NUMERICAL SOLUTIONS OF MAGNETIC FIELD RESPONSE FROM
TWO DIMENSIONAL CONTINUQUSLY CONDUCTIVE GROUND

By

Yaowared -Khonkhem

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2015
Copyright of Graduate School, Silpakorn University



NUMERICAL SOLUTIONS OF MAGNETIC FIELD RESPONSE FROM
TWO DIMENSIONAL CONTINUOUSLY CONDUCTIVE GROUND

By

Yaowared- Khonkhem

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2015
Copyright of Graduate School, Silpakorn University



NAIRAsTIMAAVVDINTADLAHDIMIAMNLAITAD

pmnamminlvihasalifedanariiodldnuay

Tae

WAL VIUY

a a Jd 1 < [y a U A
InendinusHiluaruntiavesmsanmmunangas S yadnenmansuriuha
a a d
MU INUATAAS
a a d
MAIFINUATITAS
aNaInenay urviInenasfaling
Ymsenu 2558

d

a A a U a A U a U A
aAvVaNdVAIVUNAIN QY wyIneasaaling



The Graduate School, Silpakorn University has approved and accredited the
Thesis title of “Numerical Solutions of Magnetic Field Response from Two
Dimensional Continuously Conductive Ground” submitted by Miss Yaowared
Khonkhem as a partial fulfillment of the requirements for the degree of Master of
Science in Mathematics

(Associate Professor Panjai Tantatsanawong, Ph.D.)
Dean of Graduate School
.......... ) W~ Y

The Thesis Advisor

Associate Professor:Suabsagun Yooyuanyong, Ph.D.

The Thesis Examination Committee

.................................................... Chairman
(Nairat Kanyamee, Ph.D.)

............ [ FS N~ 7 £,
.................................................... Member
(Warin Sripanya, Ph.D.)

............ Lo
.................................................... Member

(Associate Professor Suabsagun Yooyuanyong, Ph.D.)
............ Lo e,


http://www.math.sc.su.ac.th/web/index.php/2013-06-30-08-16-43/8-people/32-nairat

56305207 : MAJOR : MATHEMATICS
KEY WORDS : FINITE DIFFERENCE / FINITE ELEMENT / MAGNETIC
| MAGNETOMETRIC

YAOWARED KHONKHEM : NUMERICAL SOLUTIONS OF MAGNETIC
FIELD RESPONSE FROM TWO DIMENSIONAL CONTINUOUSLY
CONDUCTIVE GROUND. THESIS ADVISOR: ASSOC. PROF. SUABSAGUN
YOOYUANYONG, Ph.D. 112 pp.

In this thesis, mathematical models of Finite Difference Method and Finite
Element Method for the magnetic field response from a two dimensional continuously
conductive ground are presented. The magnetic field at various locations are plotted by
assuming the Earth structure having-a two dimensional exponential conductivity
profile. There is a source providing a Direct Current (DC) voltage and receiver on the
ground surface. Finite Difference and Finite'Element techniques are applied to solve
the partial differential equation. MATLAB programing is-used to perform both values
and graphs of magnetic field at various locations. The results show the intensity of
magnetic field for cross—section of the ground structure very well. The behaviour of
magnetic field clearly performs very good relation to the conductive ground. The
research results are very useful in geophysical exploration since normally we can
measure magnetic field onthe ground surface. The magnetic field intensity can be able
to inform the location of the ore body under the ground via the technique of inverse
problem.

Department of Mathematics Graduate School, Silpakorn University
Student's Signature .........ccccceevveviie e Academic Year 2015

Thesis AdVisor's SIgNature .........c.cceeveveevvereeneennenn



56305207 : d1vINAUAMTAT
o o w ' o a o w ' < a a
AMEINY : WAANBDUAS / AUIBNIINGA / Lnan / LLﬁJﬂ’L!I“VILiJGIiﬂ
< Aa o 1 I o
LUNLTA VUIUY : WALRDYIBIAUAVUDINITADU T UDIN N UINLIURANIINTNINUN
9, an [] 1 A ﬂhﬁy a P a a 4 A =
"lWWmmmemwemaﬂﬂwuﬂu. mmﬁwﬂ?ﬂyn‘wmuwu‘ﬁ D IA.AT. FUAND DYYUN.

112 vivh.

9

a a L= Y o = ) a 14 Yas a o o
'J1/]EJ'IuWu‘ﬁuUl@u'lLﬁ'u’0ﬂ'lf!'ﬁﬂH'ILLU‘]Jﬁ]'IﬁUQ‘V]'I\?ﬂm@ﬁ'IﬁﬁiIﬂﬂﬁl“]f'ﬂ‘ﬁﬁll'l%ﬂfﬂ'lﬂﬂ

as 1 o ) [ ' I dy a Aa o Y
Llﬁg’J‘ﬁW'ﬁV’I'lQ@uﬁgﬁ'lﬂﬁllﬂ']iiﬂ'E]‘]Jﬁu’ﬂﬂ‘ﬂ'NﬁLl']lILL?JH’T@‘]ﬂfl]'lﬂwuﬂuﬂﬂﬁﬂ'lwu'lq%l‘]/\l'l

[ 4 Aan Al ¥ ) I Aan 1
Llﬂﬂﬁﬂlﬁﬂﬁﬁﬂﬁﬂﬁ IﬂﬂﬂWﬁﬁiJiJ@'NIﬂi\iﬁ%}']\‘]ﬁuIﬁﬂﬁﬁﬂ'lwu'lklw%)\l']L‘]J‘IJLLU‘UET@Q‘JJ@I@?J'N

A v 3 A Y Ao o Y S

ADLUDN ﬁ‘lnllLL?JLWaﬂﬂ@]@llﬁu@\ill"lﬁ]'lﬂTﬂiQﬁﬁ'NIﬁﬂVl‘JJﬁﬂ']Wl!']ulV\IW']LHJUL'ﬂﬂTTJLuulslfﬂa 2

9
o 2 a %

2 A 1 A a 9 A o [ A Y Aa dy a
qumemmﬂmﬂmm"lwwmszmeimazmimiuﬁaujmuwmwgﬂmm"lmmmwum

)
)
CJ)

au mailaraaduazuazauIrnsinagnildieoninamandiduavvesdunisisa
o 9 o @ o J ' <] =
ayiusdos 11Usunsy MATLAB A ladimsumsmiuisaiadunuimanuaziveunsiv
) ] @ ' < ) @ o & a ] @
¥a109 AU HaaNSuAAIINUTNEIUIIMAnd M T UMIAANHAURE AN AUAA N
o 9| dy a Av A g o AQAaAa J o A
 Wihwesiuan maveswdteiilss Toaiunluaenisdisaan1essafldnd owilenin
a Y 1 [ { ala ] 3 3 '
UndAsenusodaguuimiman I uBNuAIa Y A ITNUBIFUINHNITHANIAAIDIA N

1 9}49' a 9 [ = 9) [
ﬂlﬂﬁl!i‘ﬁ”lﬁﬂ@lwuﬂuulﬂ IﬂEJ’EJWFTEJWIﬂuﬂﬂJ’ENﬂﬂJWWEJ?JMﬂaU

a [

AMeae NM1INeIaeAalng

=)

a a J
NAIBIAUAFITAT o

A A o = = =
ANUDVOUNANH ..o, ﬂﬂ'ﬁﬁﬂ‘kﬂ 2558



Acknowledgements

This Thesis, | would like to express my thankful to my advisor, Assoc. Prof.
Dr. Suabsagun Yooyuanyong, whose expertise, understanding and patience for me.
| appreciate his knowledge, skill in many areas and his assistance in writing thesis.

| would like to thank Dr. Nairat Kanyamee and Dr. Warin Sripanya, for their
valuable comments and suggestions.

| would like to thank the Department of Mathematics, Faculty of Science
Silpakorn University for the facilities support.

I would like to thank the Centre of Excellence in Mathematics (CEM) and
Graduate School, Silpakron University for financial support.

I would like to thank my friends for the advice and encouragement whenever |

was in need.
Finally, spacial thanks to' my beloved parents and Asst. Prof. Pramerl Intapibul,
for understanding and support.



Table of Contents

Page
ADSLraCt IN ENGIISN......ooiiiie e d
ADSEFACE IN T ..ot e
ACKNOWIEAGMENTS. ... f
Chapter
R 0110 To [3Tox 1 o] ISP 1
1.1 Outline Of the TRESIS........ciiie st 2
2 Formulation of Mathematical Problem............cccovviiiiiiiiiiie 4
2.1 GOVEINING EQUATTONS ... .. i it st sia sakb e eseeeesnesne e ssesneeneas 5
3 Finite Difference for Magnetic Field ReSpoNnse..........cccccevvevveveiicneenne 7
3.1 Numerical EXPErimENtS ... oo i e it aie e b e et e 13
KRN 0 EUPLR =P <R ® VA" O F W — *, G-/ ST 26
4 Finite Element Method for-Magnetic Field Response.............cccccovvvrienne. 27
4.1 Rectangular EIBMENTS L. ..ot 31
4.1.1 Numerical' EXPEriments ...........ieioiabuostimiu b st 56
4.1.2 SYURPAUZEZLSAI NN . LS L SN N 68
4.2 Triangular EIBMENTS.. ... ot et cdevsiiae et as st snee b eve e 69
4.2.1 Numerical EXPEriMENtS ........cvcveieeeiees e isase e b 91
4.2.2 SUMTTTANGE S - D et e o X by -0 ve e 103
5  Conclusions and FUture WOTIKS ... i it cin et ibe s 104
References............:\\o oo B oo A XY e 106
ApPendixX A: PUDIICALIONS ... o esssit e ettt 108
Plagiarism CheCKing REPOI ...........cciiieiiciiec st 111
CUITICUTUM VLA ...t 112



Chapter 1

Introduction

At present, natural resources are utilized-extensively such as minerals, petroleum
and groundwater. Geophysical survey is very important to geological structure sur-
vey or exploring the natural resources. The purpose of the geophysical survey are
knowing the geological features,and physical properties (i.e. density, magnetization,
elasticity and electric conduetivity.) at the area that is interesting. These data can
be used for planning to well drilling in the area to explore them even more effective.
There are many ways and methods to explore the geological structure. For instance,
gravitational, magnetic, seismic,-electrical, electromagnetic and magnetometic re-
sistivity.

The magnetometic resistivity method is a method of using the low-frequency
magnetic field. The working principle is that when weleave the DC voltage to the
electrode, it will cause a magnetic field radiate through the medium. The magnetic
field can be measured by using magnetic-filed-receiver. The information of mag-
netic fields can be interpreted to show the basic information of the various physical
properties of the target.

