ
J0 (λρ)

)
dρ = 0,

or

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

+

∞∫
0

λψ
(
λ2ρJ ′′0 (λρ) + λJ ′0 (λρ)

)
dρ = 0,
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or
∞∫

0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ

+

∞∫
0

λρψ

(
λ2J ′′0 (λρ) +

λ

ρ
J ′0 (λρ)

)
dρ = 0.

Since J0 is the solution of Bessel’s differential equation, we now have

λ2J ′′0 (λρ) +
λ

ρ
J ′0 (λρ) = −λ2J0 (λρ) .

This yields

∞∫
0

λρ
∂2ψ

∂z2
J0 (λρ) dρ+

1

σ

∂σ

∂z

∞∫
0

λρ
∂ψ

∂z
J0 (λρ) dρ− λ2

∞∫
0

λρψJ0 (λρ) dρ = 0.

Hence, the Hankel transform of equation (3.5) results in

∂2f

∂z2
+

1

σ

∂σ

∂z

∂f

∂z
− λ2f = 0. (3.8)

Therefore, the electric potential in each layer can be obtained by taking the inverse
Hankel transform to the solution of equation (3.8), which satisfies the boundary
conditions.

3.3 Apparent Resistivity of Two-Layered Earth

We now consider the two-layered earth model denoted by overburden and
host medium. For the first layer, the conductivity of overburden is denoted by
σover (z) = σ0e

−b(z−l)2/2 and for the host medium, the conductivity is defined by
σhost(z) = σ0 where σ0, l and b are positive constants.

Figure 3.1: Configuration of electrode array over an overburden of thickness d
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As shown in Figure 3.1, the electrodes 1 and 4 are used for direct current
injection of Wenner array configuration while the electrodes 2 and 3 are used for
potential measurement. a is the electrode spacing. We have to determine the
potential functions in the overburden (f = f1, 0 ≤ z ≤ d) and in the host medium
(f = f2, z > d). These can be found by substituting σover (z) = σ0e

−b(z−l)2/2

and σhost(z) = σ0 into the equation (3.8), respectively. The power series method
[4, 17, 26] is used to solve the partial differential equation and obtain the potential
functions f1 and f2, as

f1 = a0

(
1 +

λ2z2

2

)
+ a1

(
z − blz2

2

)
, 0 ≤ z ≤ d, (3.9)

and
f2 = a3e

−λz, z > d, (3.10)

where a0, a1 and a3 can be determined by using the boundary conditions at the
interfaces [7, 16, 31, 34]. The first boundary condition is denoted by the continuity
of normal current density at the ground surface

lim
z→0

(
−σ0e

− bl2

2
∂ψ1

∂z

)
=

Iδ (ρ)

2πρ
, (3.11)

where I is the current at the probe on the ground surface, and δ(ρ) is the Dirac

Delta function denoted by δ(ρ) =

{
0, if ρ 6= 0

1, if ρ = 0
.

The second boundary condition is denoted by the continuity of normal current
density at z = d as

lim
z→d−

(
σ0e
− b(d−l)2

2
∂ψ1

∂z

)
= lim

z→d+

(
σ0
∂ψ2

∂z

)
. (3.12)

The third boundary condition is the continuity of potential across the interface
layer at z = d as

lim
z→d−

ψ1 = lim
z→d+

ψ2. (3.13)

From the first boundary condition as equation (3.11), we obtain

lim
z→0

−σ0e
− bl2

2

∞∫
0

(
a0λ

2z + a1 − a1blz
)
J0(λρ) dλ

 =
Iδ (ρ)

2πρ
. (3.14)

Since

∞∫
0

λJ0(λρ) dλ =
δ (ρ)

ρ
, then the equation (3.14) becomes

∞∫
0

(
−σ0e

− bl2

2 a1

)
J0(λρ) dλ =

∞∫
0

I

2π
λJ0(λρ) dλ. (3.15)
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From equations (3.7) and (3.15), we now have

a1 = − Iλ

2πσ0e
− bl2

2

. (3.16)

