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exponentially conductivity profile defined by gpyer(z) = ape
positive constants and [ is used to located the peak of the bulge, z is the variable of the
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Chapter 1

Introduction

Nowadays, the natural resources are very useful for human. Most of the
natural resources buried under the earth surface which are difficult to explore.
Geomathematic is the science which-applies the principles of mathematics and
physics to explore the ore under. the earth surface. The subject involves taking
measurements at or near-the earth’s surface those are influenced by the internal
distribution of physical properties. In the past few decade; there are many meth-
ods used in geophysical explorations, such as gravitational, magnetic, seismic,
electrical, electromagnetic, radioactivity, and well logging. The most commonly
used in mineral exploration are direct current resistivity-and the magnetic meth-
ods because they are far less expensive than the most other investigation methods.

1.1 DC Resistivity Methods and Their Applica-
tions

Electrical prospecting method detectsthe ore under ground surface. The
method is produeed by electric-current flow under the ground:. Using electrical
method, one may measure potential, current, and electromagnetic field that occur
naturally or are introduced-artificially in the ground. The measurements data can
be made in a variety of ways to determine-a variety of results. There is a much
greater variety of electrical and electromagnetic techniques available than in the
other prospecting methods, where only a single field of force or anomalous prop-
erty is used. Basically, it is the enormous variation in electrical resistivity found
in different minerals that makes these techniques possible [36].

Electrical method using direct current resistivity and induced polarization
(IP) are probably the most widely used near-surface geophysical techniques, par-
ticularly for environmental investigations [1]. In the early part of 20th century,
electromagnetic and direct current resistivity methods were brought first time to
use. The direct current resistivity method gained early acceptance because of less
requirement theoretical and instrumentation considerations. Direct current resis-
tivity methods have become the most popularly used geoelectrical method. These



techniques are widely understood and accepted in term of the capabilities, and
limitations and the standardized.

The direct current resistivity method employ an artificial source of current,
which is introduced into the ground through point electrodes or long line contacts.
The procedure is to measure potentials at other electrodes in the vicinity of the
current flow. Because the current is measured as well, it is possible to determine
an effective or apparent resistivity of the surface [36]. The analysis and interpre-
tation are done on the basis of direct currents. The distribution of potential can
be related theoretically to ground resistivity. Their distribution for some simple
cases, notably, the case of a horizontally is stratified ground. The case of homoge-
neous masses are separated by vertical planes. Direct current resistivity survey can
be useful in detecting bodies of anemalous materials or in estimating the depths
of ground surfaces. Data from direct-current resistivity surveys are customarily
presented and interpreted in the form of values of apparent resistivity. Apparent
resistivity is defined as the resistivity of an‘electrically homogeneous and isotropic
half-space that would yield the measured relationshipbetween the applied current
and the potential difference for a particular arrangement and spacing of electrodes.

The direct current resistivity surveying problem is the use of apparent re-
sistivity values from field observations-at various locations and with various elec-
trode configurations to estimate the true resistivities of the several earth materials
present at a site and to-locate their-boundaries spatially below the surface of the
site. An electrode array with-constant spacingis used to investigate lateral changes
in apparent resistivity reflecting lateral geologic variability orlocalized anomalous
features. To investigate changes in resistivity with depth, the size of the electrode
array is varied...The apparent resistivity is affected by material at. increasingly
greater depth as the electrode spacing is increased. Because of this effect, a plot
of apparent resistivity against electrode spacing-can-be used to indicate vertical
variations in resistivity. Schlumberger; Wenner, and dipole-dipole are the types of
electrode array that are most commonly used.-There are other electrode configu-
rations that are used experimentally-or-for non-geotechnical problems or are not
in wide popularity today. The Wenner array configuration is used in our thesis. It
consists of four electrodes in line which is separated by equal intervals and all four
electrodes are moved between successive observations. The Wenner array was used
more extensively than Schlumberger array in the United States. This electrode ar-
ray demands less instrument sensitivity and reduction of data is marginally easier.

The traditional direct current resistivity method maps the electrical prop-
erties of the earth by measuring differences in potential at the earth’s surface
caused by galvanic current flow between two current electrodes. The magnetic
fields associated with these currents can also be measured with a class of geo-
physical techniques referred to here as magnetometric methods. These include
magnetometric resistivity (MMR) and magnetic induced polarization (MIP), and
a set of related 'total-field” techniques known as sub-audio magnetics (SAM). The



magnetometric resistivity method differs from the traditional method in that the
potential electrodes are replaced by a highly sensitive coil or magnetometer and
one or more the horiaontal components of the magnetic field are recorded [23].
Magnetometric resistivity is an electrical exploration method based on the mea-
surement of the low-level, low-frequency static magnetic fields associated with
noninductive current flow in the ground. The current electrodes may be located
on the surface or, for areas where targets are beneath conductive overburden which
penetrate the bedrock in order to increase current flow below the cover.

1.2 Outline of the Thesis

This thesis deals with development and application of mathematics tech-
niques for enhanced investigation in geophysical explorations. A horizontally strat-
ified structure of the earth is studied in this research work.

Chapter 2 presents a mathematical model for the scalar potential at various
positions. We assume that the earth structure-is only one layer having exponential
conductivity. Four probes are located on the ground surface. Two of them are
direct current source and the another two probes are used for Voltage measure-
ments. The electrode spacing starts from 10m to 100m: We use Finite Element
Method (FEM) by applying Galerkin’s Method of Weighted Residuals to solve the
partial differential equation. Maple program is used to calculate and plot graphs
of the scalar potential at different depths and different electrode spacing.

Chapter 3, the analytical solution of normalized apparent resistivity from
DC source located on-a two-layered earth model is formulated. Two-layered earth
structure with an overburden having exponentially varying conductivity is con-
sidered. The Hankel transforms and power series' method are used to solve the
partial differential equation to find the potential functions. The expression for the
Wenner configuration is introduced to formulate the normalized apparent resis-
tivity. Numerical solutions are computed to show the behavior of the normalized
apparent resistivity by using Chave’s algorithm while some parameters are given.
The curves of computation results-of normalized apparent resistivity are plot-
ted against electrode spacing. The inversion process, using the Newton-Raphson
method, is conducted to estimate the conductivity variation parameter.

In Chapter 4, presents an electrical method used for investigation of two-
layered earth structure. The method proposed here is based on the measurement
of low-level, low-frequency static magnetic fields associated with noninductive cur-
rent flow between two current electrodes on the earth’s surface. Analytical solu-
tions of the steady state magnetic field response from DC source located on a
two-layered are derived in this study. The earth structure having exponentially
varying conductivity is considered. The Hankel transform is applied to our prob-
lem and analytical result is obtained. Our solutions are expressed in the form
of integral expressions. Numerical solutions are computed to show the behavior



of the magnetic field while some parameter are given approximately. An inverse
problem via the use of the Newton-Raphson optimization technique is introduced
for finding a conductivity parameter of the ground.

Finally, in Chapter 5, we summarize the results and contributions of this
thesis, and indicate future research directions.




Chapter 2

Finite Element Method for the
Scalar Potential Over an
Exponential Conductive Earth

2.1 Introduction

Nowadays, many countries-try to make economy grows rapidly. One of
the ways to improve their'economy is to use the natural resources. As a result,
the earth surface has been studied widely in order to utilize the natural resources
embedded beneath the earth. They use knowledge of geophysics.which is a branch
of science concerned with the earth survey. The survey uses mathematics, physics
and the physical properties of the earth such as the resistivity, conductivity, elec-
tric potential, magnetic field and electric field to search for the natural resources.
Since the most.natural resources embedded beneath the earth is-hard to find, we
use a survey method to search for the natural resources beneath the‘earth surface
to differentiate the minerals-from the others.~We process the data obtained from
a geophysics survey to identify the location of minerals correctly. This geophysics
survey can be costly, so we seek for-a-mathematical model which is a method that
became famous because.it is ‘economical and costs less than the direct survey [36].

We formulate a mathematical model by using electromagnetic method to
determine the value of scalar potential beneath the earth surface. We assume
that the earth structure consists of horizontally stratified layers having exponen-
tial conductivities at certain depths except the last layer where the conductivity
having the same varying through the rest of the layer which was presented by
Chaladgarn and Yooyuanyong [32]. They derived the normalized apparent resis-
tivity by formulating the problem from the electric field as the gradient of a scalar
potential then solve a boundary value problem of a horizontally stratified layered
earth with homogeneous layers. Stoyer and Wait [7] studied the problem of com-
puting apparent resistivity for a structure with a homogeneous overburden and a
medium whose resistivity varies exponentially with depth. Banerjee et al.[5] gave
expressions for apparent resistivity of a multilayered earth with a layer having ex-



ponentially varying conductivity. Kim and Lee [16] derived a new resistivity kernel
function to calculate the apparent resistivity of a multilayered earth with layers
having exponentially varying conductivities. Chen and Oldenburg [18] derived
the magnetic field directly by solving a boundary value problem of a horizontally
stratified layered earth with homogeneous layers. However, in the real situation
there are cases where the subsurface conductivities vary exponentially, linearly
or binomially with depth. There exists a considerable amount of research about
mathematical modeling which assumes that the earth structure consists of hori-
zontally stratified multilayer with one or more layers having exponentially, linearly
or binomially varying conductivities at certain depths except the last layer where
the conductivity having the same varying through the rest of the layer. Siew and
Yooyuanyong [24] studied the electromagnetic response of a thin disk beneath an
inhomogeneous conductive overburden and expressions for the electric fields in the
overburden. Ketchanwit [25] studied the earth surface layers using time-domain
electromagnetic field by constructing three mathematical models having exponen-
tially varying and constant varying conductivities. Sripunya [34] derived solutions
of the steady state magnetic field due to a DC current source in a layered earth
with some layer having exponentially or binomially or linearly varying conductiv-

ity.

We present our mathematical model by using electromagnetic method. We
assume that the earth structure contains only one layer having exponentially vary-
ing conductivity. We. use Finite Element-Method (FEM) to find the numerical
solution of the scalar potential under the earth surface.. We are seeking the scalar
potential at different depthsand distances from the probe. Thismethod is different
from the Hankel transform which-is difficult to solve for seme complex problems
such as all the research mentioned above. There are a few research .used FEM by
applying the Galerkin’s Method of Weighted Residuals to find the solution of the
scalar potential. Therefore; we are interested finding the numerical solution of our
problem by using the Galerkin’s-Method of Weighted Residuals.

2.2 Galerkin’s-Method of Weighted Residuals

In this section, the method of weighted residuals is described and Galerkin’s
method of weighted residuals is emphasized as a tool for the finite element for-

mulation for any field problem governed by differential equations from Hutton
(2004)[9].

2.2.1 Method of Weighted Residuals

The method of weighted residuals(MWR) is an approximate technique
for solving boundary value problems that utilizes trial functions satisfying the
prescribed boundary conditions and integral formulation to minimize error, in an
average sense, over the problem domain [8]. The general concept is described here
in terms of the one-dimensional case. Given a differential equation of the general



form
Dly(z),z] =0 a<x<b (2.1)

where D is differential operator subject to homogeneous boundary condition

y(a) = y(b) =0 (2.2)

the method of weighted residuals seeks an approximate solution in the form
y*(x) = Z c;N;i(x) (2.3)
i=1

where y* is the approximate solution expressed as the product of the unknown,
constant, ¢; to be determined and the trial function, N;(x). The major require-
ment placed on the trial functions is that they are admissible function; that is,
the trial functions are continuous over the domain of interest and satisfy the spec-
ified boundary conditions. In addition,-the trial functions should be selected to
satisfy the “physics” of the problem in a general sense. Given these somewhat
lax conditions, it is highly unlikely that the solution represented by equation (2.3)
is exact. Instead, on substitution of the assumed solution into the differential
equation (2.1), a residual error (hereafter simply called residual) results such that

R(x) = Dly*(x), x] #0 (2.4)

where R(z) is the-residual.” Note that the residual is also a function of the un-
known parameters ¢;. Themethod of weighted residuals requires that the unknown
parameters ¢; be evaluated such that

b
/wi(x)R(a:)dx =0 F=1/0. M (2.5)

a

where w;(z) represents m arbitrary weighting functions. We observe that, on in-
tegration, equation (2.5).results in n algebraic equations, which can be solved for
the n values of ¢;. Equation (2:5).expresses that the'sum (integral) of the weighted
residual error over the domain of the problem is zero. Owing to the requirements
placed on the trial functions, the solution is exact at the end points (the boundary
conditions must be satisfied) but, in general, at any interior point the residual error
is nonzero. As is subsequently discussed, the MWR map capture the exact solution
under certain conditions, but this occurrence is the exception rather than the rule.