During the past several decades, many researchers such as Chen and Oldenburg
[7] derived the magnetic field directly by solving a boundary value problem of a

horizontally stratified layered Earth. Kim and Lee [5] derived a new resistivity ker-



nel function for calculating apparent resistivity of a multilayered Earth with layers
having exponentially varying conductivities. Siew and Yooyuanyong [11] also used
this assumption to create the mathematical model of electromagnetic response of
a conductive thin disc beneath an exponentially varying conductive overburden.
Chumchob [8] employed this conductivity variation to formulate the mathematical
model of electromagnetic sounding for a conductive circular cylinder ore body em-
bedded in an inhomogeneous conducting half-space. Sripanya [14] derived solutions
of the steady state magnetic field due to a DC current source in a layered Earth
with some layer having exponentially or binomially or linearly varying conductivity.
Tunnurak et al [12] derived the mathematical model of finite element method for
the magnetic field of an exponential conductivity ground. profile. The results are
computed to find the value of the magnetic field at various locations of the ground.

All the relevant research works mentioned. above are one dimentional conduc-
tivity profile. The two dimentional conductivity profile is more realistic than one
dimensional profile. It challenges me to explore our problem with the use of nu-

merical techniques such Finite Difference and Finite Element methods.

1.1 Outline of the Thesis

This thesis deals with. a mathematical model for the magnetic field from a two
dimensional continuously conductive ground. The magnetic field solutions are com-
puted and plotted to show the intensity of thefield at many location of the ground.
The following outline is a list of that require further investigation:

Chapter 2, we present a geometric model of the problem and the governing
equation is the Maxwell’s equations.

Chapter 3, we present the numerical computations for finding approximate so-
lutions. Finite Difference Method is introduced to calculate the magnetic field

intensity at various locations. MATLAB program is used to compute and plot



magnetic field intensity via the source-receiver spacing and the depth.

Chapter 4, we present the numerical computations for finding approximate solu-
tions. Finite Element Method is introduced to calculate the magnetic field intensity
at various locations. MATLAB program is used to compute and plot magnetic field
intensity via the source-receiver spacing and the depth.

Finally, in Chapter 5, we sumarize the results of our work and also suggest the

future works.



Chapter 2

Formulation of Mathematical

Problem

Geometric model of the problem, which we considered, is shown in Figure 2.1.

source

receiver

(0,0) /

a(r,z)

z(+)

Figure 2.1: Geometric model of the problem.



Cylindrical coordinate system (7, ¢, z) is introduced with the z-axis positive
downward, where z represents the depth, é,,é, and ¢, are basis vectors in r, ¢ and
z direction, respectively. We note that the plane z = 0 is the ground surface where
the receiver is located at r from the source.

For the half space z > 0, it is a region of the ground where the two dimensional
conductivity is given by

az+br)

o(r,z) = ooel ,

here 0y is a positive constant and a, b are constants. This may represent the ground

near seashore.

2.1 (Governing equations

Consider the Maxwell’s equations [14]
vk = 0, (2.1)
vxH=0E, (2.2)

where E is the electric field intensity-(Volt /meter), H is-the magnetic field intensity
(Ampere/meter), o is_conductivity (Siemen/meter).  The gradient operator, in

cylindrical coordinates, is defined by

Note that

e TEp €
1 - Lo 9 9
o or\or 96 0=
H, rH, H,




Then
1 . 110H. 0H,  10H, 0H, 110 10H,
e PI *E L Py ol R e P b
and
1 . 10119 10(H,) 01 d(H,) O(H.)
VXSV ) = g ~ e ) T me e T e
01 10(H,) 9(Hy,) " 9110 10(H,)

+[&E(; o6 0z ) 87“0(7’87’(“[])_; 0] )Jés
10 10(H,) ‘o(H.) ~ 101 10(H.) 0J(H)

e ey (o Vilibge as o2 N
So, equation (2.3) becomes

10110 10(H,) d 1 0(H,) ~0(H,)

0 = [ (—zrH ) —1) T2~ - e
rdgo ror r 0¢ Qz0 N0z or

01 10(H;) ,0(Hy) 91109 19(H,)

e e AR Ay P o

10 1 9(H,) 0(H,) 10 L10(H.) O(Hy) -

TR e NS T AT N N A

where H,, Hy and H, are the components of Hin €, €p-and e, directions, respec-
tively. Since the problem is.axis symmetric and H has only the azimuthal compo-
nent in cylindrical coerdinates, for simplicity, we use H to represent the azimuthal

component in following derivations. Simplifying equation (2:4) yields

o 10(H) o 10(H)

dz'c 0z ' Or'or Or

) =0. (2.5)
Substituting o(r, z) = goe***) to equation (2.5) , we obtain

O*H O0H &°H 1 oH b 1

R R e A

VH = 0. (2.6)



Chapter 3

Finite Difference Method for

Magnetic Field Response

In this chapter, the numerical methods for finding the approximate solution is

presented by using Finite Difference Method (FDM).

The FDM proceeds by replacing those derivatives inthe DEs-by finite difference
approximations, which are algebraic in form. They relate the value of dependent
variable at a point in the solution region to the values at some neighboring points.
Finite Difference Method basically involves the following step [6,9]:

(1) Discretize the domain region) into a ‘mesh-of discrete points.called nodes.
(2) Approximate all derivatives using the finite difference approximations. In this
step the DE is approximated by a large system of algebraic equations.

(3) Solve the linear or nonlinear system of-algebraic equations.



We now rewrite equation (2.6) as

PH(r,z) O0H(r,z) 0*H(r,z) 1 ) OH(r,z) b 1
822 " a9z | a2 | (;_ ) or ror?
where r € [10,190] and z € [0, 180].
H(r,z)=0 on 00,
H(r,z) = —4.4 x 10°2 4 0.0008 on  0S,
H(r,2)= Hf—1,0,a=12".,10 on 09,
H(r,z) = —8.83'x 107°%40.0159 on 0.

—(—+—=)H(r,z) =0, for(r,z) € Q,

(3.1)

(3.2)

The boundary conditions of problem (3.1) and the notation of the magnetic field

intensity in boundary domain modeled, using square elements, are shown in Figure

r =190
0.0008

0.0007

0.0006

0.0005

0.00045

0.0004

0.0003

0.0002

0.0001

Q3

r=10 r=30 r=50 r=70 r=90 r=110 r=130 r = 150 r =170
z=0 0.0159 0.0053 0.0032 0.0023 0.0018 0.0014 0.0012 0.0011 0.0009
2=20 00141
z=40 0.0124
z=60 0.0106

99y
z=80 0.0088
z=100 0.0071
z=120 0.0053
7= 140 0.0035
7= 160 0.0018
2=180
0 0 0 0 0 0 0 0
aQy

Figure 3.1: Boundary conditions of the Earth structure.

a0,

The values of magnetic field on 9, 9y, 93 and 9 are obtained from [12].

See Figure 3.2 for the case m, = m. = m and m = 8 points, where m, and m, are

interior points in r and z direction, respectively. m is interior points. Mesh width



or the distance between grid points in this chapter is 20 m.

r

0.0159 0.0053 0.0032 0.0023 0.0018 0.0014 0.0012 0.0011 0.0009 0.0008
0.0141 H11 H21 H31 Ha1 H51 H61 H71 H81 00007
0.0124 H12 H22 H32 H42 H52 H62 H72 H82 0.0006
o606 H13 H23 H33 H43 H53 H63 H73 H83 .
5 0.0088 H14 H24 H34 H44 H54 He4 H74 H84 e
0.0071 H15 H25 H35 H45 H55 H65 H75 H85 T
iboa H16 H26 H36 H46 H56 | He6 H76 H86 —
CiOES H17 H27 H37 Ha7 H57 H67 H77 H87 -
T H18 H28 H38 H48 H58 p H68 H78 H88 p—
¢ 0 0 0 0 0 0 0 0 d

Figure 3.2: Discretizing the domain €2 using a uniform grid.

We define H,; ; = H(r;,z;) to denote the associated grid function. To dis-
cretize the PDE in (3.1), we replace the r—and z—derivatives with the central finite

difference approximations as follows,

[H; i1 — 2H; 5 + H; jra] 2 [Hy gy =-Higoa] JH il < 2H, j + Hiyy gl

2 DAY Bl i
1 [Hi+17j s Hi—l,j] b 1
(=0 o ~(Gt 2 Hes =0 (3.3)

This leads us to define-the numerical approximation H; ; as the solution of
the linear system of m? = 64 equations.

The linear system can be written in matrix form as

where H represents the unknown vector magnetic field such that

H = [Hll,H12,--->H18,H21,H22>---,H28> ------ >H81aH82>---aH88]g4X1 and
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F' is a constant column vector.

The solution vector H consists of all interior points (the unknowns). Matrix

A in equation (3.4) has the form

B, Dy 0 0 0 O 0 O
Co B, D 0 0 0O 0 O
0 C3 By D3 0 0 0 O
Ao 0 0 C3 Bg D3 0 0 O
0 0 .0 Cs5 Bs Ds 0 O
0 0y-0 /0'~Cs Be Dg 0
0 0PN [ =00 0= C7p=Bp\ D7
I 0 A0 AJOLADASR A0/ £ Bg_ AP
where _ \
myf p U\ 0 AGYPPO YYHMI0
| ) AN\ 82/ Oy 00
0 - m; p> 0 0 0 0
B/~ 0~0. 0 ~m; p 0 0 0 |
0/ /001" my p-—-0 -0
W NIy [ D)) N = (T P ®
0. 0 0~ 0/ 0 -1 m-p
’ 0-~0 0 O 0. 0. 1 Ml
1 a
l= n2 N .’

2 2 1 b
mi:—(ﬁ+—2+r—2+ 7’_)7

r i T

=——— fori=1,2,....8,
2 2h, or 1



o O o o o o o

1
h2

T

n; =

1

and & "R

h?

o O o o o o

1

NS ) ) O ro

1
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0

b
— S+ A CERY, ) . .
QT‘ihr—i_ ='d |\

2h,

R =m@SPYO P ONR ©

27“,' hr

SE®) © @

Cuf N | ©
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0
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The boundary conditions are absorbed into F' as

fi
—1(0.0032)

f2
—1(0.0023)

f2
~1(0.0018)

f2
—1(0:0014)

f2
—1(0.0012)

f2
“1(0.0011)

f2

f3

\ < 64x1

where fo'is zeros matrix size 7 x 1,

“n1 (0.0141)= 1(0.0053)
“n1(0,0124)
—n1(0.0106

2> —11(0.0088

~1,(0.0071

—n,(0.0053

=11 (

= (

)
)
)
)
n1(0.0035)
)

n1(0.0018

1 1 b
2 omh o

T

fOI‘ nl =

8x1

12
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and -
—1(0.0009) — t5(0.0007)
—t5(0.0006)
—t5(0.0005)

—15(0.00045)
fz3= ,
~£4(0.0004)

(
—t5(0.0003)
—t5(0.0002)
( )

—t5(0.0001
L 4 8x1

1 1 b
h_% i QTghT / Qhr'

for tg =

3.1 Numerical Experiments

Numerical results of the magnetic field intensity from equation (3.1) are obtained by
using the Finite Difference Method. There:is a source providing a-DC voltage of direct
current I = 1A and receiver on-the ground surface which picks up the signal from r» = 10
to r = 190 m. The depth z start from the ground surface z =0 to 'z = 180 m. The grid
size h = 20 m. a and b are-given.constants .~"The-magnetic field intensity is computed by

using MATLAB programing.