Using the boundary condition in equations (3.12) and (3.13), we now have

e−
b(d−l)2

2

(
a0λ

2d+ a1 − a1bld
)

= −λa3e
−λd (3.17)

and

a0

(
1 +

λ2d2

2

)
+ a1

(
d− bld2

2

)
= a3e

−λd, (3.18)

respectively. Simultaneous solution of the equations (3.17) and (3.18) yields,

a0 =
a1

(
2e−

b(d−l)2

2 (bld− 1)− 2λd+ blλd2
)

λ3d2 + 2λ2de−
b(d−l)2

2 + 2λ
. (3.19)

Therefore, substituting equation (3.16) into equation (3.19), we obtain

a0 = − Iλ

2πσ0e
− bl2

2

[
2e−

b(d−l)2

2 (bld− 1)− 2λd+ blλd2

λ3d2 + 2λ2de−
b(d−l)2

2 + 2λ

]
. (3.20)

The surface potential is then

ψ(ρ, 0) =
I

2πσ0e
− bl2

2

∞∫
0

(
2e−

b(d−l)2

2 (1− bld) + 2λd− blλd2

λ2d2 + 2λde−
b(d−l)2

2 + 2

)
J0(λρ) dλ. (3.21)

3.4 Normalized Apparent Resistivity

Although the knowledge of the potential function allows to compute the
apparent resistivity for any electrode configuration, we shall present here the ex-
pression for the Wenner array configuration. The Wenner array formulation [7] is
denoted by

(∇V )W = 2[ψ(a)− ψ(2a)] (3.22)

where (∇V )W is the Wenner’s potential function and ψ(a) is the scalar potential
function. The apparent resistivity of Wenner, (ρa)W , [7] can be computed from

(ρa)W =

(
2πa

I

)
(∇V )W . (3.23)

Using equations (3.21), (3.22) and (3.23) we obtain

(ρa)W =
2a

σ0e
− bl2

2

∞∫
0

(
2e−

b(d−l)2

2 (1− bld) + 2λd− blλd2

λ2d2 + 2λde−
b(d−l)2

2 + 2

)
(J0(λa)− J0(2λa)) dλ.

(3.24)
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Equation (3.24) can be rewritten as the normalized apparent resistivity

(
ρa
ρ1

)
W

= 2a

∞∫
0

(
2e−

b(d−l)2

2 (1− bld) + 2λd− blλd2

λ2d2 + 2λde−
b(d−l)2

2 + 2

)
(J0(λa)− J0(2λa)) dλ

(3.25)

where ρ1 =
1

σ0e
− bl2

2

is the resistivity at the ground surface.

3.5 Sounding Curves and Discussions

Figure 3.2: The curve of normalized apparent resistivity against electrode spacing,
d = 5m; b = 0.01 and 0.03m−2 and l = 1, 2, 3, 4 and 5m.

Figure 3.3: The curve of normalized apparent resistivity against electrode spacing,
d = 10m; b = 0.003 and 0.005m−2 and l = 2, 4, 6, 8 and 10m.
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Figure 3.4: The curve of normalized apparent resistivity against electrode spacing,
d = 20m; b = 0.0005 and 0.001m−2 and l = 4, 8, 12, 16 and 20m.

Figure 3.5: The curve of normalized apparent resistivity against electrode spacing,
d = 5, 10m; l = 1m and b = 0.01, 0.02, ..., 0.05m−2.

Figure 3.6: The curve of normalized apparent resistivity against electrode spacing,
b = 0.01 and 0.03m−2; l = 1m and d = 1, 2, ..., 5m.

3.6 Inversion Process

Although, normalized apparent resistivity curve can be able to show a
good pattern of conductivity profile of the ground, but however, we need more
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accurate profile to explore the ground. Here, the inverse problem is introduced.