Several variations of MWR exist and the techniques vary primarily in how
the weighting factors are determined or selected. The most common techniques are
point collocation, subdomain collocation, least squares, and Galerkin’s method.
As it is quite simple to use and readily adaptable to the finite element method,
we discuss only Galerkin’s method.



In Galerkin’s weighted residual method, the weighting functions are chosen
to be identical to the trial functions; that is,

w;(x) = Ny(x) i=1,...,n. (2.6)

Therefore, the unknown parameters are determined via

b

/wi(x)R(a:)da: = /Ni(x)R(x)dx =0 i=1,...,n (2.7)

a

again resulting in n algebraic equationsfor evaluation of the unknown parameters.

2.2.2 Elliptic Boundary Value Problems

In this section, we consider an elliptic-typed. boundary value problems
(BVP)[6, 10]. Our goal is to-determine a finite element solution of the problem.

Variational Statement

Consider the residual
R(x).==V - [k(x)Vu] +b(x)u~ f(x)

Method of weighted residual:

/R(x)vdx _ 01 eV & HYQ),

/[—v- i bu— 10 dQ =0
/(—V - [kVu]v 4 buv — fv) dQ =0, (2.9)

Q
where

HY(Q) = {v] ve LX), Vv e L3(Q)} and L3(Q) = {v | /\Uﬁdx < ool

We aim to reduce the 2" - order terms to the 1 order by integration by parts.
Using the product rule for differentiation

V- (vkVu) = kVu - Vo + 0V - (EVu)



equation (2.9) becomes

/ [kVu - Vv —V - (vkVu) + buv — fv] dQ = 0.
0

From the divergence theorem,

/V - (vEVu) dQ) = j[kau -nds

Q o0
ou
= }{vk% ds
o0
ou
/ [kVu - Vv +buv — fo]dSd— ja{vk%ds = 0.
Q o9

Choosing v(z) such that' v(z) = 0-on 09y, i.e. Choose Vo=Av € H(Q) : v =
0 on 9, } and using the boundary. condition, we obtain

/[kVu -V + buv — fo] dQ + /puvds — /p?lv ds=0, YveV. (2.10)
Q 892 892

Variational statement :

Find v € H'(Q) such that

/[kVu-Vv—l—buv—fv]dQ—l—/puvds—/pfwds—O N eVo (2.11)
Q 692 892

Finite Element Approximation

We pose the.variational statement on a finite dimensional subspaces
Vi, CV and V;, € H'(Q) to formulate a finite element approximation of w.

Finite element approximation:

Find v, € Vh such that
/(k:Vuh - Vv + bupv — fo)dQ + / pupv ds — /pﬁv ds=0 ,YveV, (2.12)
Q 0 09

Let {¢;()}7, be the basis functions of V}, and V}, such that

1, ifi=j

(i) = 045 =
i) = 0y {o, it Qo
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Then our solution u;, and v can be expressed as
up(x) = Zuj%'(f)a v(z) = Zﬁz%(iﬂ)
j=1 i=1

By choosing suitable set of values for f3;’s, the finite element approximation be-
comes

> / (EV; - Vi + bpjipi) uj — foidQ+ > /psojsomjds - / plpids = 0,
i=lq =190, 000
foreachi=1,...,n,

n

/ (kV ;- Vi + bpjp;) dS) 4 / Pejpids | (uj= / JeidS2 + / plp;ds,
Q Q

7=t 9%, 09,
foreacht=1,...,n.
(2.13)
Equation (2.13) can be represented by a linear system
AU=/F, (2.14)
where_
L Q2 02 (nxn)
U= [Ebj](nxl)’
Q2 0%z (nx1)

2.3 Mathematical Modeling

2.3.1 Formulation of the Problem

In this section, we introduce a mathematical model and find a numerical
approximation of the scalar potential at various positions by using Finite Element
Method (FEM). Assuming that the earth structure contains only one layer having
exponential conductivities. There are a source providing a direct-current (DC)
voltage and a receiver on the ground surface which is assumed to contain only
homogeneous surface layer. In this model, we follow Wenner array method which
used nodes 1 and 4 for current electrodes, nodes 2 and 3 for potential electrodes;
and a is the electrode spacing which is the distance for which the receiver picks
up to signal. From Figure 2.1, the receiver picks up the signal at node r =
10,20, ...,100m where r is the electrode spacing which picks up the signal.
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1 2 3 4 x
- - - L]
A—a —é—a —¢—a — /

—b(z-07 z

= 2
o =0

Figure 2.1: The model of conductivity profile

Since we are considering DC voltage, we may represent the electric field as
the gradient of a scalar potential:

E =EN, (2.15)
where E is the electric field inVolts per meter (V/m); V is the gradient operator,

and v is the scalar potential. Since the divergence of the current density is zero
[7], by using Ohm’s law, JJ = o FE, we obtain that

V- J =0,
V-OE:O,
N V=0, (2.16)

where J is the current density in' Ampere per square meters (A/m?), o is the elec-
trical conductivity of the medium in Siemens per meter (S/m) which is assumed
to be a function of z only:

Thus, we have

V.oV =0
this yields
oV N+ (Vi) - (Va)= 0. (2.17)
Since
0s (ds,.0 = a -0 =5 0J -
va— (@Z‘i‘a—y +ak> k (%Zm—i-ﬁ—yw]—f—alﬁk),
82 82 2
(P 0, 2
ox?  OJy? 022
=V,
and

o - 0 - 0 = o - 0 - 0 -
(v¢)'(va)—(@#}Z-Fa—yibj-i—&z/}k)-(%m a—yaj Eak),

_ovor
0z 0z
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thus, we have

oY Oo
2 _— =
oV + o= =0, (2.18)
We define the residual for the problem as
oY do
_ 2 i
R(x) = oV + 9 92 0
oY do
_ 2
= oV + 5 92

Method of weighted residual :
/ R(&)udx = 0. (2.19)

In a cylindrical coordinate system’ (7, ,2), we have

2, £ 2P [Nz L=\ B
v¢_r8r "or +T28¢2+822’

= U — T rs2) 1 AER
r Or? or

Sy owN| 1Ry Py
() e o

The probe is used and-located on the ground surface. The potential around the

. . . A )Y 0%
probe is symmetric ‘and independent of ¢, i.e. 8_¢ =0. 1t follows that 37452 =0
in the real physical situation:

Therefore,
W O AT LA PN ),
v¢—r "o ¥ or +822.
Hence from the equation (2.18), we have,
oY do
2 —_ =
(189 0z 0% 0
1 [ %P 021 oY 0o
"[; <T%+E) +w} o0 0
1/ 0% O 9% 10 do
p (rm+a) o2 500
2 1 2 1
o Lo P Love oy

or2  rdr 022 000z 0z

The next step, we use finite element method to establish a numerical solu-
tion of our problem by applying the Galerkin’s Method of Weighted Residuals to
equation (2.20). Recall the Laplace equation in three-dimension with the electric
charge on the cylinder

1o¢ | P 1% 9%

2, _ 4 -
vw_A¢_r8r or? r8¢2+8z2'

(2.21)
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Since the potential is independent of ¢. Substituting (2.21) into (2.20), we obtain

10y 0o

A ———=0 2.22
v o do 0z ( )
where r € [10,100], z € [0,90].
Let
1 . . . ov ov . .
V ={v € Hy : v is a continuous function on {2, Ir and P are piecewise
r z

continuous on 2 and v = 0 on IN}.

By transforming the system into cylindrical coordinates (r, ¢, z) [11] and use (2.22),
the weighted residual in (2:19) becomes

/R(r, b, z)vordrdodz = 0. (2.23)
The weak formulation of (2.:22) is
1 oY Oo
(vav) + (;%&71}) =0, ve V7
o 194/ 0
o}
ApudS) - 3y 3, 2.24
/ ud +/08z8zvd 0 (2.24)
Q Q

Since V% = A and from equation (2.24), we have

Q/ Adpod§) = Q/ V2udQ = / V2oL

Q

Note that / vV3)dQ. = / vV - VahdS) together with the product rule for differ-

o Q Q
entiation

V- (uVY) = Vi - Vo + 0V - Vi
WV VY =V - (V) — Vi - Vo,

we have

/ VV2hdS) = / (V- (0Veh) — Vi - Vo) dSQ.
Q Q

From the divergence theorem,

/v-(vw) dQ = fvw.ﬁds.

Q o0
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Therefore,

J@wma:/vwwﬂm&i/v»vmm

o0N

:/vwwmwﬁvawmm+/vwvm%

391 892 893
+ /U(Vw-ﬁ)ds—/Vv-deQ.
00y Q

Since v € V, v = 0 on 02, 0§25, 03 and 0S4, then

/A@/wdQ =— / Vo VibdS). (2.25)
Q Q
Substituting equation (2:25).into equation (2.24), we obtain
1oy do
. /V’U : V@Z)dQ | / ;E%Udﬂ =0. (2.26)
Q Q
1
— / rV - Vvdrdodz + /r—a—wa—avdr(wdz =0. (2.27)
o0z 0z
Q QO

Since the problem is axisymmetric. and independent of ¢ in cylindrical coordi-
nate we divide equation (2.27) by 27 and derive the following formulation in the
cylindrical coordinate(r,z)

— / rVa) - Vudrdz + /rl%a—avdrdz =0 (2.28)
o0z 0z

Q Q

where Q is the two-dimensional ccross-section of domain Q(¢ is fixed); ie. Q =
{(r,2) € R?]10 < r < 100,0.< z < 90}. The boundary conditions (BC) of prob-
lem (2.22) and the notation of the potential in the domain which is refined using
bilinear rectangular elements are shown in Figure 2.2
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o0,
r=10 =20 =30 r=40 =50 =60 =70 r=80 =80 r=100
pooss 00037 Q0027 00021 00017 00014 00011 00002 00008 00007

7 =
z=10 0.0049 0.00062
z =20 0.0043 0.00054
¢ =30 0.0037 0.00047
z=40 0.0031 0.00039
o, o,
z=50 0.0024 0.00031
z =40 0.0018 0.00023
z=70 0.0M2 0.00016
z =R 0.0005 0.00005
=90
] 0 ] ] 0 ] 0 ] 0 ]
-
oLy

Figure 2.2: Boundary condition-of the earth structure.

The values of potential on the surface 'at z/=0m are obtained by generat-
ing the potential from the mathematical model of Chaladgarn and Yooyuanyong,
(2013)[32] when b = 0.0005m~? 1="10m, d = 90m (the thickness of the earth
layer). The potential decreases to zero as the depth increases, i.e we assume that
the potential is zero-at z = 90m. Thevalues of the potential-on 02, and 0€), are
obtained from the approximation by linear function,
g1(r,z) = —6.11 x 107°2 4 0.0055 on 9y and g5 (r,z).= —=7.78 x 10~%2 + 0.0007
on 0€)y, respectively.

Next, we consider the domain of -equation (2.28) in-two-dimensions. By
dividing the domain into rectangular elements. We diseretize r into 9 subintervals
and, discretize z into 9 subintervals-equally.~Let (r;, z;) be a node of §2 on the
non-overlapping rectangular grids such that the horizontal and vertical edges of
these rectangles are parallel to the r— and z— coordinate axes, respectively. As a
result,

Tkzlok',
=10k —1), k=1,...,10.

Since the form of equation (2.28) suggests that the finite elements can have an arbi-
trary shape and position in space computing integrals over their element domains
is a bit tricky. To overcome this difficulty one uses a projection method which
maps the coordinates of a well known reference element to the coordinates of an
arbitrary element in space. Computing an integral on the local reference element
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(e.g. it’s area) is easy. Onme just has to capture the effect of the mapping (defor-
mation, stretching, shearing) to get the right value of the integral for the global
element domain. During the mapping process the points in the local coordinate
system &, m (here : parent domain) get mapped to points in the global coordi-
nate system r, z by a mapping the values range from -1 to +1, and the reference
coordinates are transformed to (&1,m1) = (=1, —1), (&,1m2) = (1,-1), (&,13) =
(1,1), (€4,m1) = (—1,1), as shown in Figure 2.3(b).