Consider for the case of an exponentially decreasing conductivity o(r, z) = opelaztbr)
when a < 0 and b = 0, the graphs of the relationship -between -magnetic field intensity
and spacing of source-receiver at various depths-areplotted as shown in Figure 3.3 and

3.4.
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() (d)

Figure 3.3: Graphs of the magnetic field intensity via distance of receiver from
source where b =0, a is varied and. z -is fixed (a) a = —0.0001 m™!

(b) a = —0.001 m™" (c) a=1-0.005m™" and (d)ya=—0.0lm".

From Figure 3.3 (a) to' (d), when'a = +0.0001,~0.001,~0.005 and —0.01 m~!, re-
spectively, we can see that.the values of magnetic field decrease exponentially as r and z

increase. The values of magnetic field decrease as a-decreases:
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() (d)

Figure 3.4: Graphs of the relationship between magnetic field intensity and distance
of receiver from source where b = 0, a -varies from —0.0001, —0.001, —0.005 and
—0.01 m™ and 2 is fixed.. .(a) z =20 m (b) 2=60m (¢) 2= 100 m and

(d) z = 140 m.

From Figure 3.4 (a) to.(d) represents the values-of magnetic field which are plotted
against r whereas a varies and z.is fixed at 20,60,100 and-140 m, respectively. We can
see that the values of magnetic fields where a = —0.0001, —0.001,-0.005 and —0.01 m ™!
decrease exponentially.as r increases and it has similar maner where 2 increases. Because
the values of magnetic field decrease to zero and have values near-zero where z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 3.5.

Figure 3.5: Contour graphs-of magnetic field at different distances of receiver from
source and different depths where b= 0, (a) a. ==0.0001 m~' (b) a = —0.001
m~t (¢) a= —0.005m ' and (d) a= —0.01 m™'.

From Figure 3.5 (a) to (d), where a = —0.0001, —0.001, —0.005 and —0.01 m™!, re-
spectively, the red color shows the area where the values of magnetic field is high and the

blue color shows the area where the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
when a > 0 and b = 0, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 3.6 and

3.7.

() (d)

Figure 3.6: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0, a varies-and z is fixed—(a)a.=0.0001-m~" (b) a = 0.001

m™ (c) a=0.005m™ and (d) a=0.01Lm "

From Figure 3.6 (a).to (d), when a =0.0001,0.001,0.005 and 0.01L.m !, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.
The values of magnetic fields increase whereas a increases. The results agree to Tunnurak

et al. [12].
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- \\ -
- —_—
m

Figure 3.7: Graphs of the relationship between magnetic field intensity and distance
of receiver from source where b = 0, avaries from 0.0001; 0.001, 0.005 and 0.01
m~! and 2z is fixed. (a) 2 =20 m «(b) 2 =60 m (c) 2= 100.m and (d) z = 140

m.

From Figure 3.7 (a)-to (d) represents the values-of magnetic field which are plotted
against r where a variesiand z is fixed at 20,60, 100-and 140.m, respectively. We can see
that the values of magnetic fields-where a = 0.0001;0.001,0.005-and-0.01 m~' decrease
exponentially as r increases and it has.similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 3.8.

Figure 3.8: Contour graphs-of magnetic field at different distances of receiver from
source and different depths where b=.0, (a) a = 0.0001 m~' (b)a = 0.001 m™!
(c¢) a=0.005 ! and (d)a="0.01m"

From Figure 3.8 (a) to (d), when a = 0.0001,0.001,0.005 and 0.01 m ™!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color
shows the area where the values of magnetic field is low. The results agree to Tunnurak

et al. [12].
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Consider for the case of an exponentially decreasing conductivity o(r, z) = opelaztor)
when ¢ < 0 and b = —0.001, the graphs of the relationship between magnetic field
intensity and spacing of source - receiver at various depths are plotted as shown in Figure

3.9 and 3.10.

() (d)

Figure 3.9: Graphs of the magnetic field intensity via distance of receiver from
source where b = —0.001; @ varies and 2 isfixed(a).a= =0.0001 m~!

(b) a = —0.001 'm~% (e) a=<0.005m7! and (d) a==0.0Lm" .

From Figure 3.9 (a).to (d), when @ ==0.0001,=0.001,<0.005 and —0.01 m~!, re-
spectively, we can see that thewvalues of magnetic field decrease-exponentially as r and z

increase. The values of magnetic field decrease where a decreases.
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HH
o

() (d)

Figure 3.10: Graphs of “the' relationship. between magnetic field intensity
and distance of receiver from. source where b =. —0.001, a varies from
—0.0001, —0.001, —0.005 and! =0.01 m=" as z jisfixed: (a)z= 20 m

(b) z =60 m (c) z =100 m-and (d) == 140 m-

From Figure 3.10 (a)-to (d) represents the values of magnetic field which are plotted
against r where @ varies and z'is fixed at 20,60, 100 and 140 m, respectively. We can
see that the values of magnetic fields where a = —0.0001, —0.001,-0.005 and —0.01 m ™!
decrease exponentially.as r increases and it has similar maner where 2 increases. Because
the values of magnetic field decrease to zero and have ‘values near-zero where z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 3.11.

Figure 3.11: Contour graphs of magnetic field at different distances of receiver from
source and different depths where b=.—0.001, (a)-a= —0.0001" m~!
(b) a = —0.001 m™ (¢) a= <0.005m ' and (d)a=—0.01 m™*.

From Figure 3.11 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m™!, re-
spectively, the red color shows the area where the values of magnetic field is high and the

blue color shows the area where the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
when a > 0 and b = 0.001, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 3.12 and

3.13.

() (d)

Figure 3.12: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0.001, @ varies and z isfixed (a)a =0.0001-m~' (b) a = 0.001
m™ (c) a=0.005m™ and (d) a=0.01Lm "

From Figure 3.12 (a).to (d), when a =-0.0001,0.001,0.005 and 0.0Lm !, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.

The values of magnetic fields increase where a increases.
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() (d)

Figure 3.13: Graphs of the relationship between magnetic field intensity and dis-
tance of receiver from source where b =-0.001, @ varies from 0.0001, 0.001, 0.005
and 0.01 m™' and z is fixed. (a) 2=20m (b) z=60m (¢)2z= 100 m and (d)
z = 140 m.

From Figure 3.13 (a)-to (d) represents the values of magnetic field which are plotted
against r where a varies and z is.fixed at 20,60, 100-and 140-m, respectively.. We can see
that the values of magnetic fieldswhere a = 0.0001;0.001,0.005-and-0.01 m~' decrease
exponentially as r increases and it has.similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 3.14.

x10 x10

14 14
12 12
10 10
8 8
B B
~ ~
6 6
100 100
4 4
120 120
140 2 140 2
0 160 0

160
10 30 50 70 90 110 130 150 170 10 30 50 70 90 110 130 150 170

r(m) r(m)

(a) (b

x10°
14

14 0
12 12
10 10
8 8
E E
~ ~
6 6
100 100
4 4
120 120
140 2 140 2
0
110 130 150 170

160 0 160
10 30 50 70 110 130 150 170 10 30 50 70 90

%0
r(m) r(m)

() (d)

Figure 3.14: Contour graphs of magnetic field at different distances of receiver from
source and different depths where =.0.001, (a).a= 0.0001 m~'Y (b) a = 0.001
m~t (c¢) a=0.005m~! and (d) a=0.01 m %,

From Figure 3.14 (a) to (d), when a = 0.01,0.05,0.1,0.2 and 0.3 m~!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color

shows the area where the values of magnetic field is low.
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3.2 Summarize

In this chapter, we present a mathematical model by using the Magnetometric Resis-
tivity Method with 2—dimensional continuously conductivity model as o (r, z) = ogelaztbr)
The relationship between magnetic field and electric field are used by considering Maxwell’s
equations. The magnetic field intensity is obtained by solving partial differential equa-
tion. The solution are obtained by using Finite Difference Method. MATLAB program
is used to calculate and plot graph for the value of magnetic field intensity. The behavior
of magnetic field intensity will be performed at. different depths and locations. In our
research, the behavior of magnetic field decreases to zero when the depth of soil increases.
As well as the case of increasing the space between source - receiver, the magnetic field
decreases to zero too. The values of a/and b are important rele for the conduction of the
ground and effect to the magnetic field quantities as well. For the high conductive ground
(a and b > 0), the response of magnetic field will be very strong. In the opposite direction

(a and b < 0), the response field will be very weak.



Chapter 4

Finite Element Method for

Magnetic Field Response

In this chapter, the numerical method for finding the approximate solution is pre-

sented by using Finite Element Method (EEM).

The FEM is a numerical . method for finding.approximate solutions to the differential
equations. Finite Element Method basically involves the following steps [2,10,12,13] :
(1) Variational formulation of the given problem.
(2) Discretization-using the FEM : Discretize the domain € into a finite-number of ele-
ment, then find H.
(3) Solution of the discrete problem : Approximate using the Finite Element approxima-
tions.

(4) Solve a system of equations for variable H:

27
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Using equation (3.1), our problem can be written as

0H(r,z) 1 OH(r,z) b 1

+(=—10) —(—+ ﬁ)H(r, z) =0, for(r,z) €, (4.1)

A(r2) —a—g—+ (L= )—5—-(

where € € [10,190] x [0,180] and X € [r, z] with the boundary conditions

H(r,z) =0 on 0y,
H(r,z) = —4.4 x 107°z 4 0.0008 on 0O,
H(r,z)=H(n—1,0),n=1,2;...,10 on 003,
H(r,z) = —8.83 x 107°2 +0.0159 on  Ofy. (4.2)

where L is linear differential operator, R is residual error, H is magnetic field and f(X)

is known function.

OH (r,z)- =1 T, £ 4D )%t

£ (==b)

LiH] = AN e oS A4 L)

So from equation (4.1) residual error can be written as

N AV L > S = ﬁ)H(r, z). (4.3)

The method of weighted residual is applied to our-problem. We multiply (4.3) by a test

function or a weight funetion v and integratethe weighted. residual error over 2. Setting

the total weighted residual error-to zero, we shall find H € V. such that

/ R(X)v dQ2=0, YveV, (4.4)
Q

ov ov

where V = {v € HY(Q) : v is a continuous function on €, o and 3, e piecewise
r 2

continuous on © and v =0 on Q}, V = {H € HY(Q) : H is a continuous function

oH OH
on Q, — and —— are piecewise continuous on 2 and H satisfies conditions (4.2)},

or 0z



29

H'(Q) = {v € L2(Q) : Vv € L2(Q) } and L2(Q) = {v : v is defined on Q and [, v?dX <

o0}. So equation (4.4) can be written as

0H(r,z) 1 OH(r,z) b 1
/Q AH(r, z) — CLT-F (—— b)T_ (-+ ﬁ)H(r,z) v dQ=0.