In our inverse model examples, we simulate array data of normalized appar-
ent resistivity from our forward model of practical interest. The model of ground
structures is used to investigate the conductivity profile. Chave’s algorithm is
used for numerically calculating the inverse Hankel transform of the normalized
apparent resistivity solutions [3]. The special function is computed by using the
Numerical Recipes source codes [33]. The electric current of 1 ampere is used in
our computations. The Newton-Raphson method in optimization is applied to
find a conductivity parameter of the ground.

3.6.1 Sample Tests

We firstly consider the normalized apparent resistivity data obtained from
the model of simple case. The simple model test is the heterogeneous conductive
half-space. The ground model has two layers. The overburden of the model has
an exponentially varying conductivity denoted by σover (z) = σ0e

−b(z−l)2/2 with
thickness d, whereas the host has a constant conductivity denoted by σhost (z) = σ0

with infinite depth. The values of the model parameters are given in Table 3.1.
The parameter l is a vertical location of the peak of the bulge for the model
structure, which assumed to be sample test. This implies that the example model
has only one unknown parameter, namely, b. The iterative procedure using the
Newton-Raphson method [33] is applied to estimate the model parameter b of
conductivity variation. We start the iterative process to find the value of the
conductivity parameter with an initial guess b = 0m−2. The optimal result is close
to the true value with misfit less than 10−12A · m−1 after using 3 iterations (see
Table 3.2).

Table 3.1: Model parameters used in our sample tests.

Parameter
d (m) l (m) b (m−2)

10 5 0.005

Table 3.2: Successive iterations for finding a conductivity parameter of the model
in our sample tests.

Iteration Parameter b (m−2) Misfit (A ·m−1)
0 0.000000000000000 21.997686366243370
1 4.846954974921935 ×10−3 1.922332776364707 ×10−2

2 4.999853700934837 ×10−3 1.752381931447662 ×10−8

3 4.999999999866227 ×10−3 1.106987846894784 ×10−13
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3.6.2 Simulated Real Data

We now consider the real data of normalized apparent resistivity obtained
from the simulation model. The normalized apparent resistivity are generated by
the forward problems of the model in our sample test. Random error up to 3%
is superimposed on the normalized apparent resistivity to simulate the set of real
data. The iterative procedures using the Newton-Raphson is applied to estimate
the model parameter of conductivity variation for our model.

Figure 3.7: Curve of misfit versus number of iterations for the model in our sample
test.

3.7 Discussions

In our calculation section, the equation (3.25) is used to compute the value
of normalized apparent resistivity against electrode spacing by using Chave’s al-
gorithm [3]. Fortran programming is introduced under PC computer, Intel(R)
Core(TM)2 Duo CPU P8600 @2.40GHz and 4GB of RAM. With the use of elec-
tric current 1 Ampere, σ0 = 2 S/m, the results can be determined with the time
used less than a second. The results are plotted to show some significants advan-
tage in ground exploration.

The figures 3.2, 3.3, 3.4, 3.5 and 3.6 perform the normalized apparent resis-
tivity against electrode spacing. Each of those figures show 5 curves of normalized
apparent resistivity while the value of d, l and b are adjusted. The thickness of
overburden used in our computation are 1, 2, 3, 4, 5, 10 and 20m. For small value
of l and small value of b, all of our curves perform very large response in normal-
ized apparent resistivity whereas for large value of l, the curves perform smaller
response in normalized apparent resistivity. This support the reason for the peak
of conductive ground locate near the ground surface, so it will reflex stronger re-
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sponse than the case of large l from the ground surface according to the inverse
square law of the distance between conductive source and ground surface. The
top of the peaks of normalized apparent resistivity show a good relationship to the
value of l. In Figure 3.5, the small value of d perform large response in normalized
apparent resistivity while the value of l and b are fixed. It can be explained that
as d is large the average conductive of overburden is lower than host. In Figure
3.6, as b is large, the conductive of overburden is low, thus, the response curves
will be small. It can be said that the curve of normalized apparent resistivity
could be able to predict the vertical location of conductivity profile of the ground
structure.