4] il
7
L
N, 1 N,
y T ’ -1 1 , £
Z; //
A M -1 N,
Zj+1
(b)
(a)

Figure 2.3: Reference and transformed coordinates of the boundary.

By using a transformation in Figure 2.3, we have

h h
o= €5 (1 5ES d’l“:§d€

2
h h
z:zk—|—§(1+77), dZ:§d77~

And from Figure 2.3(b), the basis functions N,,v =1,2,3,4 in (£, n) coordinates
which have the relationship with coordinate (r, z) are defined as

r= NlTl +N27‘2+N3T‘3+N47‘4,
z = N121 -+ NQZQ -+ N323 -+ N4Z4 (229)
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such that basis functions can be written in the form of £ and 7 as follows

Niem =3 0-80-n),
Ny (6 = (146 (1),
Ny (&) = 7 (1+6) (1+1),
Niem =3 (-6 0 +n). (2.30)

For convenience, we rename the potential at the node (74, z;) to ¥;, so we have
{U}19% as the potential at the nodes of the element in 2. For simplicity and to
avoid any confusion, we use W, for W(X;), 1 < < 100. In other words, we define
nodes X; for (r;,z2;), 1 <.i,j < 10.For-each X;, i = 1,2,...,100, we define the
basis function 3; such that

W H i 7
5j(Xi): Y. .
DY AN

and function v € V can bhe written in ‘the form' of linear combination of trial

function f;
100

i Z a;Bi(X)
j=1
We obtain v (X;) = a, by choosing appropriate values of «; and equation (2.28)

becomes 90D
- / PV Bidrd: + / r—a—‘b—"@drdz =0 (2.31)
o)

Q 0
—b(z—1)2
and from o(z) = oge” z__such that oy, b, and [ are constants, we have

—/rvw-Vﬁidrdzﬁ—/rb(l—z)g—f

Q Q

Bidrdz =0 (2.32)

fori =1,2,...,100. Next, we consider the solution in the form of linear combination

of trial function f;
100

X) =) U5 (X
j=1
when U, is the unknown. The equation (2.32) can be written in the form of linear

combination as follows for each i = 1,2, ..., 100,

100
Sow |- / rVB; - Vpidrdz + / Wipdrdz| =0. (239
j=1 J

Q

Q
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After that by using a transformation in Figure 2.3, we will consider the value of
/rVﬁj - VB;idrdz by using Chain rule, thus

Q

/Nﬁj -V Bidrdz —/ {aﬁf 9 | %aﬁz} drdz,

ar Or 0z 0z
/ / 9p; 0¢ 863 on\ (96 85 0B 0n
o0& 87’ an or o0& 87’ an or
0B; 0§ 0B;0n \ [ 9B 85 9B; Oy
(a_gj$+a_n]£> (ag 3: " on o2 )] ( ) dedn,
1 1
2\” OB 05; 0f3; 03; R\ >
//(E) rK@_& 35) \ (a_n an)] ()
N N - ~ ~
9B; 0B; 0B; 9B
//(rk+ 1+§> (a—g%) + (3_7;077)] d&dn

(2.34)

Q

+r

where £k =1,2,...,9.
Consider the value of / rb(l—2) %Bidrdz by-using chain rule and Jacobian
%

transform, we obtain

/rb (I'= z)%ﬁidrdz

Q
171
B OB: dcr OB\ (R’
_//rb(l—z _(85]82+ 87582)]6 <§) d&dn,

-1 -1

:/l/lrb(l—z) _(%—%(O)Jr%—% (%))] Bi (g)zdfdn,

-1 -1

//rb (1-2) (—) aﬁj@dﬁdn,

-1 -1

11 .
(bh) d9B; 5
=5 r(l—z) 5= B;d&dn,
2 [[ on




19

thus,

/rb (1 — z)%ﬁidrdz
Q
1

<bh)/l/<r’“+ 1+5)) ( _Zk——(1+77)> %%ﬁjdéd

-1 -1

(2.35)
where k = 1,2, ....9. Therefore,

_ /TVﬁj - VpBidrdz + /rb (1—2) %ﬁid'rdz
1 1 L \ X A
/i 083,04 5; 0B;
_// (rH?(H@) (0_5 a£> | (0_7; anﬂ o
(bh) // (T’“ Tp +5)> ( K il (1 + )) %—ijﬂ}dfdn (2.36)

where £k =1,2,...,9.
95,08 0B; 05, .
<8§ 6§>+<677 n dédn in

ot
Consider the value of // (rk + g (1+ 5))
oy {4

(&,7n) coordinate, for the corresponding Linear rectangular elements on [—1, 1] x

~Ji 2 ) A A
Nati h ap; 9B dB; 0p;

[—1, 1], the approximation <7"k +-(1+ 5)) [(—]—> + (—J—>] d&dn
_/1_/1 2 o0& 0€ an On

can be divided into nine cases which in following table.




The values of // (rk + g (1+ f))
Q

08, 08:\ , (98; 95
o0& 0¢ on On

)] dédn in coordinate (£, 7)

955,08,

h 9B;/0; . . :
Elements Cases The values of//(rk—i—Z(l—i—f)) <3§— 0§> + (aﬁ aﬂ)J dédn in coordinate (&,7) Solutions
T 1
ON3 ON3 8N3 dN3 ONy ONoy  ONo ON,
(1 déd
aln]| - | S (eraar0) (5%t w0 e (7 i e £ (80-+ 160k + 8h)
S15
11
0 | Q, +// . + (146 ON4ONy 8N46N4 b 0Ny 6N1+8N1 0Ny ded
H o€ o Iy oy 9570 T an an !
S1-1
T 1
! . 8N4 (‘9N3 6N4 8N3 6N1 8N2 8N1 (’)Nz 1
o | P //<’“+ 1“)[(6& 36 oy 5?7) <3§ TRY.” anﬂdgd” o POk
S1-1
T 1
! . aNg 8N4 (9N3 8N4 8N2 8N1 ('9N2 aNl 71
ap | =it | [ sa | GETee ) e a0 )| g GO+
Z151
T 1
dN3-ONs 6N38N2
. déd
s HHe )| w e sy 0w 2041
a t 6
. ON4ONy 5‘N48N1
3ol )
o0& 0 an 0
A € 9c"an on
T 1
AN ON3 6N28N3
d&d
= i=j-M //(r;ﬁ— >[< o0& 9¢ 877 37})} &n —1(10+20k+h)
a o 6
. ON1 ONy 8N1 0Ny
: +//(7’k+1+ 1+§) K )]dfdn
o0& 0 on 0
o € 5 n on

0¢



The values of // (rk + g (1+ f))

(%_Bg%ﬁg) " <%_€7J?§72>] d¢dn in coordinate (§,7)

Q
h 053; 08, d5; s :
Elements Cases The values of// <rk + 2(1—}—5)) {(6% 865> <8ﬁnj 8€]>| dédn in coordinate (&, n) Solutions
Q
T 1
j h ONzONy -~ QN4 ON- 1
5 i = +M41 //(m+2(1+§)> (6; 8; H\ 2) dédn — (20k+ 1)
i 11 d
‘ 1
i
=M1 . . h ON5 ON. ON5 ON. 1
a i =j-M1 //(rk+2(l+£)> (a; 6; 6772 4) dédn g (2054 1)
i 14
. 11
; = 4N [ [ (¥ekae) (ag e 68]V33N1) acy Lok m)
JHM-1 —1 =1 u
|
| 1 1
L u i I /(7 ON; ON3 8N1 ON3 1
j Z1 5

where £k =1,2,...,9.

1¢
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Then, from the values of

h 96, Op; 96, Op;
//(m+§(1+§)> (8_§8§>+<a_nan>]d5dn
Q

in coordinate (£,n) can be written in the form of matrix as follows

A4, O 0O 0O O O OO 0O O 0 O 0O 0O 0 0 © uby
AQ A3 S1 A4 59 0 0 0 0 0 0 0 0 0 0 0 0 Ui
o o ¢ o0 O O o o o0-0 0 0 O 0 o0 o0 o uba
A5 A4 S1 Ag S1 A4 S92 0 0 0 0 0 0 0 0 0 0 U
o o o0 o0 ¢ 0,0 O O-~0.0 0O0~0 O O 0 O ubs
0 0 S3 A4 S1 A3 S1 A4 S92 0 0 0 0 0 0 0 0 us
o o0 o0 o o 0 't/ /0 -0 060-~0 0 0 0 0 0 O uby
0 0 0 0 S3 A4 S1 A3 S1 A4 S92 0 0 0 0 0 0 Uy
-0 0o o o0 0,00 O~ 0O0-0 0 0 _.0-0 0 0 ubs
0 0 0 0 0 0 S3 A4 S1 A3 S1 A4 S92 0 0 0 0 us
o o0 o0 o o 0~-0 0-0-0~"¢t 0O—-0_0-0 0 O ubg
0 0 0 0 0 0 0 0 S3 A4 S1 A3 S1 A4 S92 0 0 Ue
o o o0 o o0 0-0-0.0-0 OO0 ¢t O O 0 O uby
0 0 0 0 0 0] 0 0 0 0 S3 A4 S1 A3 S1 A4 A6 uy
o o0 o0 o o6 06,.0_.06-0 0, 0-0-0-~0 ¢t 0 O ubg
0 0 0 0000 00" 0-0"/0 0 s3/A4 s1 Az As ug
L 0 0 0 000000 0 -0-0.00"0 0 A | [ub]
or
At=10
where )
A0.-0 0 000 0 0 000 00 0 0 O
Ay Ay 81 Ag4-8$.0 0 0 0O O0O~-0-0 00 0O 0O O
o o ¢« o0 0.0 0 0 0-0~0.0-0 0 O O O
A5 A4 S1 Ag S1 A4 S9 0 0 0 0 0 0 0 0 0 0
o o0 o o ¢t 6.0 0 00 0 0 0 0 0 0 O
0 0 S3 A4 S1 A3 S1 A4 S92 0 0 0 0 0 0 0 0
o o0 o o o0 o ¢ o0 o o0 o 0o o0 0o 0 0 0
0 0 0 0 S3 A4 S1 A3 S1 A4 S9 0 0 0 0 0 0
A=—l 0 0 0 0 0 0 0 0 ¢t 0 0 0 0O 0 0 0 0
0 0 0 0 0 0 S3 A4 S1 Ag S1 A4 S9 0 0 0 0
o 0 0o o o0 o o o o o0 ¢ 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 s3 Ay s7 As s; Ay s 0 0
o o o0 o0 o o o o0 o o o o0 ¢ 0 0 0 O
0 0 0 0 0 0 0 0 0 0 S3 A4 S1 A3 S1 A4 A6
o o0 o o o0 o o o o o0 o o0 o0 o ¢ 0 0
0o 0 0 0 0 0 0 0 0 0 0 0 s3 Ay s1 As As
0 0 0 0 000 0 0 0 0 O0 0 0 0 0 A]




UE:[ub1ulub2u2ub3u3ub4u4ub5u5ub6u6ub7u7ub8ugubd7’and 0 = [0]; 190 such that

uby = Uy Wy Uy Wy U5 W6 Wy WUy W Wy ‘1’11]T7 .
ubg = [Woo Wo1 Voo Wog Woy Vo5 Wog Wor Wos Wog Wigo|

tp = [Yiop+2 Viop+s Yiop+a Yiop+s Yiop+e Yiop+7 Yiop+s Yioptol

qu: [\Ijloq\Ijloerl]T ’ for allp:172a"'787 q:2737"'787

0 (20(1)+h)
0 g X
_ 0 0 _
S1= —% Sg = ——=
6 2 2 ’ 6
0 0
(20(9)+h) 0
10000000000
01000000000
00100000000
00010000000
00001000000 1 0
Ay = 100000100000 | ,t= ,
00000010000 01
00000001000
00000000100
00000000010
00000000001
(20(1)+h) (10+20(1)+h)  (20(2)+h)
0 (20(2)+h)  (10+20(2)+h)
0 0 20(3)+
h
A ___1 0 0 0
2= 6 0 0 0
0 0 0
0 0 0
0 0 0

—~
[~
o

—~

Loocococooo
cococoocooo

F
=

0
(20(3)+)
(10420(3)+h)
(20(4)+h)