T r

OH (r, 2) 1 9H(r?) b1
[ oatn a0 [ o= =aon [ Coppg = de- [ Cropot(rz) dQ(: 0).
4.5

Consider the first term of above equation
vAH(r,z)=vV ~VH(r, z),
using the vector product and the divergence.theorem
vV - VH(ryz) =V - (WH) = VH -V,

Then we have

OH (r,z)
/ vAH (r,z) dQ :7{ v———dQ —/ VH - Vv dQ.
Q o0 On Q

The equation (4.5) now becomes

OH(r, z) OH((r, z) 1 OH(r, 2) b 1
?{ v dQ—/VH-Vde—/ av dQ—l—/ (=—b)v dQ—/(——l——)vH(r,z)dQ:O.
99 on 1) Q 0z Q. T or Qr.or2

Since v € V, v =0 on 9f), we have
OH 1 OH b 1
/VH-Vde+/ av—dQ—/ (——b)v—dﬂ—l—/(—+—)deQ:0.
Q Q 0z QT or Q. 12

Thus, variational statement can be written as

Find H € V such that
oOH 1 oOH b 1
/VH-VU dQ+/ av—dQ—/ (——b)v—dQ+/(—+—2)vH d2=0, Vv e V. (4.6)
QO QO z Q T T Q T r

We shall now construct a finite-dimensional subspace V}, of V' and Vh of V. Vi, CV C
H'(Q) and V, c V C HY(Q). The problem the becomes :



Find H,(X) € Vj, such that

O0Hj, 1

30

OHy, b 1
/ VHy-Vv dQ+/ av——dQ— (——b)v—dQ+/(—+ —)vH) d2 =0, Yv € V},.
Q o 0 9 Q

z QT

T T r

(4.7)

Let {¢;(X)}, be the basis function of both V}, and V}, such that

Then our solution Hj, and v can be expressed as

Hy, (X) =" Hip(X)
j=1

and

VXY =) | Bpi (%6,
i=1

where H; = Hp(X;) and f; = v(X5).

The Finite Element approximation (4.7) becomes

n
j=1

for 1=1,2,...,n.

(

/v v dQ+/ %7 /
wj Vi AP~ = N
Q ! Q 0z e |

! b i dQ ) dQ
o el A=) 004 H: =0,
)P . +/Q(T+r2)¢ ©; j

Equation (4.8) can be written in-matrix form as

AH<F,

where ];_I = [Hl,Hg,...,Hn]T, F = [fl,fg,...
dp

,fn]T, and A = A +A9 + A3 + Ay.
dp;

; 1
Here Ay = [, V- Vg; dQ, As = [, acpi—; dQ, Az = — [, (;— b)pi—— dQ

b 1
and Ay = fQ(; + ﬁ)goigoj Q.

0

or
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4.1 Rectangular Elements

Q3
r=10 r=30 r =150 r=170 r=90 r=110 r=130 r=150 r =170 r =190
z=0 0.0159 0.0053 0.0032 0.0023 0.0018 0.0014 0.0012 0.0011 0.0009 0.0008
5290, bt Hi2 H13 H14 H15 H16 H17 H18 H19 —
H22 H23 H24 H25 H26 H27 H28 H29
z=40 0.0124 0.0006
H33 H34 H35 H36 H37 H38 H39
2-60 0.0106 SEL ot
09y
H45 a9
,—80 0.0088 H42 H43 H44 H46 Ha7 H48 H49 B 2
= ; H55 H56 H57 H58 H59
=100 0.0071 H52 H53 H54 e
2=120 0.0053 HE2 oo Hod gkl il 2l Al o 0.0003
H73 W74 H75 H76 H77 H78 H79
2= 140 0.0035 Hiz 0.0002
H83 H85 H86 H87 H88 H89
2=160 0.0018 He2 e 0.0001
=180 >
0 0 0 0 0 0 0 0
a0y

Figure 4.1: Discretizing the domain 2 using a rectangular uniform grid.

We divide Q into rectangular elements, Q, (n—1) x(m~1) = N, elements, where
k=1,2,..., N, n is the partition in r direction and mis the partition. in z direction. We
denote H(X;), i = 1,2;...,100 for H,,,; n = 1,2,..7,100 and nodes X;, i = 1,2,...,100
for (ri,z;),1=1,2,...,10.

The support of ¢; consists of rectangles with the common node X;.

We transform each element to a reference element, 2, by using the following transfor-

mation as,
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n
€uma) G 212)
Ny ! N,

fos: £ i 1

2—+ Ny = Ny
q Ta+1 1m1) (3% )

where N; is basis function at node 7, i = 1,2, 3,4.

Let £ and 7 are our new variable in the coordinate (£, 7).

We are going to transform (r, z) to (&, n) such that

h

- At dSANRE L) R
h

Z:Zp+§(1+77)a p=12.../m-—1.

The differential form can be determined as

h 2
dr-= §d§ . dé€ = Edr,
h 2
dz §dn, dn= Edz,
h2
drdz = dedn.

The relationship between coordinate (r, z) to the basis funetions in coordinate (§,7) are
7(&,m) = Nir1 + Narg + Nars + Nary,
z(€,m) = N1z1 + Naza + N3zz + Nyzy.

The basis functions can be written in the form of & and 7 as

€ Om-n) 1
MU = ey~ a9,
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€-&)0m—n) 1

N = ey = 70+ O =)
_ E-&)n - ) 1
E—&m-m) 1

N4(£, 77) (522_ gl)(ZQ - 771) 1(1 B g)(l " 77)

We now consider the member of A.

A Vo - Vs dQ = Rne; | 00i00; drd 49
1= /% Pi //arar 8—)7”2 (4.9)

After the transformation, we have

2a<p, 20¢; 208\20p; h?
Z//g e o o ] (P%dn

U 05i0p;  0¢pi04; o/ 10
//8585 o) dei (1.10)

where N, is number of reference element.

For a fixed j, we have 9 cases.for i, ¢, j=1,2,...4100.
Interior nodes

case 1 11 =17

= e Q}v@j:i’t = NN
) + O, §;=¢; = N,
at .i 0z 0.8 == Ny
- o=@ =N,

A 1 pr1 ON30N3.. ON30N3 ON,ON, - ONsONy
1 / /_1[( o o€ o or ae a an
ON1ON1 ON;ON; ONoONy  ONgONg

e e T oo T Cag ae Ty o) K

1 1 1
= [ [ GO+ GO 50+ + GO -9
1 1 1 8

+ [(_Z(l — ) + (=71~ €))% + [(7(1 - m)* + (—71+ £))%]) dédn = 3



case 2:1=35+1

a3
Q’J.

LA [ TR
EEF

2 &
& - B w

i 1
2.
Yy

8N38N4 6N26N1 8N28N1

1 8N38N4
=/, / oc € on o) "o ae ey )
1 1
= [ [ gm0 s m+ A+ G0 -9
1 1 1 1
LG )0 + ()50 - €D ded =

case 3:1=35—1

"
& o,
ﬂ

ﬁﬁ@*ﬁ
[
2255

i
1
o

) 1 5N48N3 ON4ON3 ON1 0Ny . ON1ONo
1= / / 52 38 gy an 't Coe ot By o)
1

|
// __1+n 1+n)) (71 =9)(5(1 +Q)]

1 1
4

1 1
-0 LG =M o - )2 PO ded 5 —

cased:1=7—n

B2
e S

[
=z Ez

1 8N2(9N3 ON9ON3 ONyONgs ON1ONy
/ / 5¢ ot 0y on’ T Cag e oy o)
1 1
- [ [ aGa-miGa e+ 50+ )50 +9)
1 1 1
(5= )14 1)+ (1~ )1~ €)]) dedy
1
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case b:t1=j5—n—1

o, ¢
%

Ny
Ny

1
Q;

" 1 8N18N3 ON1ONj3
= e )

1 1
// ——1— 1+n)) (=51 =)L+ &) dédn

= 3,
case 6:1=7—n+1

=F

1 8N20N4 ON9ONy
A = / / ded

8{ 8{ on.-0n )

1 1
/ / d-E 1 (Lo6m) + (50 ONU=€)]) dedn

=-3-
case 7 :1 = J+n

jn

3
o3 i

R OR
S
e Se

FrEE

1 5N48N1 ONy ONy ON3ONo  ON30No
/ / e ¢ ot Cocar T oy o)

1 1 1 1
:/_1/_1([(_1(1+77))(_Z(1_n))+(1(1_5))(—1(1—£))]

1 1

1 1
(A +m) (L =n) + (70 + &) (=71 +&))]) dédn
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case 8:i=j+n+1

0, @ = Ns
@ =N

= + déd
! /_1 /—1[( 0§ o0& on On )] dédn

1 11 1 1 1
= [ [ Gu+mig = m) G+ )—3 - e dedy
1

=3
case 9:i=j+n—1

jan

[0 B
2 o ¢ = N,

i §; =Ny

A 1 1 6N48N2 8N48N2
= i déd
! /_1 /—1[( 0§ 0§ on On )] dedn

B 1 rl 1 A 1 1 1 ) 1 X e
—/_1/_1@(—5( ) (GA=) + (GO F OIS FO)) dedn
1

=3
This gives the matrix-A; has the form,

¢ B

M O 0 o o o oo oo

© © o o o W w o /o
© o ©o o W U Wwio oo

© ©o o o o o o oW
o o o o o o o W'y

© o o W U W o o o o
o o WO W o oo o o
QmOOOOOOOO

100x 100

36



37

where

4 110x10

—1

—1110x10

€

16

16

16

16
-2

8 J10%10

The matrix A, can be determined-as

= ~
— ~
N N
S <
S v
Y \d/ y
2 <
Sl « A
)= p N%\ﬂn
)
— S5 <
/ a2 'S
I s o
< W —
= 1 _|_.
S s —
Q

— /Q aw; 9
After the transformation; we-have
Ne
=3
k=1
ah Ne
-
k=1

As

where IV, is number of reference element.
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For a fixed j, we have 9 cases for i, i, = 1,2,...,100.
Interior nodes

case 1:1 =7

ﬂ} ‘ﬂjz ﬂi:?jjiﬁé( i Ny
8N3 8N4 8N1 8N2
/ [ 4 T+ (0 + (N dean
1 1 1
/ / U+ O A GAAON (GO B +m)(0 - &)
1 1 1

((4(1 =& =m) (=71 =)+ (GA+XHE Tm)(—(1 +)))] dedn = 0.