Normalized apparent resistivity is good to show the pattern of conductivity
profile of ground. However, the inverse problem via the use of optimization tech-
nique is introduced for better finding the conductivity parameter of the ground
than normalized apparent resistivity. The test model is assumed that it has only
one unknown parameter of the conductivity variation. The iterative procedure
using the Newton-Raphson method is applied to estimate this unknown parame-
ter. The optimal result of our sample test converges very fast to the true value
with misfit less than 10−12A · m−1 after using only 3 iterations. These illustrate
the advantage in using the Newton-Raphson method which give the result much
better than using another method of inversion (e.g., Oldenburg [12], Vozoff and
Jupp [21]). The inversion method leads to very good result and has high speed of
convergence. This shows the robustness of our medel.

3.8 Summary and Conclusions

The normalized apparent resistivities of the earth having the electrical
conductivity σover (z) = σ0e

−b(z−l)2/2 for the depth 0 ≤ z ≤ d, and σhost(z) = σ0

for the depth z > d, are considered. The integral expressions are derived and
computed to determine the electric potential due to a point of direct current
source on the ground surface. The value of electric potential will be used to de-
termine the normalized apparent resistivity. We derive analytical solutions of the
electric potential due to a direct current source by using Wenner array configu-
ration on two-layered earth structure having exponentially varying conductivity.
The Hankel transform is introduced to our problem and analytical result is ob-
tained. Our solutions are achieved by solving a boundary value problem in the
wave number domain and then transforming the solution back to the spatial do-
main. The power series technique is used to solve the problem. The curves of
normalized apparent resistivity against electrode spacing are plotted and shown
the advantage in the ground exploration. To find the accurate of conductivity
profile solution, the inverse problem is considered. The inversion process, using
the Newton-Raphson method, is conducted to estimate the conductivity varia-
tion parameter. The method perform very good result and have high speed of
convergence.



Chapter 4

Mathematical Model of
Magnetometric Resistivity

Sounding for a Conductive Host
with a Bulge Overburden

4.1 Introduction

The magnetometric resistivity method has recently become an additional
electrical prospecting technique used for finding mineral resources. This technique
is based on the measurement of low-level, low-frequency magnetic fields associated
with non-inductive current flow in the ground. Chen and Oldenburg [18] derived
the magnetic field directly from solving a boundary value problems which was
similar to the approach used by Edward [27] and then discussed in a homoge-
neous and a 2-layered earth model. Yooyuanyong and Sripanya [30] derived the
solutions of the steady state magnetic field due to a DC current source in three
types of heterogeneous earth models. These solutions are critical to interpret the
magnetometric resistivity (MMR) data.

In this chapter, 2-layered conductive earth model is considered similar to
Chen and Oldenburg[18], but it is different in the conductivity profile. For first

layer, the conductivity of overburden is denoted by σ1 (z) = σ0e
−b(z−l)2/2, 0 ≤ z ≤

h, where b is constant, l is positive which is used to locate the peak of the bulge,
h is the thickness of overburden and σ0 is positive constant. The second layer, the
conductivity of host medium, z > h , is constant and is given by σ2 (z) = σ0. The
objective of this chapter is to show the behavior of the field while some parameters
are given approximately. The another important objective is to investigate the
conductivity parameter via the optimization technique.

62
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4.2 Formulation of the Problem

The general steady state Maxwell’s equations in the frequency domain
[18] can be used to determine the magnetic field for this problem, namely

∇× ~E = ~0 (4.1)

and
∇× ~H = σ ~E, (4.2)

where ~E is the vector electric field, ~H is the vector magnetic field, σ is the con-
ductivity of the medium in Siemens per meter (S/m) which is assumed to be a

function of z only and ∇ is the del operator. Eliminating ~E from equations (4.1)
and (4.2), we obtain

∇× 1

σ
∇× ~H = ~0. (4.3)

This can be expressed in cylindrical coordinates (r, φ, z) as
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where Hr, Hφ and Hz are the components of ~H in er, eφ and ez directions, re-

spectively. Since the problem is axisymmetric and ~H has only the azimuthal
component in cylindrical coordinates, for simplicity, we use H to represent the
azimuthal component Hφ in the following derivations. Simplifying equation (4.4)
yields
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In our study, we denote σ as a function of only depth z, and we now have
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The Hankel transform [2] is introduced and defined by