0

0
0
0

1
yS83 = — %
A7
0
0
(20(4)-+h)
(10420(4)+h)
(20(5)+h)
0
0
0

T
)

—~
N
o

~
=

N

+
>

Nadd

(] llele] o)
(elolelelole)e]

0
0
0
(20(5)+h)
(10420(5)+h)
(20(6)+h)
0
0

o o o

0
(20(6)+h)
(104-20(6)+)
(20(7)+h)
0

[} el en i en}

0
(20(7)+h)
(10+20(7)+h)
(20(8)+h)

(20(
(10+2

o
=

[l el NoNeNol

0

0

0

0

0

0
+h) 0
8)+h) (20(9)+h)

(20(1)+h)
0

0
0
0
0
0
0

€¢



—(80+160(1)+8h)  (20(2)+h) 0 0 0 0 0 0
(20(2)+h)  —(80+160(2)+8h)  (20(3)+h) 0 0 0 0 0
0 (20(3)+h)  —(80-+160(3)+8h)  (20(4)+h) 0 0 0 0
0 0 (20(4)+h)  —(80-+160(4)+8h)  (20(5)+h) 0 0 0
0 0 0 (20(5)+h)  —(80+160(5)+8h)  (20(6)+h) 0 0
0 0 0 0 (20(6)+h)  —(S0-+160(6)+8h)  (20(7)+h) 0
0 0 0 0 0 (20(7)+h)  —(80+160(7)+8h)  (20(8)+h)
0 0 0 0 0 0 (20(8)+h)  —(80-+160(8)+8h)
(104+20(1)+h)  (20(2)+h) 0 0 0 0 0 0
(20(2)+h)  (104+20(2)+h)  (20(3)+h) 0 0 0 0 0
0 (20(3)+h)  (104+20(3)+h)  (20(4)+h) 0 0 0 0
0 0 (20(4)+h)  (10+20(4)+h)  (20(5)+h) 0 0 0
0 0 0 (20(5)+h) | (10+20(5)+h)  (20(6)+h) 0 0 ’
0 0 0 0 (20(6)+h).  (10+20(6)+h)  (20(7)+h) 0
0 0 0 0 0 (20(7)+h) (10420(7)+h)/ (20(8)+h)
0 0 0 0 0 0 (20(8)4+h)~ (10+20(8)+h)
0000000000 (20(1)+h) 010000000000
0000000000 0 1 00000000000
0000000000 0 Ap = = 0O TN LRLO R
0000000000 0 ) 436 6 8\ W YA n
900000000 0 0 0000000000
0000000000 0 (20(9)4h) 0°0.0.0 0.0 0 0 0.0

4
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Since we know the value of the potential at the boundary Wy, Wy, W3, ... Uiy, Wy,
\1191, ‘1’92, ey \11100 and \Iflgq, \111011—1—1 for all q = 2, 3, ce ,8 the System can be writ-
ten as

[ A3 A4 0 0 0 0 0 0 (75} aq
A4 A3 A4 0 0 0 0 0 U9 as
0 A4 Ag A4 0 0 0 0 us as
0 0 A4 A3 A4 0 0 0 Ug | |4
10 0 0 Ay A3 A 0 0O us| — |as
0 0 0 0 A4 A3 A4 0 Ug Qg
0 0 0 0 0 A4 A3 A4 Uy ay
| 0 0 0 0 0 0 A4 A3 i _Ug_ _ag_
or
AU =P
where_ -
As A, 0 0 =0 0 0 O
Ay A3 Ay O 00 00
0 Ay A3 Ay 0 00 0 0
A0 0 A A AL 00 l0
10 0 0 AyA3 A 00
0 0,0 VA A3 As O
0
0

0
0 O PO\,
0 [0/ 000 “Ag A; |

T
and U = u, = [‘I’lop+2 U3 0p3 V054 V10p45 Trops6 Vioptr Yiop48 Yiopto]

P=lay,...,a ] forallp=1,2,...,8
and (20(1)=-h)(0:0055)+(10420(1)-+h)(0.0037)+(20(2)+h)(0:0027) 4(20(1)+k)(0.0049)+(20(1)+h) (0.0043)
(20(2)+h)(0.0037)+(10+20(2)+h) (0.0027)+(20(3)+h)(0.0021)
(20(3)+1)(0.0027)+(10+20(3)+h)(0.0021)+(20(4)+h)(0.0017)
_ 1 (20(4)~+h)(0.0021)+(104-20(4)+h) (0.0017)4(20(5)+h)(0.0014)
ay = _6 (20(5)+h)(0.0017)+(10420(5)+h)(0:0014)+(20(6)+h)(0.0011)
(20(6)+h)(0:0014)+(10420(6)+h) (0.0011)+(20(7)+h)(0.0009)
(20(7)+k)(0.0011)+(10+20(7)~+h)(0.0009)+(20(8)-+h)(0.0008)
(20(8)+h)(0.0009)+(10+20(8)+h)(0.0008)+(20(9)+h)(0.0007)+(20(9)+h)(0.00062)+(20(9)+h) (0.00054)
(20(1)+h)(0.0049)+(20(1)+h)(0.0043)+(20(1)+h)(0.0037)
1
a9 = ——

D
i =l=l=l= )

(20(9)+h) (0.00062)+(20(9)+k) (0.00054)+(20(9)+h) (0.00047)
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1)-+h)(0.0043)+(20(1)+h)(0.0037)+(20(1)+h)(0.0031)
0
as = 8 )
0
(20(9)+h)(0.00054)+(20(9)+k) (0.00047)+(20(9)+k) (0.00039)
)(0.0037)+(20(1)+h)(0.0031)+(20(1)+1)(0.0024)
0
a4 = 8 )
0
(20(9)+h)(0.00047)+(20(9)+k) (0.00039) 4 (20(9)-+k) (0.00031)
M (20(1)+h)(0.0031)+(20(1)+h)(0.0024)+(20(1)+4-1)(0.00018) ]
0
1 0
as = —— f
5 6 8 )
0
| (20(9)+h)(0.00039)4 (20(9)+h) (0:00031)+(20(9)+1)(0.00023) |
T (20(1)+h)(0.0024)4 (20(1)+h)(0.0018)-+(20(1)+h) (0.0012) ]
0
1 0
ag = —— 9
6 6 8 )
| (20(9)+h)(0.00031)+(20(9)+h[))(0.00023)+(20(9)—|—h)(0.00016) |
(20(1)-+h)(0.0018)4(20(1)+k)(0.0012) 4 (20(1)+k)(0.0006)
0
1 0
ar = —= 3
7 6 8 y
(20(9)+h)(0.00023)+(20(9)+h())(0.00016)+(20(9)+h)(0.00008)
(20(1)+h)(0:0012)+(20(1)-+k)(0.0006)
0
1 0
ag = —— 4
8 6 8
(20(9)+h)(0.00016)—?—(20(9)+h)(0.00008)

Next we consider the value of

(l%h) // (Tk + g (1+ f)) (l — 2k — g (1+ 77)) %—%Bjdfdn

in coordinates (£,7) as in the following tables



1 1

The values of (%) // (rk + g (1+ 5)) (l — 2, — g (1+ )) 86] ZZL 3.d€dn in coordinate (€,7)

-1 -1

1 1 %
Elements Cases The values of (%) / / (rk +-01+¢ ) ( — 2k — g @ +17)> %—Bﬁjﬁ}dﬁdn in coordinate (&,7) Solutions
Pl . ON: h ON:
(1 Nkt § (L T '/ 46) 23N } déd
Q | Q - /1/1(7~k+ +§)K )) o 2+< 2kt 1 2( +77)> o 3 £dn —%(30+h)(10+20k+h)
11
Q) Q, +//(7”k+1+ 1+6)K —Zk—* 1+77))%N1+(l—zk+1—g(1+77)>%Nzx}dﬁdﬂ
“1 0
: P 0 h ON. bh
Ta o | 1=]+1 // (Tk-i- 1+§> [( )) 71N2+(l—zk+1—*(1+77)) 74]\73} dédn —g (304 h) (20k + h)
2 R a 2 877 72
: o ON: h ON: bh
== N i=j-1 /1/1 (rk + = (146 ) [( 77)) a—nle + (l =@ 5 (1+n)) 87773]\/4] dédn — 5 (30+ 1) (20k + h)
- Pl h ON. ONy bh
|, i=j+M //(l,zk,,(lﬂi)) {<r,€+7(1+5)>—3N2+(rk+1+—(1+5)) }dgdn — 22 (h — 31+ 30m — 30) (10 + 20k + h)
(= j+1 15 2 2 18
i Pl h AN bh
ola i=j-M //(zfzkfi(un)) [(rk+f(1+£)>—2N3+(rk+1+7(1+§)) }dgdn 12 (20— 31+ 30m — 30) (10 + 20k + b)
f 14

LC



1 1

The values of (%) // (rk + g (1+ 5)) (l — 2z — g (1+ 77)) %—%Bjdﬁdn in coordinate (&, 7)

-1 -1

T 1 -
bh h 9B, -
Elements Cases The values of (;) / / (rk + 5 1+ E)) (l — 2k + g I+ 17)) %Bjdﬁdn in coordinate (£,7)
n
21

Solutions

e+ o (1 +£)) (l 1h>ta +n)) B N, acn
2 an

; 1 1
7 i=j+M+1 //
1-1

ey S

bh
— 5 (h =3+ 30m — 30) (20k + h)

(Tk + g 1+ 6)) (l -2k — g 1+ n)) %Mdidn

i=j—M-1 L1
a i=j-M-1 / /
1-1

bh
= (21 = 31+ 30m — 30) (20K + 1)

j -1 —
i L1 h h ON: bh
a i = +M-1 //(rk+§(1+£)> (l—zk—§(1+77)) SN ded — 22 (h = 31+ 30m — 30) (20k + )
1:J+b‘(1—1 —-1-1 /
:J'M‘” .. T h h AN, bh
a i =i -M+1 // <rk+5(1+g)) (lfzk7§(1+17)> o Nadeil 22 (2h = 31+ 30m — 30) (20k + )
] S

where k =1,2,...,9and m=1,2,...,9.

8¢



The value of

(M)//(m+ 1+®)(—%——Uﬁnoa@@%W

are obtained in the form of matrix as follows

[ Bl 02 0 0 0 0 0 0 Uy C1
D2 Bl Cg 0 0 0 0 0 U2 Co
0 D3 Bl C4 0 0 0 0 Uus C3
0 0 D4 B1 05 0 0 0 Ug | Cy
0 0 0 Ds B Cs 0 0 us| s
0 0 0 0 D6 Bl 07 0 Ug Cg
0 0 0 0 0 D7 Bl Cg Uz Cr
| 0 0 0 0 0 0 Dg Bl ] _Ug_ _Cg_
or
BU=Q
where
[ B, C, 0 0 00 0 "0 0 ]
D, B, C3 0 0 000
0 D3 BiQ&G—=1_ARK0 ~6
g_| 0 0 DBrCs 000
0 0 0 D5/ By€Cs 0/ 0
0 0 00 -Dg Byr-Cr 0
0 0.0 0.0~ D; B;~Cs
. 0 0 0. 0 0 0 "Dg By
and U = u, = [‘I’lop+2 Wiopta W10p+a Waoprs Viopre Yaoprr Viopss Viopto
Q=la,...,c ] for allp =1,2,...,8 and
[ 4b, f» O 0 0 0 0 0
fo 4y f3 O 0O O 0O O
0 f3 4bs f, 0O 0 0 O
g bh| 0 0 fi dby fs 0O 0 0
! 721 0 0 0 fs 4bs fo 0 0
0 0 0 0 fs 4bg f- O
0 0 0 0 0 fr 4b; fs
0 0 0 0 0 0 fs 4bs |
where b, = (30 + h)(10 + 20(k) + h),
fr =30+ h)(20(k) + h) for all k =1,2,...,8,

]T

Y



[ 4bg,l fg,2
fg,2 4bg,2
0 fg,3
bh 0 0
720 0 0
0 0
0 0
0 0

0

fg,3
4b, 3
fg,4

0

0

0

0

0
0

fg,4
4bg 4

fg,5
0
0
0

0
0
0

fg,5
4b, 5

fg,6
0
0

o O O

0
fg,G
4bg 6

fg,?
0

o O OO

0

fg77
4b, 7

fg,8

S OO OO

0
fg,8

4byg |

where b, = (2h — 3L + 30(g) — 30)(10 + 20(k) + h),

for = (2h — 3L +30(g) — 30)(20(k) + h) for all k = 1,2,...,8, g =
[(4E,, F,, 0 /0. 0 0 0
Foo 14E,0 Fuq 10N 0.0 0 0
0 Fg’g 46973 Fg’4 0 0 0
b | 0 [0/ F,4 4E;i FEys 00
ToT2| 0 0[N0 —Fpar AE): \Fyg 0
0O LM NI X0/ L7, AREL S B, -
M N =W S BPE,,
&/ @ o4/ IRY N Fis

where E,;, = (h — 3L + 30(g) —30)(10(+ 20(k) + ),

F, = (h—3L+30(g) —30)(20(k) +h) for all k =1,2,...

and g =1,2,3,...,8.

bh
Cyp = ——

72

[ F51(0.0049) + f1(0.0043)=51(0:0037) ]
0
0
0
O )
0
0
00054) — f3,9(0.00047)

| F,9(0.00062) + fo(0.