case 2:1=35+1

o e
i ﬂ.jz ¥ ﬂ?»{;ﬁjx':xf
ah ON7
-5/ [ v 2 2 ) el
1 1 1
/ / (1 &) (1R G (1A 6)  (GO-R 8T 5))(— 5@=~€))] dedn =0
case 3:1 =7 —1
ﬂf Q}.fﬁ[j”&
i1 o i ﬂf(;”;}:ll\\}':
ah ON2
= v dean
1 1 1

/ [ (G049 + (G0 -1~ m)(—1+ ) dedn =0.
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case4:9=7j—mn

D, B

&
Se S

=2z Bz

ah N4
/ [ e+ (i aean

1 1 1
// 10+ 001 =) (1 +€) + (50— O —n)(01 - €))] déy

3

case 5:i=j—n—1

F =

=%

_ah 8N3
/ / Nl —— )] dédn
ah

1 1
/ / 1_ 1_ (4(1+§))] dfd??=ﬁ.

case 6:i=7j—n-+1

=2F

ah 8N4
/ Nz— dédn

- Yl 1 ah
= 7/_1 /_1[(1(1 +&)(1 - 77))(1(1 —&))] dédn = =
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case 7T:1=7j+n

2 R
53 s%

2z Exz

ah/ / N3 aaN )] dédn

1 1 1
/ / JUH+ O+ )51+ + (51 = O + )51 - €)))] dédn

ah 1 gl ONy
::TEf/iljﬁluf%YQZ;ﬁ]dﬁdn

ah 1 L1 1 )
N _/_1 /_1[(1(1 (1) (- @=)W dedy=+15 -

case 9:1 = jFn=1

jn-1

ah r1 p1 ON,
- 7/_1 /—1[(N43—n)] dédn
1 ah

ah r1 1 1
N _/_1 /_1[(1(1 O+ ) (=71 + )] dédn = — 5.



This gives the matrix Ay has the form,

-C C 0 0 0 0 0 0 0 0
-C D C 0 0 0 0 0 0 0
0 -C D C 0 0 0 0 0 0
0 0o -C D C 0 0 0 0 0
ah 0 0 0 —-C D C 0 0 0 0
Ay = (ﬁ)

0 0 0 0o -C D C 0 0 0
0 0 0 0 0 -C D C 0 0
0 0 0 0 0 0. -C D cC 0
0 0 0 0 0 0 0o —=¢ D C
0 0 0 0 0 0 0 0 -C C

where J )

2 1 0 0 0 0 0 0 0 0

1 4 il 0 0 0 0 0 0 0

0 1 4 1 0 0 0 0 0 0

0 0 1 4 1 0 0 0 0 0

0 0 0 1 4 1 0 0 0 0

C= 0/0 0 O 1.74.1.0 0 o0 ’

0 0 0 0 0 1 4 1 0 0

0 0 0 0 0 0 1 4 1 0

0 0 0 0 0 0 0 1 4 1

_O 0 0 0 0 0 0 0 1 2_ 10x10
and D' is zeros matrix size 10 x-10.

The matrix As can be determined as

1 0p; 1 9pj
Az = —/Q[(;—b)%a—i] df2 = —//Q[(;_ b)‘fpia—i] i ge,

After the transformation, we have

AS:’E//@ ( hl N

204, h?
b @i(fﬁ) (T)didn
rq + E(l + 5))

h 9¢

h Ne

B 1 1 1 _»agﬁj
-5 [ ] ( - )b Fip) dedn

k=1"
rq + 5(1 +€)

41

100x 100

(4.13)

(4.14)
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where N, is number of reference element and ¢ is index of i.
For a fixed j, we have 9 cases for i, i,j = 1,2,...,100.
Interior nodes

case 1l 112 =73

04,9, = = My
4 3
; Qj 5 @, @;=¢; = Ny
ar ‘ﬂ}_z G, =¢0 = Ny
03 =4 = My
h r1 r1 1 ON3 1 ONy
As= =g [ [ M s N T (A N )
(ri—1+ =(1+¢) (ri + =(1+¢€))
2 2
1 ONy 1 ON3
+ ((hi —b)N1 Tg) (7 - )N Tg)] dédn
(ri + 5(1 +¢€)) (riz1 + 5(1 +¢€)
h r1 1 1 1 1
=5, [ e fbga F 0 i+ )
(ri—1+ =(1+¢))
2
1 1 1 1 1 1
+ (———— =) (=1 = O + ) (—=(1 1)) + ((——————— =) (=1 =&)L= n)(——(1 —n)))
h 4 4 h 4 4
(ri + =(1+¢)) (ri + -(1 +.8))
2 2
1 1 1 3
(= B+ @ ) ()] dedn = — p g+ 7+ 5]
n 4 4 2
(ri—1+ —(14+€)
2
case 2:1=73+1
o
i j#1 o, ¢ = Ny
i .njz i f;’] u
h 1 1 1 ANy 1 AN,
Az = ‘5,/4 /71[((7}1 ~b)N3 6—5) + ((7}1 = b) N3 8—5)] d&dn
(ri—n+ =(1+§) (ri—1 + =1 +¢))
2 2
h r1r1 1 1 L
= -5 [, N —=0Ges 00 tmES0 o)
(ri—1 +=(1+8))
2
1 1 1 -
+(—-— b)(Z(l +O - 71))(*2(1 —n)))] d&dn = *5[m+ a] .

h
(ri—1+ 5(1 + )

case 3:i=75—1

ﬂf = le-‘ﬁi =Ny

@5 =Ns

B ot i ﬂ}tv‘f’x =N
g @ =Ny
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h 1 AN, 1 9N
=g [ e N D (- M )
(ri +50+8) (ri + 50 +8)
h r1 1 1 1 1
=5 [, [ nGa -0+ )

(ri + 5(1 +€)

1 1 1 h )
+ (————————=0)(=(1 =1 =) (=(1 —n)))] dédn = ——[a +b] .
h 4 4 2
(ri + 5(1+9)

cased:i=j5—n

: lev‘ﬁ':NZ
] 3 = Ns
T ae-n
oo "8 =N
— J] 4
in h r1 1 U ON3 1 ONy
A3 = *5/71 /71[((7h* b)N> 8_.5) + ((hii b) N1 6_5)] d€dn
(ri—1 + 5(1 +£)) (ri + 5(1 +€))
h r1 1 1 1 1
=5 [ s bk 9@ ) G+ )
(ri—1+ 5(1+§))
1 1 1 h
+(———# b)(z(l —&)(1 — 77))(*1(1 +n)))] dédn = 45[0 +d].

h
(ri + 5(1 +9)

case b:t1=j5—n—1

i ﬂ;l-(f’i:l"h
= 9 =Ny
A

Fn-t hor1op1 1 ON3
A=ty /71[((7}1 7 DN s A
(ri T O)
2
h (1 1 1 1 1 h
2o S A GOS80 e )L dedn = £ T

(ri+ 5(1 + &)

case 6:1 =5 —n—+1

i 0, 6= N,

; 4, =N,
2

A SR 1 AN,
s == [ [ s Ny ) e
(ri—1+ (1 +9)
h r1 r1 1 1 1 h
=5 [ =GO+ 00 = m) (=50 + )] dedn = — 1] -

(ri—1+ 5(1 +9))



case 7:i=j+n

j+n
L
4 of @i =N
//ﬂ;‘//ﬁ I{&j =N;
i 03,3 =N,
&)i =N
h r1 1 1 ONg 1 ANy
m=—5[4LJ&————————W@;@+«———————wm;gn%m
(rio1+ 51 +6) (ri+ 1+ )
h r1 1 1 1 1
=5/ [ = hGa o+ ma - m)
(ri—1+ —(1+¢))
2
1 1 1 h
+ (= (5 = O+ m)(= (1~ )] dedn = — g +1] -

hl
(ri + S0+ )

case 8:1=j+n+1

case 9:i=j+n
jena

o]

44



45

This gives the matrix A3 has the form,

B
G D B 0

0
0
0

0
0

0

0 G D B 0

0
0

0 0 G D B 0

0
0
0

0
0

0 0 G D B 0

0

0
0

0 G D B 0

0
0
0
0

0 G D B 0

0
0
0

0 06 G D B 0
QA0 \G ) B

0
0

G FE

4100x100

where

s110x10

€110x10

b
(P +s)

(P +s)

b
(71 s)

b
(7 + s)

b
@ 5)

b
(#+s)

b
(F+s)

b
(P4 s)

b

i

f
(c+d)

()

e

f
(c+d)

f
(c+d)

A
(c+d)

f
(c+d)

f
(c +d)

f
(c+4d)

f

k
(g+1)

(9+1)

l

k
(9+1)

1

k
(9+1)

l

k
(g+1)

l

k
(9+1)

k
(g+1)

l

k
(g+1)

k

l

9110x10

l




[@+»  @+d 0 0 0 0 0 . .
( + ) U (a+b) 0 0 0 0 0 0
0 (m +7) U (a+b) 0 0 0 o o
0 0 (m + 1) U (a+b) 0 0 o 0
D= 0 0 0 (7 + ) U (@ +b) 0 o o
0 0 0 0 (v + ) U (a + {,) 0 0
0 0 0 0 0 (1 + ) U (a+b) 0
0 0 0 0 0 0 ( + #) U (a+b)
0 0 0 0 0 0 0 (4 A) U
L O 0 0 0 0 0 0 0 (rh + )
U=(qg+7+p+s),
-q a 0 0 0 0 0 0 0 0_
m (qa+p) a 0 0 0 0 0 0 0
0 m (¢ +p) a 0 0 0 0 0 0
0 0 ™ (¢+ D) a 0 0 0 0 0
E=|° 0 0 m (qu) a ‘ 0 0 0
0 0 0 0 m (¢+p) a 0 0 o
o 0 0 0 0 n (q+p) a 0 0
0 0 0 0 0 0 1 (@ +p) a 0
0 0 0 g A 0 0 m (g+p) 'a
| 0 0 0 0 0 0 0 0 " »
such that
=/, /,ll“%h DG+ 00 A e,
(ri—1+ E(l +€))
1 /jl /i“% - b>(i(1 TO0+ n>)(~£(1 +m)))dédn,
(ri =1 +€)
2
t= T e S DG =0 - i) (S adn,
KR{RL? h 4 4
(ris —(1+.8))
2
< 4 /_11“% (0t O ) (A — e,
(rici 51 +8)
= /jl /jl«% = b)(i(l FE) (L n))(*z(l + n)))dedn,
(Pt 501 %8)
=/ /,11“% - b)(i(l +0 - n))({(l — m))) dedn,
(ri—1+ 5(1+¢€)
. ot 1 1 1
i= [ ] BGa - 90 (G ) dedn,

(ri + 5(1 +€)

© © © © © ©o o

0
(a+b)