H̃ (λ, z) =

∞∫
0

rH (r, z)J1 (λr) dr, (4.6)
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and

H (r, z) =

∞∫
0

λH̃ (λ, z)J1 (λr) dλ, (4.7)

where J1 is the Bessel function of the first kind of order one and λ is the Hankel
variable. Taking the transformation on both sides of equation (4.5), we obtain
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Integrating by parts on the third and fourth terms of the above equation yields
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Integrating by parts again on the third and fourth terms of the above equation,
we obtain
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Since J1 is the solution of Bessel’s differential equation, we now have
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This yields
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Hence, the Hankel transform of equation (4.5) result in
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Since the electrode is in the overburden which the end of the electrode is positioned
at z = h, so that a magnetic field will be separated into two parts. The magnetic
field is come from the ground layer that can be described by the general solution
of equation (4.8) and the magnetic field arising from probe sources H0, which is
only one element. It can be explained by the Ampere’s law [31, 34], as

H (r, z) =
I

2πr
,

where I is the current at the probe on the ground surface. From equation (4.6),
we have
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.

Therefore, the magnetic field in each layer can be obtained by taking the inverse
Hankel transform to the solution of equation (4.8), which satisfies the following
boundary conditions [5, 7]:
1. The vertical component of the current density must be zero at the ground
surface (z = 0) ,

σ1 (z)Ez
1 (r, z) |z=0 = 0, (4.9)

where Ez
1 is the vertical component of the electric field in overburden.

2. The azimuthal component of the magnetic field needs to be continuous on each
of the boundary planes in the earth,

lim
z→h−

H̃1 (λ, z) = lim
z→h+

H̃2 (λ, z) . (4.10)

where H1 and H2 are magnetic fields in the first and second layer, respectively.
3. The radial component of the electric field, denoted by Er, needs to be contin-
uous on each of the boundary planes in the earth,

lim
z→h−

Ẽr
1 (λ, z) = lim

z→h+
Ẽr

2 (λ, z) . (4.11)

where Er
1 and Er

2 are the radial component of electric fields in the first and second
layer, respectively. To determine the radial and vertical components of the electric
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field related to the azimuthal component of the magnetic field, we expand equation
(4.2) and obtain
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Since the problem is axisymmetric and ~H has only the azimuthal component in
cylindrical coordinates, for simplicity as equation (4.4), we use H to represent the
azimuthal component Hφ in the above derivations. This yields
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By equation (4.6), we have
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4.3 A Geometric 2-Layered Earth Model

In our geometric model, two-layered earth model is considered which the
interface between the layers is a plane parallel to the ground surface. A point
source of direct current I is located into the overburden which the end of the
electrode is positioned at z = h. For the first layer, the conductivity of overburden

is denoted by σ1 (z) = σ0e
−b(z−l)2/2, 0 ≤ z ≤ h, where σ0, b and l are positive

constants and l is used to locate the peak of the bulge, h is the thickness of
overburden. The second layer, the conductivity of host medium, z > h, is constant
and is given by σ2 (z) = σ0.

Figure 4.1: Geometric model for 2-layered earth

4.4 Solution of Magnetic Field for a 2-Layered

Earth Model

An overburden has a variation of conductivity σ1 (z) with thickness h
over a conductive host medium having constant conductivity σ2 (z) . Hence the
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equation for the magnetic field in overburden and host medium can be simplified
by substituting σ1 (z) and σ2 (z) into the equation (4.8), thus, we obtain

∂2H̃1
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+ b(z − l)∂H̃1

∂z
− λ2H̃1 = 0, (4.12)

and
∂2H̃2
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− λ2H̃2 = 0. (4.13)

The power series method and auxiliary equation are used to find the magnetic
field formulation in an overburden, denoted by H̃1, and conductive host medium,
denoted by H̃2, respectively. Therefore, the solutions of the equations (4.12) and
(4.13) are written by [4, 26]
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and
H̃2(λ, z) = A3e