79’

F15(0.0037) + E412(0:0027) + F} 5(0.0021)
Fi3(0:0027) + E15(0.0021) 4 F,.4(0.0017)
F14(0.0021) B4 (0:0017) +4 Fy5(0.0014)
Fi5(0.0017) + E; 5(0.0014) + F} 6(0.0011)
F15(0.0014) 4 E; 6(0.0011) 47 7(0.0009)

( ) ( ( )
( ) (

)
F.7(0.0011) 4 By 7(0.0009) +F, 5(0.0008
)

2,3,...

S OO OO

0
F,

9,8

4E,5 |

30

[ F11(0-0055) 4+ £11(0.0037) + Fr2(0.0027) + £1(0.0049) — f1(0.0043) |

| F 5(0.0009) % By 5(0.0008) + F1 6(0.0007) + fo(0.00062) — f26(0.00054) |




bh
72

__bh
“= "7

bh
Ce — ——=

72

[ F51(0.0043) + £1(0.0037) — £1,(0.0031) ]
0

o O O O O

| F3.9(0.00054) + fo(0.

o

0047) — f4,9(0.00039) |

[ Fy.1(0.0037) + £1(0.0031) = f5.1(0.0024) ]
0

o O OO O

=}

| Fy0(0.00047) + fo(0.00039) — f54(0.00031)]

[ F51(0.0031) + f1(0:0024)— f51(0.0018)_]
0

oo O O O

| F5.9(0.00039) -+ fo(0.

)

0031) ~ f6,9(0.00023)

[ F5.1(0.0024) 4+ f1(0:0018) — f7.1(0:0012)
0

o O O OO

| F59(0.00031) + fo(0.

o

0023) — f76(0.00016)

31



32

[ F;1(0.0018) + £,(0.0012) — f5.1(0.0006) ]
0
0
bh 0
Cr _i 0 ’
0
0
| F4(0.00023) 4 f5(0.00016) — f5.4(0.00008) |
[ F51(0.0012) 4 f1(0.0006) ]
0
0
__bh 0
T 0
0
0
_F8,9(0.00016) 4 f9(0.00008)_

Therefore, equation (2.36) can be written in the form of matrix as follows

Uy a1 — €1
Uz a2 — C2
Uus a3 —C3
Uy Qg 7/Cq
(—A+ B) LS
Us a5 = Cs
Ue g — Cp
U7 a7 —=C7
Ug ag = Cg
or

(74 4B)ap = (a¢)

where u, = [\1’10%;+2 Wi0p13 Uiopa Wiopes Yroprs Pioprr Yioprs Yioprol s
P = [al,...,ag] s
Q= [cl,...,CS]T forallp=1,2,...,8.

2.3.2 Numerical Experiments

Numerical result of potential at various positions of the earth’s struc-
: . : o —b(z=D)?
ture with one layer having exponentially conductivity o(z) = ope™ 2 from

equation (2.20) are obtained by using the finite element method. We use the
potential at the ground surface together with linear approximation to find the
value of the scalar potential in the domain . There are a source providing a
DC voltage and a receiver on the ground surface which picks up the signal from
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r = 10m to r = 100m. We discretize the depth into 9 subintervals equally of
the size h = 10m, i.e. we consider z = 0,10,20,...,90m. We use constant
b = 0.0001,0.0005,0.001,0.005m~2 and [ = 0,5, 10,30,50m. The suitable range
for b in our program is 0 < b < 0.0lm~2. The numerical solution of the potential
at each node is calculated by using Maple program version 14 which is used in

laboratory of the Department of Mathematics, Faculty of Science, Silpakorn Uni-
versity.

Figures 2.4, 2.5 and 2.6 show the graphs of the relationship between the
values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m~2 where /.= Om.

k|
=10 b=0.0001,=0 =10 b=0.0005%,1=0

Potential
FPotential

3.5
100 100 =0 100 100 =0
z r z r - 13
-3
x 10 b=0.001,1=0 25

3
x 10 b=0.0035,1=0

FPoten tial
Potential

100 100

Figure 2.4: The graph of potential when 10 < < 100m and 0 < z < 90m
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Figure 2.5:

0,10,20, . ..,90m

Foten tial

Foten tial

b=0.0005,1=0
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z=20
z=30
z2=4l
z="50
z=E0
z=70
2=10
z=40

50

100

The graph -of potential ‘against r when  z is fixed, i.e.

z =
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win? b=0.0001, =0 win? b=0.0005, =0
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Figure 2.6: The graph ef potential against z when r is fixed, ie. r
10,20, ...,100m

Figure 2.4 represents the scalar potential as 7 and zvary. It shows the
behavior of the value of scalar potential while-the value of b is adjusted but the
value of [ is fixed (['= Om). For the small values of b, all'of the potential surfaces
are in the same exponential pattern except the case when'd =0.005m =2, some of
the value of potential surfaces becomes negative. In-each graph, the potential is
at its highest when.r = 10m; z = Om which is.the closet location on the ground
surface to the probe. It then decreases exponentially as shown in Figure 2.4.
Figure 2.5 represent the scalar-potential against-electrodes spacing. It shows ten
curves of scalar potential while the value of b and z are adjusted but [ is fixed.
All of our curves give very large response in the scalar potential when z is at the
smallest. The value of potential decrease exponentially as r increases and it is a
straight line where z = 90m (the bottom edge of the domain). It starts decreasing
rapidly at the small values of r and then decreases slowly at the large value of
r. Figure 2.6 shows the value of scalar potential against depth (z). The curves
when r = 10, 100m (at the boundary) decrease linearly as z increases and they
decrease exponentially for the cases when r = 20, 30, ...,90m. For b = 0.005m~2,
the curves have a different behavior from the other values of b. We can see that
some of curves intersect and some of the values of scalar potential are less than
Zero.
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Figures 2.7, 2.8 and 2.9 show the graphs of the relationship between the

values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005m~2 where [ = 5m.

-3 -
=10 b=0.0001,1=5 =10 b=0.0005,1=5

Foten tial
FPoten tial
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Figure 2.7: The graph of potential when 10 < r < 100m and 0 < z < 90m.
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Figure 2.8:

0,10, 20,...,90m.

Foten tial

FPoten tial

2107 b=0.0005, =5

0 50 100
r

w107 b=0.005, =5

0 50 100

37

z=30
z=40
2=150
z=El
z=T0
z=4l
z=140

The graph -of ‘potential ‘against r when  z is fixed, ie. =z
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win? b=0.0001,1=5 win? b=0.0005,1=5
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Figure 2.9: The graph ef potential against z when r is fixed, ie. r
10,20, ...,100m,

In this case, the graphs show the behavior of the scalar potential while
the value of Iis fixed at bm but the value of b-is adjusted. Curves of the scalar
potential have similar response to the previous case when [.= O0m but the values
of the scalar potential when/ = 5m are greater than as [-= Om.
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Figures 2.10, 2.11 and 2.12 show the graphs of the relationship between
the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m~2 where [ = 10m.
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Figure 2.10: The graph of potential when 10.< ». < 100m and 0 < z < 90m.
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Figure 2.11: The graph of potential
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Figure 2.:10 through 2.12 represent the behavior of the scalar potential
while the valueof [ is fixed-at 10m but the value of b is adjusted. The behavior of
all values of the scalar potential are similar when [ is fixed at'Om and 5m and the
values of the scalar potential are greater than as [ = Om and{ = bm.
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Figures 2.13, 2.14 and 2.15 show the graphs of the relationship between
the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m~2 where [ = 30m.
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Figure 2.13: The graph of potential when 10.< ». < 100m and 0 < z < 90m.
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Figure 2.13 through Figure 2.15 show the behavior of the value of scalar
potential whilethe value of Lis fixed at 30m but thevalue of 4 is adjusted. For
the small value of b, all of ourcurves are of the same pattern. In Figure 2.14, the
value of potential decreases exponentially as r increase and-it is a straight line
when z = 90m. In'Figure 2:15, our curves decrease-linearly where r = 10m and
r = 100m as z increases while the value of scalar potential of other r decreases
exponentially as z increases. /Note that in Figure 2.15,for b = 0.005m™2, we
see that the value of the scalar-potential decreases rapidly when the value of z is
greater than [, (z > 30m).
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Figures 2.16, 2.17 and 2.18 show the graphs of the relationship between

the values of potential and the distance between two probes at various depths as
b = 0.0001, 0.0005, 0.001, 0.005 m~2 where [ = 50m.
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Figure 2.16: The graph of potential when 10.< ». < 100m and 0 < z < 90m.
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Figure 2.18: The graph-of potential against z when r “is fixed, ie. r =
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In the last.case, all. the graphs-show the behavior of the scalar potential
while the valueof [ is fixed-at 50m, but the value of b is adjusted. For the small
values of b, the curves are of similar pattern asin the previous case when [ = 30m.
However, the values.of the scalar potential inthis case are greater than that when
[ = 30m. The values of the scalar potential decreases rapidly when the value of z
is greater than [, (2> 50m).

2.4 Conclusions and Discussion

The value of scalar potential decreases exponentially to zero as the depth
of ground increases whereas it decreases exponentially to zero as the electrode
spacing on the ground surface increases. For [ = 0,5,10m, the value of scalar
potential decreases when b increases whereas for [ = 30, 50m meters, it increases
when b increases.

When z is fixed, the value of scalar potential decreases exponentially as
r increases and it starts to decrease rapidly at the early of r and then decreases
slowly at the lately of r.

When r is fixed, the value of scalar potential decreases linearly on the
boundary and decreases exponentially for the case when 10 < r < 100m (not
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drop down slowly when depth is small and they

The curves
apidly when the value of z is greater than [.

at the boundary).

decrease r




Chapter 3

Inversion of Direct Current for a
Conductive Host with a Bulge
Overburden

3.1 Introduction

The direct current-resistivity method is' introduced to investigate the
ground structure for geo-informatic data through peint electrodes. The proce-
dure is to measure potentials at-other electrodes in the wicinity of the current
flow. Because the current is measured; it is possible to'determine an apparent
resistivity of the subsurface [36}. The mathematical models for the preparation
of curves for the normalized apparent resistivity response from the earth’s surface
layer are considered. The earth structure usually can-be denoted by horizontally
stratified earth. [5], where each layer having homogeneous and isetropic electrical
properties. In this chapter; two layered earth model is considered. <The conduc-
tivity of overburden is denoeted by ggper (2)= ooePEDY2 < 2 < d) where b
and [ are positive cconstants.and is used to locate-the peak of the bulge, d is
the thickness of overburden and oy is-a-pesitive constant. This'bulge conductivity
profile could be used to-inform the subsurface that rich with water table according
to the canal, pond and river nearby [29]. The conduetivity of host medium, z > d,
is denoted by a constant and is given by op.s(2) = 0¢. The curves of normalized
apparent resistivity against electrode spacing can be used to predict the depth of
the underground water that could damage to the foundation of old building.

3.2 Formulation of the Problem

We now consider an essentially Direct Current sounding method. We may
represent the electric field as the gradient of a scalar potential [7] as

E = -V, (3.1)

where F is the vector electric field, V is the vector gradient operator, and 1 is the
scalar potential.