(p+s) |

10x10
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Lot 1 1 1
b= DGO - 90 M (- ) dean,
(ri + 51+ 9)

1 1 1 1 1
e= [ [ — D+ OO = M+ W) dean,
J—-1J-1 h 4 4
(ri—1 + 5(1 +£))

B 1 1 1 1 1
a= [ ] (e 0G0 - 0 (- ) den,
(ri + 21 +€)

= e ! b ! 1 1 ! dgd
1= [ -G 9a = ) dedn,
(ri + 50+ 9)

_ 11 1 1 1
e= [ ] - DA 90— ) ) dean,
(rim1 4 51 +8)

"1 "1 1 4 1
o= [ [ (—s=—— Ehcawad + m)Ga ) dedn,
(riza o1 4 6))

1 1 1 1 1
i= [ (A SR G S O@ ) (- (1 =n))) dedny
J—_1J-1 h 4 4
(rit50 +19)

1 1 1 1 1
= [ [ A= - DG +m)(E0 L)) dedn,
(ri—1+ 5(1 +9)

S 1 1 1
k=[] 1 5 0 90 + a0 —mydean.
(rih 500 +£)

The matrix A4 can be'determined as

NS g,
Ay = /Q[(T_2+ Dpiejl Q) = //Q[(ﬁ“L i) drdz,

After the transformation, we have

Ne . b K2
Aq= // 5y | (—ded
4 sz:l“ék 1 5+ s Guey | (=)dedn
rq + =1+ ) rg+ (1 +6)
2 2
h2 Ne 1 11 1 b .
= 71?::1/*1/*1 5 + Pip; | dgdn,

h h
(T'q + 5(1 + E)) (Tq + 5(1 + 5))

where N, is number of reference element and ¢ is index of 3.

For a fixed j, we have 9 cases for i, i,j = 1,2,...,100.
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(4.15)

(4.16)
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Interior nodes

case 1:1 =7

= e Q}-‘Z’j =@ =Ny
P == N
o a| e
- erﬁﬁj =@ =N

h? 1 1 1 b 1 b
as=—[ [« - S+ - N3N3) + ( - S+ - N4Ny)
(r'i,1 + E(l + E)) Ti—1 + 5(1 +€) (T'i + 5(1 + E)) T+ 5(1 + )
1 b 1 b
+( S+ N1N) + ( 5+ N3 N3)] dédn

h h h
ri+ S(1+9) 7 SA Y rim1+ 7149

b

% 1 1 1
B T‘/*l‘/*l[( h Tt h
(Ti—l + 5(1 + 5)) ri-1 + 5(1 +.£)

1 2
Ga #O0+m))

Yo 1 2
(Z( =61 =n)7)

1
+( g+ (Z(1~§)(1+n))2)+(

b
h
rit S+
2

1 b s R h
(Z(l +8)(1 —n))°)] dédn = 7[p+ g+ +s] .

+( 5+
h h
(T'i—l + 5(1 + 5)) (Ti—l e E(l + 5))

case 2:1=35+1

a3 03 =N;

; o =N

i a2 ¥ ﬂ?»@f =N,
_j @J =N

b 1 b
N3Na) + ( 7+ N2N1)] dédn

h? r1op1 1
Aa = T./71./71[( h = hy h h
ri—1+ 5(1 +¢€) ric1 5(1 +¢) Tl o+ E(1 +€) ri_1 + 5(1 +€)

b

h? 11 1
YA . 2t .
(7‘1'—1 + 5(1 + 5)) <"“i—1 + E(l +5)>

1 1
(1(1 +90+ 71))(1(1 -8 +m))

2

1 b 1 1 RS
(FA+O@ =m) (71 = A = m)] dédn = —[a+b] .

h
(T'i—l + 5(1 + 5))




case 3:1=35—1

Ay

O @i =Ny
@5 =Ns
e =N
@ =N
1 b
+
h 2 h
ri+5(1+€) m+5(1+£)
1 . b
h 2 h
i+ 5148 rit S0+6

b

+ (

h
i + 5(1 +€)

5+

cased:i=j5—n

4 1. 7

jn
s L

Q- o?

h2 . .
==/

o @i = Ny
@ =Ns
Q=N
B =N,

1

h
i + 5(1+§)

b

1
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b
N3 Ny)] d€dn

NyN3) + (
h
(m +50+¢

1 1
(Z(l +9@ +n))(2(1 —&)(

1
NaN3g) + (

5+

h
) ri + 5(1 +)

1+m)))

2

1 1 h
(A +90 7 m)EA - O —m))] dédy = —-[e+d] .

b
N1Ny)] d€dn

h
(T'i—l + 5(1 + E))

5 +

h
<7“i-1 + 5(1 + 5))

b

h
77;+5(

h
<7‘i—1 + 5(1 + 5))

b
hl
7‘i+5( + &)

b

1 1 )
(Z(l +€)Q1 = W))(Z(

1 1
(A= HE=m)( (0 =8 £m)))] didn.=

N3Ny)] d€dn

b

h
ri + 5(1 +6)

h
ri + 5(1 +€)

1
(FA+O@+m)(7

5+

h
Lo+ E)) (T'i + 5(1 + E))

+& @+ m))

2

T[6+f] .

1 R
71— 90 = m))] dédn = —[i] .



case6:1=7—n+1

{ 0, i = N
@y =Ny

< nJZ

jn+1

Ay

b

h2 . .
L 1

N4N2)] dédn

h
("“ifl + 5(1 + 5))

b

h2 . .
T L ,

h
(T'i—l + E(l + g))

case 7:1=7+n

5 +

h
("“ifl + 5(1 7 5))

50

h2

1 1
(2(1 -9+ n))(z(l +&)(1 —m)))] dédn = T[g] .

N4Np)] d€dn

jn
J 0, ¢, = N,
¢ =M
h? 11 1 . L \
A4:T/71/71[( A ik v N3Na) + ( i =+ -
(”’1 TR ‘5)) (”‘1 Y 5)> (ri o &)) (r +50 &))
_ h2 1 1 1 b 1 1 4 )
N T./fl./71[( h P A (Z(1+§)(1+n))(z( +&)(1 = n)))
(T'i—l + E(l + E)) <r,-,1 B 5(1 + 5))
! b 1 1 B2
+( 5+ (Z(l~§)(1+n))(z(1—5)(17,7)))] dedn = TUHLZ] .

jn+l

Ay

b

h
ri—1+ 5(1 +¢)

7+

N N3N1)] d&dn
(T'i—l + 5(1 + E))

b

h
(T'i—l + E(l + E))

2

1 1 B h )
(SO + O +m) (50 = O = m))] dédn = —[a] .
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i=j+n—1

case 9

].

€
]
L=
I
<
=
up
kS
=
=
=
=
|
—
Z
=
ur
AT
—
Z
— I
-
=
=
=
£ +
—
W
S =
_. w
‘a |
4 —
) T
Z )
/N ~
wr w
+ +
— —
Z Z
2 eTw il
+ +
- -
< &
(I\ N———
+ +
al al
\) \)
P P
wr wr
+ +
— Z — =
< o < |
+ +
= =
< <
(I\ (I\
1[1 1[1
< | < |
—! —!
— - — in
< | < |
—! —!
[a] ]
hi4 h_4
Il I
<+
<

This gives the matrix A4 has the form,

4.100%100

0 0 0.0

0
0

0
0

C B.0 0

G D B 0

0 0,0 O
0v 0 0.0

0°G DB 0.0

0 000G D B 0

0

0 G-D B 0 0

0
0

0
0

NGIINDP 57 =N

Y (A SIS V/ 7 | ABAXLY0

0

> - g V0 A

0
0

0

0 G DB

0 0.0 0G F

0

00 0.0

where

s110x10

d
(7 + 5

(P + )

b

d
(P +9)

b

d
(P + )

b

d
(P + s)

b

d
(7 +9)

b

d
(7 + s)

b

d
(P +s)

b

d

b
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(e +f)

g

(e + 1)

g9

(e+f)

g

(e +f)

g9

(e+f)

g

(e +f)

g9

(e + 1)

g9

(e +f)

g

°110x10

g9

U+ k)

I+k)

i

m
(I+k)

n

[

m
A+ k)

I+ k)

.

m

I+ k)

m

(L+k)

n

m

I +k)

n

m

T

k1 10x10

0
(c+d)

(c+d)

(g+7)

0
()

U

+b)

a

0
(c+d)

U

0
(c+7d)

U

(a +0b)

+b)

a

0
(¢+ad)

U

(a+ )

0
(c+d)

U

(a.+b)

0
(e +d)

U

0

U

U= (¢g+7+p+s)

where

(a +p)

a

(¢ +p)

a

(g4 p)

(¢ +0p)

a

(a+p)

(g+p)

a

(g +p)

(¢ +p)

P110x10




such that

b

h
(T'L—l + 5(1 + é))

b

b

5t

h
(T'L—l + 5(1 g 5))

h
(Ti—l + 5(1 + 5))

b

h
<Ti—1 + 5(1 ¢ 5))

b

93

1
(a+oa+ m)?) dedn,

L 2
(7 =@ +m)7) dedn,

1 2
(Z(l — &1 —m))7) ddn,

1 2
(Z(l + &1 =m)7) dédn,

1 1
GA£ OO+ A -0 +m) dedn,

1 1
GCa+90 - m)E A -0 —m)) didn,

1 1
(Z(l +OI+ 71))(1(1 — &1+ n))) dédn,

1 1
GUFOE=mMI(5A =~ 0 — n))) dédn,

1 1
(FAHO@ =m0 + O +m))) dedn,

1 1
(Z(l -1 - 71))(2(1 —&)(1+mn))) dédn,

1 1
(Z(l +o0+ 71))(1(1 — &1 —m))) dédn,



o4

oo 1 b 1 ) ) 1 1 dtd
o= [ [ - S+ - (301 = O+ M) +)(1 = m)) dedn,
(7‘1'—1 + 5(1 +§)> Ti—1t 5(1 +¢€)
1,1 1 b 1 1 dtd
A A - S+ - (G0 +O +m) (G +O0 —n))) dedn,
(7‘1'—1 + 5(1 +§)> Ti—1+t 5(1 +¢€)
1 1 1 b 1 1
= [ - o+ ; (G = O+ ) (1 = (1 = m)) dean,
( o+ s)) ( +o+E)
2 2
o 1 1 1 b 1 1 ded
a= [ - o+ . (0 + O (S - (1 - n)) dean,
(r-i,l +5a +5)> ri— o (1t &)

1 1 1 b 1 1
=[] O (G0 LA +Hm)CaY o1 & n)) dedn.
J-1J-1 4 4

The system becomes

AH =0
SN N
H, 0
[Am = Aty Az, 4a6) L A169)] o/ A
Hn—l 0
H,
o] - 100x1 - - 100x1

Observe that the boundary conditions (4.2) . Hiy, Ha, ..., Hio and Hioc+1, Hig(o41)5
n=12...,100and C =1,2,...,8 and Hg1, Hos, ..., Higp are known value. So we don’t
have to solve for H is known value.