−λ(z−h) + A4e
λ(z−h),

respectively, where A1, A2, A3 and A4 are arbitrary constants, which can be deter-
mined by using the boundary conditions. The condition at z →∞, the magnetic
field tends to zero, that leads H̃2 to

H̃2(λ, z) = A3e
−λ(z−h). (4.15)

For the first boundary condition in equation (4.9), we obtain
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Since no electric current across at the air-earth interface, I = 0 then[
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By the second boundary condition, we obtain
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Thus,
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Applying the third boundary condition, we have
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]
= lim

z→h+

[
− 1

σ2 (z)

∂

∂z
H̃2 (λ, z)

]
,

or

lim
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− 1

σ0e
−b(z−l)2/2

∂

∂z

(
I

2πλ

(
1 +

λ2z2

2

)
+ A2

(
z +

blz2

2

))]

= lim
z→h+

[
− 1

σ0

∂

∂z

(
A3e

−λ(z−h)
)]
.

Hence,

A3 = − 1

λe−b(h−l)
2/2

(
Iλh

2π
+ A2 (1 + blh)

)
. (4.17)

From equation (4.16) into the equation (4.17), we obtain

I

2πλ

(
1 +

λ2h2

2

)
+ A2

(
h+

blh2

2

)
= − 1

λe−b(h−l)
2/2

(
Iλh

2π
+ A2 (1 + blh)

)
.

Therefore,

A2 = − I

2π

(
(2 + λ2h2)α1 + 2λh

2hλα1 + blh2λα1 + 2 (1 + blh)

)
, (4.18)

where α1 = e−b(h−l)
2/2.

Since A3 = − 1

λα1

(
Iλh

2π
+ A2 (1 + blh)

)
, then with the use of equation (4.18),

we obtain

A3 =
I

2πλα1

[
((2 + λ2h2)α1 + 2λh) (1 + blh)

2λhα1 + blλh2α1 + 2 (1 + blh)
− λh

]
. (4.19)

Hence, with the use of inverse Hankel transforms, the magnetic field in overburden
and conductive host medium are shown, respectively, as

H1(r, z)

=

∞∫
0

I

2π

[
1 +

λ2z2

2
− λ

(
(2 + λ2h2)α1 + 2λh

2hλα1 + blh2λα1 + 2 (1 + blh)

)(
z +

blz2

2

)]
J1(λr) dλ,

(4.20)

and

H2(r, z) =

∞∫
0

I

2πα1

[
((2 + λ2h2)α1 + 2λh) (1 + blh)

2λhα1 + blλh2α1 + 2 (1 + blh)
− λh

]
e−λ(z−h)J1(λr) dλ.

(4.21)
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4.5 Numerical Experiments

In our numerical experiments, the magnetic field due to a direct current
source on the ground surface of the model is calculated. Chave’s algorithm [3] is
used for numerical calculating the inverse Hankel transform of the magnetic field
solutions. The current 1-Ampere is injected to the ground by the probe length of
1m and 3m perpendicular to the ground surface, σ0 = 2S/m and b = 0.005m−2.
The results of magnetic field response are performed as the graphs in Figures 4.2,
4.3, 4.4 and 4.5. The graphs are shown the behavior of the magnetic field against
source-receiver spacing (r) while the values of h, l and z are adjusted.

Figure 4.2: The behavior of magnetic field against r at different depth
z = 0.5, 1, 1, 5, . . . , 3.5, 4m; h = 5m; l = 3m.

Figure 4.3: The behavior of magnetic field against r at different depth
z = 0.5, 1, 1, 5, . . . , 3.5, 4m; h = 3m; l = 5m.
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Figure 4.4: The behavior of magnetic field against r at different depth
z = 2.5, 3, 3.5, . . . , 5.5, 6m; h = 2m; l = 1m.

Figure 4.5: The behavior of magnetic field against r at different depth
z = 2.5, 3, 3.5, . . . , 5.5, 6m; h = 2m; l = 3m.