49
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The divergence of the current density is zero, and we can express this in
terms of the electric field, using Ohm’s law, J = o £. Thus, the governing equation
can be denoted by

V-J=0,
V.-oVy =0, (3.2)

where J is the current density in Ampere per square meters (A/m?), o is the elec-
trical conductivity of the medium in Siemens per meter (S/m) which is assumed
to be a function of z only. Using vector calculus, the left hand side of equation
(3.2) can be rewritten as

8 - ((¥). /ot 0 500 - 0 -
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this yields
oV -V + (V) - (Vo) =0. (3.3)

For simply, since we denote o as a function of z only, thus, the above equation
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becomes
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thus, we obtain

0 0o
2 —_—
OV SR 5 0. (3.4)

In cylindrical coordinate system (p, ¢, z), the probe is used and located on
the ground surface. Thepotential around-the probe is symmetry and independent
of ¢. Thus, we can rewrite the equation (3.4) as

Po\GE bt (T o5
a_,02+,08/) R, 922 +;$£—0. (3.5)

We shall use the Hankel transforms [2] defined by

F 02— ot g 0m) ao (3.6)
0

and the inverse Hankel transforms of f (A, z) which is defined as

/f (A, 2) Jo (Ap) dA, (3.7)
0

where Jj is the Bessel function of the first kind of order zero and A is the Hankel
variable. Taking the transformation on both sides of equation (3.5), we obtain

T 1oy 0% 10%do T
/Ap(a—p2+;a—p+w+aa 0 >Jo()\,0)d = [ 20 % O dp.

0
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Integrating by parts-on the first and second terms of the above equation yields
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Integrating by parts again on the third and fourth terms of the above equation,
we obtain

[\ 0 o
//\Pﬁjo (Ap) dp +_8_ )\Pa—Jo (Ap) dp

0 0
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Since Jy is the solution of Bessel’s differential equation, we now have
2 qn A ! 2
A Jy (Ap) + ;Jo (Ap) = =A"Jo (Ap).

This yields

[e'e] a2¢ aw 4 [e%e]
Az Jo (Ap) dp 4, 8 Ap 5,20 Ap)dp TN | Ao (Ap) dp = 0.
0 0 0

Hence, the Hankel transform of equation (3:5) results-in

D?f 1000f

L \NA R L OKE O. 3.8

022 \ o0z 9% / (3:8)
Therefore, the electric potential in-each layer can be obtained by taking the inverse
Hankel transform to the solution of equation (3.8), which satisfies the boundary

conditions.

3.3 Apparent Resistivity of Two-Layered Earth

We now consider the two-layered earth model denoted by overburden and
host medium.. For the first layer, the conductivity of everburden‘is denoted by
Oover (2) = 006*6(2*1)2/ 2"and for-the host medium; the conductivity is defined by
Ohost(2) = 0o where oy, | and b are positive constants.

1 2 3 4 X
[ ® ® .
A— a —pé— a —f— a — /
I |
d —b(z-017 z
T o-ovsr = aﬂe :
o-ho.sr = O-D

Figure 3.1: Configuration of electrode array over an overburden of thickness d
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As shown in Figure 3.1, the electrodes 1 and 4 are used for direct current
injection of Wenner array configuration while the electrodes 2 and 3 are used for
potential measurement. a is the electrode spacing. We have to determine the
potential functions in the overburden (f = f;, 0 < z < d) and in the host medium
(f = fa, 2 > d). These can be found by substituting ooy, (2) = ooe 2~ D?/2
and op,5(2) = 0p into the equation (3.8), respectively. The power series method
[4, 17, 26] is used to solve the partial differential equation and obtain the potential
functions f; and f5, as

)\2 2 bl 2
f1:a0<1+ 22)—|—a1<z—72), 0<z<d, (3.9)
and
fo=ase™ )z > d, (3.10)

where ag, a; and az can be determined by using the boundary conditions at the
interfaces [7, 16, 31, 34]. The first boundary condition is denoted by the continuity
of normal current density at the ground surface

- 7§8¢1 . Ad(p)
ll_r{(l)( ape 82) Wt (3.11)

where [ is the current at-the probe on the ground surface, and §(p) is the Dirac

if
Delta function denoted by o(p) = - 1 07 0.
TINY 450

The second boundary condition is denoted by the continuity of normal current
density at z = d as

. b=l Oy N\ 4 s
e ("06 E) = (UOE) (3.12)

The third boundary‘condition is-the continuity-of potential across the interface
layer at z = d as
lim = lim . 3.13
Z=d= 1/)1 z—d+ ¢2 ( )

From the first boundary condition as equation (3.11), we obtain

. e [ 16
i% —oge ' / ao\’z +ay — alblz) Jo(Ap)dX p = 2755) (3.14)
0

)
Since /)\JO()\,O) A\ = %, then the equation (3.14) becomes
0
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From equations (3.7) and (3.15), we now have

I\

_uz-
2moge” 2

(3.16)

ay = —

Using the boundary condition in equations (3.12) and (3.13), we now have

N2
e (aoA’d + ay — arbld) = —Xage (3.17)

and N2d? bld?
e (1 T ) A (d_ T) = e (315

respectively. Simultaneous solution of the equations (3.17) and (3.18) yields,

ar (ze*“‘i” (bld — 1)~ 2\d + bl>\d2>
a0 = 2\ . (3.19)
Ny X2

Therefore, substituting equation (3:16) into equation (3.19);-we obtain

(3.20)

apg = —

jp) lze uek oola 1t 2/\d+bl>\d2]
: N2 A 2\2de"

_ b2
2moge

The surface potential is then

7 bd—1)%
I 2¢~_ = (1 = bld) 42\d — bI\d?
Y(p,0) = 5 /( ( ) 2 )Jo(/\p) d\. (3.21)
2moge 2 A N2 e~ "7 +12

3.4 Normalized Apparent-Resistivity

Although the knowledge of the potential function allows to compute the
apparent resistivity for‘any electrode configuration; we shall present here the ex-
pression for the Wenner array ‘configuration. The Wenner array formulation [7] is
denoted by

(VV)y = 2[¢(a) — ¢(2a)] (3.22)

where (VV),,, is the Wenner’s potential function and +(a) is the scalar potential
function. The apparent resistivity of Wenner, (pq)y, [7] can be computed from

2ma
o = () 71 (3.23)
Using equations (3.21), (3.22) and (3.23) we obtain
r (1 — bld) + 2)d — bIAG
) / ( ) il ) (Jo(Aa) — Jo(2Aa)) dA.
e 2 A2d? + 2\de” +2

(3.24)
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Equation (3.24) can be rewritten as the normalized apparent resistivity

oo b(d—1)2
o 2e7 " 2 1—bld 22d — bIMd?
(p_> _ 2@/ ( e ( ),,—(:—1)2 ) (Jo(Aa) — Jo(2Xa)) dX
PL/)w 4 N2d2 +2X\de™ 2 +2

(3.25)

where py = ——— is the resistivity at the ground surface.

ope” 2

3.5 Sounding Curves and Discussions
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Figure 3.2: The curve of normalized-apparent resistivity against electrode spacing,
d = 5m;b = 0.01 and 0.03m=? and-l = 1,2, 3,4 and 5m.
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Figure 3.3: The curve of normalized apparent resistivity against electrode spacing,
d = 10m; b = 0.003 and 0.005m~2 and [ = 2, 4,6, 8 and 10m.
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Figure 3.4: The curve of normalized apparent resistivity against electrode spacing,
d = 20m; b = 0.0005 and 0.001m~2 and =4, 8,12, 16 and 20m.
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Figure 3.5: The curve of normalized apparent, resistivity against electrode spacing,
d=5,10m;! = 1lm.and b =0.01, 0.02; ..., 0.05m 2.
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Figure 3.6: The curve of normalized apparent resistivity against electrode spacing,
b=0.01 and 0.03m %/ = 1m and d = 1,2, ..., 5m.

3.6 Inversion Process

Although, normalized apparent resistivity curve can be able to show a
good pattern of conductivity profile of the ground, but however, we need more
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accurate profile to explore the ground. Here, the inverse problem is introduced.

In our inverse model examples, we simulate array data of normalized appar-
ent resistivity from our forward model of practical interest. The model of ground
structures is used to investigate the conductivity profile. Chave’s algorithm is
used for numerically calculating the inverse Hankel transform of the normalized
apparent resistivity solutions [3]. The special function is computed by using the
Numerical Recipes source codes [33]. The electric current of 1 ampere is used in
our computations. The Newton-Raphson method in optimization is applied to
find a conductivity parameter of the ground.

3.6.1 Sample Tests

We firstly consider the normalized apparent resistivity data obtained from
the model of simple case. The simple model test is the heterogeneous conductive
half-space. The ground model has two layers. The overburden of the model has
an exponentially varying conduectivity denoted by ooser (2). = ooe P2 with
thickness d, whereas the host-has a constant conductivity denoted by oy,,s (2) = 09
with infinite depth. The values of the model parameters are given in Table 3.1.
The parameter [ is a vertical location of the peak of the bulge for the model
structure, which assumed to be sample test. This implies that the example model
has only one unknown parameter, namely, b.  The-iterative procedure using the
Newton-Raphson method{33] is-applied to estimate the model parameter b of
conductivity variation. -We start-the iterative process to find the value of the
conductivity parameter with an initial guess b= 0m~2. The optimal result is close
to the true value .with misfit less than 107'2A - m~! after-using 3 iterations (see
Table 3.2).

Table 3.1:*Model parameters used in our sample tests:

Parameter
d/(m) T (m) b (m7?)
10 5 0.005

Table 3.2: Successive iterations for finding a conductivity parameter of the model
in our sample tests.

[teration Parameter b (m™?) Misfit (A-m™1)
0 0.000000000000000 21.997686366243370
1 4.846954974921935 x 1073 1.922332776364707 x 102
2 4.999853700934837 x 103 1.752381931447662 x1078
3 4.999999999866227 x 1073 1.106987846894784 x 10713
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3.6.2 Simulated Real Data

We now consider the real data of normalized apparent resistivity obtained
from the simulation model. The normalized apparent resistivity are generated by
the forward problems of the model in our sample test. Random error up to 3%
is superimposed on the normalized apparent resistivity to simulate the set of real
data. The iterative procedures using the Newton-Raphson is applied to estimate
the model parameter of conductivity variation for our model.

Corrvergence of inversion of the test model
25 T T T T T

Wit (i)

1
] (IR 1 1.5 2 25 3
Mutnber of [teration

Figure 3.7: Curve of misfit versus number of iterations for the model in our sample
test.

3.7 Discussions

In our calculation section, the equation (3.25)is used to compute the value
of normalized apparent resistivity against electrode spacing by using Chave’s al-
gorithm [3]. Fortran programming is introduced under PC computer, Intel(R)
Core(TM)2 Duo CPU P8600 @2.40GHz and 4GB of RAM. With the use of elec-
tric current 1 Ampere, g = 2 S/m, the results can be determined with the time
used less than a second. The results are plotted to show some significants advan-
tage in ground exploration.

The figures 3.2, 3.3, 3.4, 3.5 and 3.6 perform the normalized apparent resis-
tivity against electrode spacing. Each of those figures show 5 curves of normalized
apparent resistivity while the value of d,l and b are adjusted. The thickness of
overburden used in our computation are 1, 2, 3, 4, 5, 10 and 20m. For small value
of [ and small value of b, all of our curves perform very large response in normal-
ized apparent resistivity whereas for large value of [, the curves perform smaller
response in normalized apparent resistivity. This support the reason for the peak
of conductive ground locate near the ground surface, so it will reflex stronger re-
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sponse than the case of large [ from the ground surface according to the inverse
square law of the distance between conductive source and ground surface. The
top of the peaks of normalized apparent resistivity show a good relationship to the
value of [. In Figure 3.5, the small value of d perform large response in normalized
apparent resistivity while the value of [ and b are fixed. It can be explained that
as d is large the average conductive of overburden is lower than host. In Figure
3.6, as b is large, the conductive of overburden is low, thus, the response curves
will be small. It can be said that the curve of normalized apparent resistivity
could be able to predict the vertical location of conductivity profile of the ground
structure.

Normalized apparent resistivity is good to show the pattern of conductivity
profile of ground. However, the inverse problem via the use of optimization tech-
nique is introduced for better finding the conductivity parameter of the ground
than normalized apparent resistivity. The test model is assumed that it has only
one unknown parameter of the conductivity variation. The iterative procedure
using the Newton-Raphson method isapplied to estimate this unknown parame-
ter. The optimal result of our sample test converges very fast to the true value
with misfit less than 10=2A«m™! after using only 3 iterations. These illustrate
the advantage in using the Newton-Raphson method which give the result much
better than using another method of inversion (e.g., Oldenburg [12], Vozoff and
Jupp [21]). The inversion method leads to very good result and has high speed of
convergence. This shows the robustness of our medel.