The system becomes



Hyn fur
Hro fure
4] _
[ “leaxea | ' ’
H
LHME] 6y [ fs] 64x1
where ) ) )
Hioo42 fioc+2
Hioc+s fioc+3
Hye = and” fye = ;
H
| Hioc¥9 ] o | fioc+9 ] |
C=12...,8
Here

fi2 = fi2 — Ao pHy — Arp3Hz— Ajp 1 Hy — A1911Hy1 — Ajz91.Ho,

fi9 = fi9 — Arg9Hy — Arga0H 0 — ArggHg — Avg20f29 — A19,30 H3p,

fa2 = fso — Agom1 Hri — Agagi Hgr— Agog1 Ho1 — Ago gaHgo ~ Aga93Hg3,
f89 = fso — Agg g0Hgo — Agg,00Ho0.— Agg,100H100 — Agg,09H99 — Agg.98 Hog,
Let ¢ = 13,14, 15;16,17, 18

fi=fi — Aj i—10)H i<10) = Ai im0 Hg—11) = A im0y H(i—9),

Let i = 22,32, 42, 52,62,72

fi=fi — Aii—yHi—1) =4 Giv9) Hawo) — Ai(i—1n H <11

Let ¢ = 29, 39,49, 59,69, 79

fi=fi — AiayyHiirr) — Aii—o) Hi—9) — Ai i1y Hi11)-
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4.1.1 Numerical Experiments

Numerical results of the magnetic field intensity from equation (4.1) are obtained by
using the Finite Element Method form rectangular elements. There is a source providing
a DC voltage of direct current I = 1A and receiver on the ground surface which picks up
the signal from r = 10 to » = 190 m. The depth z start from the ground surface z = 0
to z = 180 m. The grid size h = 20 m. a and b are given constants . The magnetic field

intensity is computed by using MATLAB programing.

Consider for the case of an exponentially decreasing conductivity o(r, z) = ogelaztbr)
when a < 0 and b = 0, the graphs of the relationship between magnetic field intensity
and spacing of source-receiver at various-depths are plotted as shown in Figure 4.2 and

4.3.

() (d)

Figure 4.2: Graphs of the magnetic field intensity via distance of receiver from

source where b =0, a is varied and z is fixed (a) a = —0.0001 m™!

(b) a = —0.001 m~™' (c) a=—0.005m™! and (d) a= —0.01 m™'.
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From Figure 4.2 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m™!, re-
spectively, we can see that the values of magnetic field decrease exponentially as r and z

increase. The values of magnetic field decrease as a decreases.

)
L

(c) (d)

Figure 4.3: Graphs of the relationship between magnetic field intensity and distance
of receiver from source where b= 0, a wvaries from —0.0001, —0.001, —0.005 and
—0.01 m™! and.z_is fixed: (a) 2z = 20 m~(b) 2 =60m (c) z = 100.m and

(d) z = 140 m.

From Figure 4.3 (a)-to (d) represents the-values of magnetic field ‘which are plotted
against r whereas a varies and-z is fixed at 20;60,100 and 140°m, respectively. We can
see that the values of magnetic fields where ¢ = —0.0001, —0.001, —0.005 and —0.01 m~*
decrease exponentially as r increases and it has similar maner when 2 increases. Because
the values of magnetic field decrease to zero and have values near zero when z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.4.

0.014
0.012
0.01
0.008
E
~
0.006
100
0.004
120
0.002 140
[ 160

10 30 50 70 90 110 130 150 170
1 (m)

(b

10 30 50 70 90

r(m)

() (d)

110 130 150 170

0.014

0.012

0.008

0.006

0.004

0.002

0.014

0.012

0.008

0.006

0.004

0.002

Figure 4.4: Contour graphs of magnetic field at.different distances of receiver from

source and different depths where b = 0, (a) a = —0.0001" ‘m='" (b) a =
m™ (c) a=—0.005m tand (d) a==0.01 m7".

—0.001

From Figure 4.4 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m™}, re-

spectively, the red color shows the area when the values of magnetic field is high and the

blue color shows the area when the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
when a > 0 and b = 0, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 4.5 and

4.6.

() (d)

Figure 4.5: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0, a “varies-and 2z is fixed—(a)a.= 0.0001-m~" (b) a = 0.001
m~t (¢) a=0.005m~ and (d) a=0.01 m .

From Figure 4.5 (a).to (d), when a=0.0001,0.001;0.005 and 0.01.m~!, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.

The values of magnetic fields increase whereas a increases. The results agree to Tunnurak

et al. [12].
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Figure 4.6: Graphs of the relationship between magnetic field intensity and distance
of receiver from source where b = 0, a - varies from 0.0001, 0.001, 0.005 and 0.01
m~' and z is fixed. (a) 2=.20 m (b) 2= 60 m (¢) z=100.m and (d) z = 140

m.

From Figure 4.6 (a)-to (d) represents the-values of magnetic field which are plotted
against r where a varies.and z is fixed at-20, 60, 100-and 140_m, respectively. We can see
that the values of magnetic fields-where a = 0.0001,0:001,0.005 and 0.01 m™' decrease
exponentially as r increases and it has similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.7.

0.014
0.012
0.01
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() (d)

Figure 4.7: Contour graphs of magnetic field at.different distances of receiver from
source and different depths where-b.= 0, (a) a = 0.0001 m=* (b) @ = 0.001 m™*
(¢) a=0.005 m~! and (d).a'=0.01"'m=

From Figure 4.7 (a) to (d), when a = 0.0001,0.001,0.005 and 0.01 m ™!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color

shows the area when the values of magnetic field is low. The results agree to Tunnurak

et al. [12].
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Consider for the case of an exponentially decreasing conductivity o(r, z) = opelaztor)
when a < 0 and b = —0.001, the graphs of the relationship between magnetic field
intensity and spacing of source - receiver at various depths are plotted as shown in Figure

4.8 and 4.9.

() (d)

Figure 4.8: Graphs of the magnetic field intensity via distance of receiver from
source where b = —0.001;-a. varies and| 2 is fixed~(a) @ = =0.0001 m~!

(b) a = —0.001 m™" (¢) a=+=0.005m7" and (d)a=-0.0Lm"".

From Figure 4.8 (a).to (d), when @ =.-0.0001,—~0.001, <0.005 and —0.01 m~!, re-
spectively, we can see that the.values of magnetic field decrease-exponentially as r and z

increase. The values of magnetic field decrease where a decreases.
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() (d)

Figure 4.9: Graphs of the relationship between magnetic field intensity and distance
of receiver from source where b = —0.001, a_wvaries from —0.0001, —0.001, —0.005
and —0.01 m™ as z is fixed:  (a)z=20m (b)z=60m (c) 2z = 100 m and
(d) z = 140 m.

From Figure 4.9 (a)-to (d). represents the values.of magnetic field which are plotted
against r where @ varies and z.is fixed at 20,60, 100 and 140 m, respectively. We can
see that the values of magnetic fields where @ = —0.0001, —0.001,<0.005 and —0.01 m~*
decrease exponentially. as r increases-and it has similar maner where z increases. Because
the values of magnetic field-decrease to zero.and have values near zero where z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.10.

x10"°
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x10°
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140

160
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r(m)

() (d)

Figure 4.10: Contour graphs of magnetic field at different distances of receiver from
source and different depths where-b = —0.001, (a) a.==0.0001. m*
(b) a=—0.001 m™' (c)~a = -+0.005m""and (d) a = -0.01"m™".

From Figure 4.10 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m ™!, re-
spectively, the red color shows the area when the values of magnetic field is high and the

blue color shows the area when the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
when a > 0 and b = 0.001, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 4.11 and

4.12.

() (d)

Figure 4.11: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0.001; @ varies-and z isfixed (a).a =0.0001-m~" (b) a =0.001
m~t (c¢) a=0.005m~ and (d) a=0.01 m .

From Figure 4.11 (a) to (d), when a=-0.0001, 0.001;0.005 and 0.01m ™!, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.

The values of magnetic fields increase when aincreases.
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Figure 4.12: Graphs of the relationship between magnetic field intensity and dis-
tance of receiver from source where b =0.001, @~ varies from 0.0001, 0.001, 0.005
and 0.01 m™! and 2 is fixed: (a) 2=20m (b) z2="160m (¢) 2z =100 m and
(d) z = 140 m.

From Figure 4.12 (a).to (d) represents-the values of magnetic field which are plotted
against r where a varies.and z is fixed at20, 60, 100-and 140.m, respectively. We can see
that the values of magnetic fields-where a = 0.0001;0.001,0.005 and-0.01 m~' decrease
exponentially as r increases and it has similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.13.

0.014

0.012

0.008
0.006
0.004

0.002

Figure 4.13: Contour graphs of magnetic field at different distances of receiver from
source and different depths where.b = 0.001, (a) a =0.0001 m~'(b) a = 0.001
m™ (c) a=0.005 m ' and(d) a = 0.01 m

From Figure 4.13 (a) to (d), when a = 0.01,0.05,0.1,0.2 and 0.3 m~!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color

shows the area where the values of magnetic field is low.
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4.1.2 Summarize

In this section, we present a mathematical model by using the Magnetometric
Resistivity Method with 2—dimensional continuously conductivity model as o(r,z) =

(az+br)  The relationship between magnetic field and electric field is considered by

ope
using the Maxwell’s equations. The magnetic field intensity is obtained by solving partial
differential equation. The solution are obtained by using rectangular Finite Element
Method. MATLAB program is used to calculate and plot graph for the value of magnetic
field intensity. The behavior of magnetic field intensity will be performed at different
depths and locations. In our research, the/behavior of magnetic field decreases to zero
when we increases the depth. As well as/'the case of increasing the space between source
- receiver, the magnetic field decreases to-zerotoo: The values of a and b are important
role for the conduction of the ground and effect to the magnetic field-quantities as well.

For the high conductive ground (a and b > 0), the response of magnetic field will be very

strong. In the opposite direction (¢ and b < 0), the response field will be very weak.
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4.2 'Triangular Elements

Q3
r=10 r=30 r=50 r=70 r=90 r=110 r=130 r = 150 r =170 r=190
z=0 0.0159 0.0053 0.0032 0.0023 0.0018 0.0014 0.0012 0.0011 0.0009 0.0008
H15 H16 H17 H19
2-20 g0141 Hi2 2 g Hig 0.0007
H22 H23 H24 H25 H26 H27 H28 H29
z=40 0.0124 0.0006
H33 H34 H35 H36 H37 H38 H39
z=60 0.0106 N3z 0.0005
99y
H45 Q.
2-80 0.0088 Ha2 143 Mg fdo ek Has e 0.00045 z
= ; H55 H56 H57 H58 H59
z=100 0.0071 H52 H53 H54 0.0004
z-120 0.0053 H62 H63 He4 HE5 H66 H67 H68 H69 —
H73 H74 H75 H76 H77 H78 H79
2=140 0.0035 Hi2 0.0002
H83 H85 H86 H87 H88 H89
7= 160 0.0018 He2 pia 0.0001
2=180 .
0 0 0 0 0 0 0 0
aQy

Figure 4.14: Discretizing the domain ) using a triangular uniform grid.