4.6 Inversion Process

In our inverse model examples, we simulate array data of magnetic field
from our forward model of practical interest. The two-layered earth model of
ground structures is used to investigate the conductivity profile. Chave’s algorithm
is used for numerically calculating the inverse Hankel transform of magnetic field
solutions [3]. The special function is computed by using the Numerical Recipes
source codes [33]. The electric current of 1 ampere is used in our computations.
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The Newton-Raphson method in optimization is applied to find a conductivity
parameter of the ground.

4.6.1 Sample Test

We firstly consider the magnetic field data obtained from the model of
simple case. The test model is the heterogeneous conductive half-space. The test
ground model has two layers. The overburden of the model has an exponentially
varying conductivity denoted by σover (z) = σ0e

−b(z−l)2/2 with thickness h, whereas
the host has a constant conductivity denoted by σhost (z) = σ0 with infinite depth.
The values of the model parameters are given in Table 4.1. The parameter l is a
vertical location of the peak of the bulge for the model structure, which assumed
to be our sample test. This implies that the example model has only one unknown
parameter, namely, b. The iterative procedure using the Newton-Raphson method
[33] is applied to estimate the model parameter b of conductivity variation. We
start the iterative process to find the value of the conductivity parameter with an
initial guess b = 0.05 m−2. The optimal result is close to the true value with misfit
less than 10−12A ·m−1 after using 3 iterations (see Table 4.2).

Table 4.1: Model parameters used in our sample tests.

Parameter
z (m) h (m) l (m) b (m−2)

5 5 2 0.005

Table 4.2: Successive iterations for finding a conductivity parameter of the model
in our sample tests.

Iteration Parameter b (m−2) Misfit (A ·m−1)
0 5.000000000000000 ×10−2 4.112837183222289 ×10−2

1 1.199810840189358 ×10−4 4.522401944826133 ×10−3

2 4.946807268417725 ×10−3 4.604121343772035 ×10−7

3 4.999993634207877 ×10−3 9.856162440966542 ×10−14

4.6.2 Simulated Real Data

We now consider the real data of magnetic radiation obtained from the
simulation model. The magnetic fields are generated by the forward problem of
the test model in our sample test. Random errors up to 3% are superimposed on
the magnetic fields to simulate the set of real data. The iterative procedure using
the Newton-Raphson method is also applied to estimate the model parameter of
conductivity variation.
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Figure 4.6: Curve of misfit versus number of iterations for the model in our
sample test.

4.7 Discussions

Analytical solution of the steady state magnetic field due to a direct cur-
rent source are derived by using the expression (4.20). The expression (4.20) is ap-
plicable to specific case in which two layers have exponentially varying conductiv-
ities. The effects of magnetic fields obtained from the DC method is plotted. The

magnetic field of an earth having the electrical conductivity σ1 (z) = σ0e
−b(z−l)2/2

for the depth 0 ≤ z ≤ h, and σ2 (z) = σ0 for the depth z > h are considered.
We fix the value of h, the magnetic field curves are quite different as z and l are
varied between h ≥ l and h ≤ l. The integral expressions are derived and com-
puted the values of the magnetic field which is used to determine the behavior
of the magnetic field against source-receiver spacing. The curves of the magnetic
field against source-receiver spacing are plotted and shown the advantage in the
ground exploration. The magnetic field intensities drop very fast when the value
of z close to the value of h. At large depth(z), the magnitude of magnetic fields
tends to be small value as we expect. As the thickness of overburden is increased,
the shape of graph is similar to the conductivity profile of the ground. This is
the advantage of magnetic field that can be performed some relationship to the
conductivity profile of the ground.

An inverse problem via the use of an optimization technique is introduced
for finding a conductivity parameter of the ground. The iterative procedure us-
ing the Newton-Raphson method is applied to estimate the model parameter of
conductivity variation. The optimal result of our sample test converge very fast
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to the true value with misfit less than 10−12A ·m−1 after using only 3 iterations.
These illustrate the advantage in using Newton-Raphson method which gives the
convergence much faster than using another method of inversion (e.g., Oldenburg
[12], Vozoff and Jupp [21]). The inversion method leads to the robustness of our
model and procedure.