3.8 Summary and Conclusions

The normalized “apparent resistivities of the earth having the electrical
conductivity ooper (2) = ooe /2 for the depth 0 < 2 < dy and Thost(2) = 0y
for the depth z > d, are considered. The-integral expressions are derived and
computed to determine-the electric' potential due to a point of direct current
source on the ground surface.~The value of electrie potential will be used to de-
termine the normalized apparent resistivity. We derive analytical solutions of the
electric potential due to a.direct current source by using Wenner array configu-
ration on two-layered earth structure having-exponentially varying conductivity.
The Hankel transform is introduced to our problem and analytical result is ob-
tained. Our solutions are achieved by solving a boundary value problem in the
wave number domain and then transforming the solution back to the spatial do-
main. The power series technique is used to solve the problem. The curves of
normalized apparent resistivity against electrode spacing are plotted and shown
the advantage in the ground exploration. To find the accurate of conductivity
profile solution, the inverse problem is considered. The inversion process, using
the Newton-Raphson method, is conducted to estimate the conductivity varia-
tion parameter. The method perform very good result and have high speed of
convergence.



Chapter 4

Mathematical Model of
Magnetometric Resistivity
Sounding for a Conductive Host
with a Bulge Overburden

4.1 Introduction

The magnetometric resistivity method has recently become an additional
electrical prospecting technique used for finding mineral resources. This technique
is based on the measurement, of low-level, low-frequency magnetic fields associated
with non-inductive eurrent flow in-the ground. Chen and ©Oldenburg [18] derived
the magnetic field. directly from solving a boundary walue problems which was
similar to theapproach used by Edward [27]-and then discussed in a homoge-
neous and a 2-layered earth.model. Yooyuanyong and Sripanya [30] derived the
solutions of the steady state-magnetic fielddue to a DC current source in three
types of heterogeneous earth.models. These solutions are critical to interpret the
magnetometric resistivity (MMR) data:

In this chapter, 2-layered. conductive earth-model is considered similar to
Chen and Oldenburg[18], but it is different in the conductivity profile. For first
layer, the conductivity of overburden is denoted by oy (2) = aoe_b(z_l)Q/ 20<z<
h, where b is constant, [ is positive which is used to locate the peak of the bulge,
h is the thickness of overburden and oy is positive constant. The second layer, the
conductivity of host medium, z > h , is constant and is given by o3 (2) = 0g. The
objective of this chapter is to show the behavior of the field while some parameters
are given approximately. The another important objective is to investigate the
conductivity parameter via the optimization technique.
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4.2 Formulation of the Problem

The general steady state Maxwell’s equations in the frequency domain
[18] can be used to determine the magnetic field for this problem, namely

VxE=0 (4.1)

and . _
V x H=0F, (4.2)

where E is the vector electric field, H is the vector magnetic field, o is the con-
ductivity of the medium in Siemens per meter (S/m) which is assumed to be a
function of z only and V is the del operator. Eliminating E from equations (4.1)
and (4.2), we obtain

VAV (4.3)
o

This can be expressed in cylindrical coordinates (r, ¢, z) as
o (101 (10 TonA\FD 1 (oH o
“\ropo \ror 8 G r O0p 0za-\ 0z or “
01 (10H, 0H, 91 /10 10H,
* (&5 (; i _W) 5 (W“HW; 70 )) €
10 (r [(OH, 0H, 1 0/ 1 0H,) NoH,
*(;5 (5(& ><n ))—;a?; (; 0 ‘W))ez’ (44)

where H,, H, and H_ are the components of H in er, eg-and-e, directions, re-

spectively. Since the-problem /s axisymmetric_and H-has only the azimuthal
component in cylindrical coordinates, for simplicity, we use H to represent the
azimuthal component. H in the following derivations. Simplifying equation (4.4)

yields

O10H 01 0
Bgn 0z D O e A

or

10°H 0 (1\O0H 1 (1 9 g (1\ 0 o0 (1\10
25 () ars Gam oo () o) e (5) o e =0

In our study, we denote o as a function of only depth z, and we now have

0*’H 0 (1\OH O0°H 10H 1
R ”a( ) 9. P trar =0 (4:5)

o

The Hankel transform [2] is introduced and defined by

o0

HMﬁ%z/THUﬁNMM)W, (4.6)

0
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and
o

H(r,z) = / MH (X, 2)Jy (Ar) dX, (4.7)

where J; is the Bessel function of the first kind of order one and ) is the Hankel
variable. Taking the transformation on both sides of equation (4.5), we obtain

[ (PH 0 (1\oH o*H 19H |1 T
/T<822 T, (E) 5. T e +;E - T_H) Ji (Ar) dr = /T(O) J1 (A\r) dr,
’ 0

or

0*H 91 oH
/ a Jl ()\7”) dT—FU& <;> TEJI ()\T)d
0

62H OH
+/< By 6 )Jl()\r dr—/ ~HJ, (Ar)dr =0,
0

or
[ o°H o /1 OH
/ 922 Jl ()\T‘)d?“+0'$ (;)/’f‘a—Jl ()\’l“)d
0 0
108 -0
+/5( 87‘>J1(>\T dr—/ ~HJi (Ar)dr =0,
0
or

o0 2 o
ra Jy (Ar)dr + 02 (l> /ra—HJl (Ar)dr
0

022 0z 0
/ 0 ( OH [ 0 ( 0H
+ algon+ o ( o ) Jr () dr+ blgélo g ( o ) Ji (Ar) dr

o0

1

0
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Integrating by parts on the third and fourth terms of the above equation yields

[ 0°H o (1\ [ oH
v J1 (Ar) dr + e (;) TEL (Ar)dr
OH ! [ OH d
#lim ((Grnon) 1 -t [5G ona
OH ’ [ OH d
st (G 0n) 1 =g [r G 0

or

o0 9 Q.
/ra HJ1 (A1) dr + a2 <l) Ta—HJl (Ar)dr

022 0z \ o 0z
/ OH d / OH d
— aligl"" TW5J1 (Ar) dr. — blgxolo TEJL (Ar) dr

a 1
00

A / %HJI (Ar)dr = 0.
0

Integrating by parts again.on the third and fourth terms of the above equation,
we obtain

[ o2H 1\ [ 0H
ra Jp ()\r)dr-ka2 (—)/ra—le (Ar).dr

022 0z \o 0

1
: ) T d [ d
— Jim ("“H o W) |l [ (7“%’1 W)) dr

b—o0

b
. 0 - d ( d
— lim (THE(A (Ar)) |1 +blir£10 H% <r$J1 ()\r)) dr
1

1
—/;Hjl()\r)dr:(),

0



or

1

/—HL —0,
.

0

or

or

T a2
/ %HJl(/\r)dr+o—< )/’/‘—Jl (M) d
0

+ [0 (4 i, (Am)d =[S o=,
0

0
or

0*H g (1 oOH
/ 922 Jl ()\T)d?" 7 U& (-) TEJI ()\7”) dr
0

[ r1
+ / H% (Wrdy (Ar) + ALy (Ar)) dr — / ;HJl (Ar)dr =
0 0

or

[ o*H 0 (1\ [ OH
vy J1 (Ar) dr+a& <—) /ra—Jl (Ar)dr
0

o0

1
+ /TH ()\QJ{' (Ar) + %J{ (A1) — ﬁJl ()\7“)) dr = 0.

Since J; is the solution of Bessel’s differential equation, we now have

A 1
)\2J{/ ()\7’) + ;J{ ()\T) — T_2J1 ()\T’) = —>\2J1 ()\7’) .
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This yields

oo 9 oo
/7’8 HJ1 (Ar)dr + J3 (l) ra—Hjl (Ar)dr

022 0z \ o 0z
0 0

—\? /rHJl (Ar)dr = 0.

0

Hence, the Hankel transform of equation (4.5) result in
O*H 0 (WNaoH -
— — — MH =0. 4.8
022 702 < ) 0% (48)

o

Since the electrode is in the overburden which the end of the electrode is positioned
at z = h, so that a magnetic field will be separated into two parts. The magnetic
field is come from the ground layer that-can be described by the general solution
of equation (4.8) and the magnetic field arising from’ probe. sources Hy, which is
only one element. It can be explained by the Ampere’s law [31, 34], as

I

H(T’,Z) == %,

where [ is the current at the probe on the ground surface. From equation (4.6),

we have N
~ 1
HO ()\, Z) N /7’ (%) Jl ()\7‘) dr = ﬁ
0

Therefore, the magnetic field-in each layer-can be obtained by taking the inverse
Hankel transform te the solution of equation (4.8), which satisfies the following
boundary conditions [5, 7]:
1. The vertical component. of the current density must be zero at the ground
surface (z = 0),

. (Z) Ef (717 z) |z=0 = 0; (49)

where E7 is the vertical component.of the electric field in overburden.
2. The azimuthal component of the magnetic field needs to be continuous on each
of the boundary planes in the earth,
lim Hy (A, 2) = lim Hy (), 2). (4.10)
z—h~ z—ht
where H; and Hy are magnetic fields in the first and second layer, respectively.
3. The radial component of the electric field, denoted by E”, needs to be contin-
uous on each of the boundary planes in the earth,
lim E} (A z) = lim Ej5 (), z2). (4.11)
z—h— z—ht

where F] and EJ are the radial component of electric fields in the first and second
layer, respectively. To determine the radial and vertical components of the electric
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field related to the azimuthal component of the magnetic field, we expand equation
(4.2) and obtain

- 1 0H, 10H, n 10H, 10H, N 1 0 (rH,) 1 OH,
\or 99 o Oz “T\o a9z oo ) \erar T op 0¢ C
Since the problem is axisymmetric and H has only the azimuthal component in

cylindrical coordinates, for simplicity as equation (4.4), we use H to represent the
azimuthal component Hy in the above derivations. This yields

10H 1 0

B==Car /B =g )
By equation (4.6), we have
_ r 1 & 1 9 -
B () 2) = /r (—W&H (n z)) 1) e S~ (0, 2).
0

4.3 A Geometric 2-Layered Earth Model

In our geometric model, two-layered earth model is considered which the
interface between the/layers is a-plane parallel to the ground surface. A point
source of direct current-/ is located into-the overburden which the end of the
electrode is positioned at z = h.-For-the first layer;the conductivity of overburden
is denoted by oy (2)/= aoe_b(z_l)2/2, 0 < z < h, where ag, b and [ are positive
constants and [ is. used. to.locate the-peak of the bulge, h is the thickness of
overburden. 'Thesecond layer; the conductivity of host:medium, z>h, is constant
and is given by o3 (2) =ap.

Electrode

CGround suface

Figure 4.1: Geometric model for 2-layered earth

4.4 Solution of Magnetic Field for a 2-Layered
Earth Model

An overburden has a variation of conductivity o; (z) with thickness h
over a conductive host medium having constant conductivity o, (z). Hence the
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equation for the magnetic field in overburden and host medium can be simplified
by substituting o (z) and o9 (2) into the equation (4.8), thus, we obtain

O*H, OH, -
_ N2t — 4.1
922 +b(z—=1) 5, ANH =0, (4.12)
and 5 -
0“Hy 9
52 AN Hy = 0. (4.13)

The power series method and auxiliary equation are used to find the magnetic
field formulation in an overburden, denoted by H,, and conductive host medium,
denoted by H,, respectively. Therefore; the solutions of the equations (4.12) and
(4.13) are written by [4, 26]

- I 232 222 blz?

and y
HQ(/\, Z) = Age_k(z_h) + A4€>\(z_h),

respectively, where Ay, Ay, A3 and Ay are arbitrary eonstants; which can be deter-
mined by using the boundary conditions. The condition at z — oo, the magnetic
field tends to zero, that leads Hy to

ﬁg(/\, Z) = A36_>\(z_h). (415)

For the first boundary condition in-equation(4.9), we obtain

1S (Lﬁ (r bl z))) =0

roy(z)or
Since o1(z) and r are not zero; then

9,
S L2 =0,

or P H, (5%) :/% (rHy(r, 2)) dr = /(0) dr = 0.