4.8 Summary and Conclusions

Magnetometric method used for investigation of a two-layered earth struc-
ture is presented in this study. The method proposed here is based on the mea-
surement of low-level, low-frequency static magnetic fields associated with nonin-
ductive current flow between two current electrodes on the earth’s surface. We
derive analytical solutions of the steady state magnetic field due to a direct current
source on two-layered earth structure having exponentially varying conductivity.
The Hankel transform is introduced to our problem and analytical result is ob-
tained. Our solutions are achieved by solving a boundary value problem in the
wave number domain and then transforming the solution back to the spatial do-
main. The power series technique is used to solving the problem. The effects of
magnetic fields obtained from the DC method is plotted and show the behavior in
response to many different depths while some parameter are approximately given.
The inversion process, using the Newton-Raphson method, is conducted to esti-
mate a conductivity parameter of the ground. The method leads to very good
result and has high speed of convergence.



Chapter 5

Conclusions and Future Works

5.1 Conclusions of the Thesis

Of all the electrical prospecting methods, direct current resistivity sound-
ing is the simplest way to understand in principle. This thesis has been concerned
about the problem of determining resistivity kernel function for a horizontally
stratified layered earth. An inverse problem in resistivity interpretation has also
been described and discussed in this study.

In the first part of this thesis, Chapter 2, we present a mathematical model
of the scalar potential numerically at various positions by assuming that the earth
structure contains only one layer having exponential conductivity. There are
probes of direct current voltage and a receiver on the ground surface which picks
up the signal on the ground surface at different electrode spacing. The electrode
spacing starts from 10 to 100 meters. We use Finite Element Method (FEM) by
applying Galerkin’s Method of Weighted Residuals to solve the partial differential
equation. Maple program is used to calculate and plot graphs of the value of the
scalar potential at different depths and different electrode spacing from the probe.

In the second part (Chapter 3) of this study, we derive the analytical solu-
tion of normalized apparent resistivity from DC source located on a two-layered
earth model which having exponentially varying conductivity. The Hankel trans-
forms and power series method are used to solve the partial differential equation
to find the potential functions. The expression for the Wenner configuration is
introduced to formulate the normalized apparent resistivity. Numerical solutions
are computed to show the behavior of the curves by using Chave’s algorithm while
some parameters are given. The curves of computation results of normalized ap-
parent resistivity are plotted against electrode spacing. The inversion process,
using the Newton-Raphson method, is conducted to estimate the conductivity
variation parameter.

The last part of the thesis, Chapter 4, we present an electrical method used
for investigation of two-layered earth structure. The method proposed here is base
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on the measurement of low-level, low-frequency static magnetic fields associated
with noninductive current flow between two current electrodes on the earth’s sur-
face. Analytical solutions of the steady state magnetic field response from DC
source located on a two-layered are derived in this study. The earth structure
having exponentially varying conductivity is considered. The Hankel transform
is considered to our problem and analytical result is obtained. Our solutions are
expressed in the form of integral expressions. Numerical solutions are computed
to show the behavior of the magnetic field while some parameter are given ap-
proximately. An inverse problem via the use of the Newton-Raphson optimization
technique is introduced for finding a conductivity parameter of the ground.

5.2 Future Works

Even though the work presented in this thesis provides interesting ideas
about the solutions to the forward and inverse problems in geoelectrical resistivity
sounding, the issues that we dealt with suggest numerous evenues for possible ex-
tensions and future works. In the area of electrical resistivity methods described
in this thesis, the following outline is a list of interesting future directions that
require further investigation:

- In Chapters 3 and 4, analytical solution could be developed in the gen-
eral case for the problem of a multilayered earth with layers having exponentially
varying conductivities which can be derived by using the boundary conditions de-
scribed in these chapters.

- The inverse problem of Chapter 2 should be proposed.

- The difference conductivity model should be considered.
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