[e.e]

Since r > 0, thus H, (r,z) = 0 and Hy(\,z) = [ rH(r, 2)Ji(Ar) dr.
0
Hence,

I 2252 2272 2\ [
ﬁ<1+ 5 )+A1<1+ 5 >+A2(z+7):/r(O)Jl(Ar)dr:O.
0

Since no electric current across at the air-earth interface, I = 0 then
[Al <1 + )\2;2) + A2 (2 + %)} = 0. Thus, A1 = 0.

z2=0
By the second boundary condition, we obtain

2.2 2
i [ (122 s (54 )] < g e

z—h— | 2T\ 2 z—ht
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Thus,
1 A2h? blh?
Az =—— 11 As{h+—|. 4.1
327r)\<+2)+2(+2> (4.16)
Applying the third boundary condition, we have
1 9 - 1 9 -
li — —H; (A = i ————H5 (A
zirl?— |i 01 (Z) 0z 1< ’Z):| zirlrzl'F |: ) (Z) 0z 2( ’Z):| ’
or
1 o (I 222 bl 2*
li — — 14+ — A —
zfz?—[ oo Y072 0z (%A( 3 >+ 2(Z+ 2 ))]
10
= lim |——— (Aze =M |
zirlrll+|: o) 82( 3¢ )
Hence,
1 IXh
Az = _)\efb(hfl)Q/Z ( % + Ay (4 blh)) . (4.17)
From equation (4.16) into therequation (4.17), we obtain
1 A2h? blh? 1 IR
— (1 A — )=+ Ay (1 .
27\ ( + 9 )+ 2 <h—|— 5 ) )\e—b(h—l)2/2 ( o + 2( +blh))
Therefore,
T 2 21,2
N (24 N°h2) oy £ 20k 7 (4.18)
270\ 2h ey + blh2 Aoy +2 (1 4 bLh)

_ ~7\2
where a; = € b(h=0)*/2

L. (TAh
Since Az = o (2— + As (1 blh)) , then with the use of equation (4.18),
(05] s
we obtain
I 2 + \2h? 2A\h) (14 blh
A= W2t 1) an & 20 BRI, Pyt (4.19)
27 X | 23han + bINGZay £2 (1% bik)

Hence, with the use of inverse-Hankel transforms, the magnetic field in overburden
and conductive host medium are shown, respectively, as

H1<T7 Z)
I A222 (2 4+ Nh2) au + 2\ bl
~ [ h “a 2N o) d
o { T (2h>\a1+blh2)\a1+2(1+blh)) (” > )}‘]1( r)dA,
(4.20)

0

and

o0

I [((2+ Xh2) aq + 2\h) (1 + bih) v
H = — M| e AER () d
2(r.2) / oman { 2\han + biNR2ar + 2 (1 + blh) ‘ Si(Ar)

' (4.21)
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4.5 Numerical Experiments

In our numerical experiments, the magnetic field due to a direct current
source on the ground surface of the model is calculated. Chave’s algorithm [3] is
used for numerical calculating the inverse Hankel transform of the magnetic field
solutions. The current 1-Ampere is injected to the ground by the probe length of
Im and 3m perpendicular to the ground surface, oy = 2S/m and b = 0.005m 2.
The results of magnetic field response are performed as the graphs in Figures 4.2,
4.3, 4.4 and 4.5. The graphs are shown the behavior of the magnetic field against
source-receiver spacing (r) while the values of h, [ and z are adjusted.

015 T T T T T

htagnetic Asld (&)

SourceReceiver spacing [m)

Figure 4.2: The behavior of magnetic field against r at different depth
2 % UNISY, 5f \U\ S5 A o=ty ;[ 3m.

hagnetic Asld (&)

Source-Receiver spacing [m)

Figure 4.3: The behavior of magnetic field against r at different depth
z=20.5,1,1,5,...,3.5,4m; h = 3m; [ = bm.
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I:|2 T T T T T T T

T _

htagn etic Feld [&im)

Source-Receiver spacing [m)

Figure 4.4: The behavior of magnetic field against r at different depth
=02 375N\1Y, [ =" \0 (O, N\l A/ m.

I:|2 T T T T T T T

T _

htagn etic Asld (&)

Source-Receiver spacing [m)

Figure 4.5: The behavior of magnetic field against r at different depth
z2=12.5,3,3.5,...,5.5,6m; h = 2m; [ = 3m.

4.6 Inversion Process

In our inverse model examples, we simulate array data of magnetic field
from our forward model of practical interest. The two-layered earth model of
ground structures is used to investigate the conductivity profile. Chave’s algorithm
is used for numerically calculating the inverse Hankel transform of magnetic field
solutions [3]. The special function is computed by using the Numerical Recipes
source codes [33]. The electric current of 1 ampere is used in our computations.
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The Newton-Raphson method in optimization is applied to find a conductivity
parameter of the ground.

4.6.1 Sample Test

We firstly consider the magnetic field data obtained from the model of
simple case. The test model is the heterogeneous conductive half-space. The test
ground model has two layers. The overburden of the model has an exponentially
varying conductivity denoted by ooper (2) = e 2D*/2 with thickness h, whereas
the host has a constant conductivity denoted by o, (2) = 0¢ with infinite depth.
The values of the model parameters are given in Table 4.1. The parameter [ is a
vertical location of the peak of the bulge for the model structure, which assumed
to be our sample test. This implies that the example model has only one unknown
parameter, namely, b. The iterative procedure using the Newton-Raphson method
[33] is applied to estimate the model parameter b of conductivity variation. We
start the iterative processto find the valueof the conductivity parameter with an
initial guess b = 0.05 m 2. The optimal result is close-to the true value with misfit
less than 107'2A - m~! after using 3 iterations (sce Table 4.2)-

Table 4.1: Model parameters used in our sample tests.

Parameter
z(m) - (m) T (m) b (m7?)
5 5 2 0.005

Table 4.2: Successive iterations for finding a conductivity parameter of the model
in our sample tests.

[teration Parameter-b (m %) Misfit (A - m™!)
0 5.000000000000000 %102 4.112837183222289 x 102
1 1.199810840189358 x10=4 4.522401944826133 x 1073
2 4.946807268417725 x1073 4.604121343772035 <1077
3 4.999993634207877 x1073 9.856162440966542 x 1014

4.6.2 Simulated Real Data

We now consider the real data of magnetic radiation obtained from the
simulation model. The magnetic fields are generated by the forward problem of
the test model in our sample test. Random errors up to 3% are superimposed on
the magnetic fields to simulate the set of real data. The iterative procedure using
the Newton-Raphson method is also applied to estimate the model parameter of
conductivity variation.
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Corrvergence of inversion of the test model
0045 T T T T T

0.04 ]

0.03%

Wit (i)
=
=
P

1
1] 0.5 1 1.5 2 2.5 3
Mumnber of [teration

Figure 4.6: Curve of misfit- versus number of iterations for the model in our
sample test.

4.7 Discussions

Analytical solution-of the steady state magnetic field due to a direct cur-
rent source are derived by using the expression (4:20). The expression (4.20) is ap-
plicable to specific'case in which two layers have exponentially varying conductiv-
ities. The effects of magnetic fields obtained from the DC method is plotted. The

magnetic field of an earth having the electrical conductivity o (z) = aoe_b(z_l)2/ 2
for the depth .0 < z <“h, and.05(2) = gy for the depth z> h are considered.
We fix the value of h; the-magnetic field curves are quite different as z and [ are
varied between h >.[ and h < [. The integral-expressions are derived and com-
puted the values of the magnetic field which is used to determine the behavior
of the magnetic field against souree-receiver spacing. The curves of the magnetic
field against source-receiver spacing are plotted and shown the advantage in the
ground exploration. The magnetic field intensities drop very fast when the value
of z close to the value of h. At large depth(z), the magnitude of magnetic fields
tends to be small value as we expect. As the thickness of overburden is increased,
the shape of graph is similar to the conductivity profile of the ground. This is
the advantage of magnetic field that can be performed some relationship to the
conductivity profile of the ground.

An inverse problem via the use of an optimization technique is introduced
for finding a conductivity parameter of the ground. The iterative procedure us-
ing the Newton-Raphson method is applied to estimate the model parameter of
conductivity variation. The optimal result of our sample test converge very fast
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to the true value with misfit less than 10712A - m™! after using only 3 iterations.
These illustrate the advantage in using Newton-Raphson method which gives the
convergence much faster than using another method of inversion (e.g., Oldenburg
[12], Vozoff and Jupp [21]). The inversion method leads to the robustness of our
model and procedure.

4.8 Summary and Conclusions

Magnetometric method used for investigation of a two-layered earth struc-
ture is presented in this study. The method proposed here is based on the mea-
surement of low-level, low-frequency static magnetic fields associated with nonin-
ductive current flow between two current electrodes-on the earth’s surface. We
derive analytical solutions of the steady state magnetic field due to a direct current
source on two-layered earth structure having exponentially varying conductivity.
The Hankel transform is introduced to-our problem and analytical result is ob-
tained. Our solutions are achieved by solving a boundary wvalue problem in the
wave number domain and then transforming-the solution back to the spatial do-
main. The power series technique is used to solving the problem. The effects of
magnetic fields obtained from the DC method is plotted and show the behavior in
response to many different depths while some-parameter are approximately given.
The inversion process, using the Newton-Raphson method, is conducted to esti-
mate a conductivity parameter of the ground. The method leads to very good
result and has high-speed of convergence.



Chapter 5

Conclusions and Future Works

5.1 Conclusions of the Thesis

Of all the electrical prospecting methods, direct current resistivity sound-
ing is the simplest way to understand in principle. This thesis has been concerned
about the problem of determining resistivity kernel function for a horizontally
stratified layered earth. An inverse problem in resistivity interpretation has also
been described and discussed in this study.

In the first part-of this thesis, Chapter 2, we present a mathematical model
of the scalar potential numerically at various positions by assuming that the earth
structure contains only one-layer-having exponential conductivity. There are
probes of direct current voltage and a receiver on the ground surface which picks
up the signal on the-ground surface at different electrode spacing. The electrode
spacing starts-from 10 to. 100 meters. We use Finite Element Method (FEM) by
applying Galerkin’s: Method of Weighted Residuals to solve the partial differential
equation. Maple program is used to calculate-and plot graphs of the value of the
scalar potential at different-depths and different electrode spacing from the probe.

In the second part (Chapter 3) of thisstudy, we derive the analytical solu-
tion of normalized apparent-resistivity from DC source located on a two-layered
earth model which having exponentially varying conductivity. The Hankel trans-
forms and power series method are used to solve the partial differential equation
to find the potential functions. The expression for the Wenner configuration is
introduced to formulate the normalized apparent resistivity. Numerical solutions
are computed to show the behavior of the curves by using Chave’s algorithm while
some parameters are given. The curves of computation results of normalized ap-
parent resistivity are plotted against electrode spacing. The inversion process,
using the Newton-Raphson method, is conducted to estimate the conductivity
variation parameter.

The last part of the thesis, Chapter 4, we present an electrical method used
for investigation of two-layered earth structure. The method proposed here is base
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on the measurement of low-level, low-frequency static magnetic fields associated
with noninductive current flow between two current electrodes on the earth’s sur-
face. Analytical solutions of the steady state magnetic field response from DC
source located on a two-layered are derived in this study. The earth structure
having exponentially varying conductivity is considered. The Hankel transform
is considered to our problem and analytical result is obtained. Our solutions are
expressed in the form of integral expressions. Numerical solutions are computed
to show the behavior of the magnetic field while some parameter are given ap-
proximately. An inverse problem via the use of the Newton-Raphson optimization
technique is introduced for finding a conductivity parameter of the ground.

5.2 Future Works

Even though the work presented in this thesis provides interesting ideas
about the solutions to the forward and inverse problems in geoelectrical resistivity
sounding, the issues that we dealt with suggest numerous evenues for possible ex-
tensions and future works. In'the area of electrical resistivity methods described
in this thesis, the following outline is a list of interesting future directions that
require further investigation:

- In Chapters 3 and 4, analytical solution could be developed in the gen-
eral case for the problem of a multilayered earth with layers having exponentially
varying conductivities which-can be.derived by using the boundary conditions de-
scribed in these chapters.

- The inverse problem of Chapter 2 should he proposed:

- The difference conductivity model should-be considered:
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