We divide 2 into triangular elements; Q; 2[(7 = 1) X (m —1)] = N, elements,
where £ = 1,2,...,Ng, 'n
direction. We denote H(X;), i.=-1,2,.:.,100 for H;, i = 1,2,.-7,100 and nodes X;,
i=1,2,...,100 for (r;,2;), i =1,2,...,10.

is the partition in r direction and m is the partition in z

The support of ¢; consists of triangles with the commonnodes Xj,

i

/| .

' AV
Avmmuv
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We transfrom each element €, into reference element €2, by using the following trans-

formation as

1 n
(rs, z3) (0,2)
a3

(r, z1) (12, 22)

T (0,0) (1,0) ¢
i 2

where J\; is basis function at nede i, i= 1,2,3.
Let £ and 7 are our new variable in the coordinate (&, 7).

The relationship between coordinate (r, z) to the basis functions in coordinate (&, 7) are
(&) =rAr A raks +r3)s,

(&) ="M T A d23);

where,

r(0,0).=71,7(1,0) =79, 7(0,1) = rs;
2(0,0) = 21,1(1,0) = 29,7 (0s1) = 25.

The basis functions can be written-in the form of &-and 7 as

):121_5_777
):2257
):3:?’].

Thus,

r(&m) =ri(1 =§—n)+r2(§) +73(n) =r1+ (re — 1) + (r3 —r1)n.



and

2(§,m) = 21(1 =& —n) + 22(8) + 23(n) = 21 + (22 — 21)§ + (23 — 21)7.

The Jacobian matrix can be written as

or Or
dr B 8_6 8_77 df B ro—T1 T3 —7T1 df
dz 0z 0z| |dn 29 —2z1 23— 21| |dn
& on

So, drdz =| J | d&dn.

We have two types of elements in Q namely QYand Q?

7
(1, Zj4n) (0,1)
| &
b3 L ;

(r:, z;) (Tivns 7)) (0,0) (1,0)

Figure 4.15: Q.

such that
r=Tr;+hE and z=zj + hn
n
(-, 25) (ri 27) (0.1)
P >
(Ti:z;j—h) (0.0} (1.0) J

Figure 4.16: Q2.

such that

r=r; —h€ and 2z = zj — hn.
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Therefore, the Jacobian matrix of Q!
h 0
J = ,
0 h
| J |= R,
and the Jacobian matrix of Q2 similar Q.

So,
drdz =| J | dédn = h2dédn.

We now consider the member of A.

A Vo, Vi dQ = 8%8% X drd 417
1 — / (70,7 (701 // 67“ 87" 8Z) T Z? ( . )

After the transformation, we have

10105 (15 (Wop; |/
A= 2// 1750 G5 5 G| (e

I=n 3% 0% 09; 095 - A
4 1
// e ) A (4.18)

where IV, is number of reference element.

For a fixed j, we have 7 cases for.i,%,j = 1,2, .77, 100.
Interior nodes

case 1:4 =

1- 8)\ O\ O\ O\ O\ O\
4 = / / "y (G + (D) + (G + (o) + (g + () ldsdn
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case 2:1 =75 —1

0,5 =1
Pi=1
0., =1
P =42

A 1 1_77 85\1 85\2 85\1 85\2 d d
- = T 55 =-1.
! /0 /0 65 85 877) Sdiy

case 3:1=35+1

2R
X ¥
[T
2 a2

N 1 f1-n 9Xa0Xy. O ON A
' /0/0 Corae " an an o

cased:1=75—n

i
0?2
ot
jn

1= OALOAs | O OX3
A= /
0 0

¢, = 13
G =4
02,4 =13
i =h

2(3—58—5 + ——)dfdn 2

case b:i=j—n+1

0l ¢; =1

P =1z
ot 0%,¢; = 23
@i =4z

02

L opl-n OXadAs DA dN3
AlZ// 2(6—58—5 T 8)d£dn_0.
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Jt+n

1

case 6

DD
P

E N

case 7T:i=j+n—1

jena

o e

A
ESASURNNEN

I

Xo ON3 Oy

0N 0N pie
oE € & ooy 15IM=0 -

1 1-n
o
0 JO

This gives the matrix A; has the form,

Ay

4 100x100

0 0

0

¢ ' B0 00 0 0

B-D B 0

0

0

0

0.0

0

0.0

0.-B _D~B. 0

O SND=T/10 197 A~ O0N\U

0.0

0 B.D B 0 0

0
0
0
0

0

0 0B D -B 0 00

0
0

0 JE P LS Qusl?

0
0

0 0 B D B0

0-0 B D B
Q 0™ 0§ U & 0 DB~ T

0

0

0

where

2 110x10

—1
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-1 0 0 o0 o 0o o 0 0 0
0 -2 0 o0 o 0 o0 0 0 0
0 0 -2 o0 o 0 o 0 0 0
o 0 0 -2 0 0 0 0 0 0
B—|° ©° o o -2z 0 0o 0o o o
1o 0 0 0 0o -2 o0 0 0 0 ’
o0 0 o0 o0 o 0 -2 0 0 0
o 0 0 0 o 0 0 -2 0 0
o0 0 o0 o0 o 0 o0 0 -2 o0
Lo o o o o 0 0o 0 0 -1]19x10
(4 2 o o o o o o o 0]
-2 8 -2 0 o0 0 o0 o0 0 o
0 -2 8 -2 0 0. 0 0 0o 0
0 0 -2 8 -2 0 0 o0 0 o
D=|° ©° o -z 8 /o2 0 o0 0o o
o 0 0 0 -2 8~ -2.0 0 0
o o 70 o 0 ~~2 8. =2 o0 0
o 0 0 o0 o S=tp&L) s\ -/
o 0 0 o i B i N CA Yt W) B
Lo o o 0 0 o0 0. -2-4]19x10

The matrix Ay can be determined as

;i 9p;
Ay = / agpz-—j dQ = // (agpi—J) drdz, (4.19)
0 Z Q aZ

After the transformation, we have
= 103
G / / api (=) (h?)d€dn
; N h On

Ned 01400 0p;
~ah / / St A 4.20
kz::l QA (i, L dsdy (4.20)

where N, is number of reference elemernt:
For a fixed j, we have 7 casesfor i, 4,j = 1,2, ..., 100.
Interior nodes

case 1:4 =

11
mAN\2| 1

ot at

v )
a2 o
o




A 1 pl-nm h[ 5 o\ (5\ (95\3 ()\ O ]d 4
= 2ah[(M—+—) + (A3——) + Aa——
2=/ (AM—=) 3 577) 2 577) &dn
a= [ [ an a&z) (A a&l) déd
g a _|_ -
? 0 Jo / on ? on ] 7
1 pl=n ah
— [/, edean =2
o' Jo
£ 1 1-7n 65\1 3)\2
=3 ah[(Ng——) + (My——)]d&d
RQT7oE [(2877) (1877)]577
1 pl—n ah
([ avlejpedy=
0 Jo
case 4:1 =75 —n



case b:i=7—n+1

. 0l ¢, =13

Q @ =1s
at 0% 95 =4
Pi =43

1-n _ O ONs
4y = / / Az + Qg ldscy

_ /01 /01_77 ahl€]dedy = %

case 6:1=7+n

®
[Tl
J

case 7:i=7+n=1

R

=)
R
IRE

77
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This gives the matrix Ao has the form,

0 0 O

0
0

G D B 0 0 O

0

0 G D B 0

0
0
0

0

0 0 G DB 0

0
0

0 0 0 G DB 0 0

0 G D B 0

0
0
0
0

0

0

0 G D B 0 0
0 0 .0 G D B 0

0

0
0

0
0

00000 G D B

00 G FE

0

4100%x100

ah

where

Ll10x10

=1

1l10x10

0

0 f10x10

-1

=-G.

B=-C and E



The matrix Az can be determined as

Agz—/g[(;— //Qr % ] drdz,

After the transformation, we have

. 18%
Z//Q { b h%)} (h?)dedn

:_hZ/ /1 n{ b)G; a;} dedn.

79

(4.21)

(4.22)

where Q' :r =7, + hE, Q% :r=1; — h¢ and N,-is number of reference element.

For a fixed j, we have 7 cases for i, i,j=1,2, - 100,
Interior nodes

case 1:4 =

1= 77 g 8;\1 1 .
a= [ [ R e e S,
s 1 Y

+ (((m) b)Xe 3¢ O (((m) 7 b)Ala_g)

1 O3 1 AN
+ (((m) N b)>\38—§) + (((m) - b)/\28—£)] d&dn

1—
—h/ / 77 m—b)(l—ﬁ n) = (((nlJrhg)) b)§
+ ((m) b)(1—&—m) — ((m) b)§] dédn

—hla—d+f—¢.
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case 2:1 =75 —1

1= 77 - 85\2 1 _ 85\1
S n+hs>) g ()~ g

1—- 77 1
= h/ / Tz—i-l h{’ —b)§ — ((m) —b)(1 =& —mn)] dédn

= hle —aj .

case 3:1=75+1

A - n —OX, 1 _ O
3= / / 7”1 1t hﬁ)) = b)Aza—g) + (((m) - b)/\la—f)] dédn

1-n 1
= h/o /0 [((m) N ((m) S B)(L % €<n)] ldédn

cased:i=7—n

1= 77 - 65\3 1 8:\1
A?"/ / n+h§)) M50 + (g — Da)] den

_h/ /177 )~ Dl dédn = hlg)



case 5:i=j—n+1

A 1= 77 - 8:\3 1 R 65\2
1- n
—h// ey~ bl dedn =hl-g]
case 6:1=7+n
1= 77 - 85\1 1 B 8:\3
s = / / n + hg)) b))‘3a—€) + (((m) - b)/\la—f)] dédn
1-7 1
—h y _ :
/0 /0 [(((m - é)) b)) -dédn = h|d]
case 7T:i=j+n-—1
1= 77 - 85\2 1 _ 65\3
Az = / / 7”@ n h&)) 4 b))\38—$) t (((m) = b))\ga—g)] dédn

1-n
=i /0 K(m)‘b)”] dédn = h[—]

81
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This gives the matrix As has the form,

4 100%x100

B
G D B 0

0 0 0 0 O
0 0
0

0

0 G D B 0

0

0 0 G DB 0

0 0 0OG D B 0 0 0 0

0
0

0 G D B 0 O

0
0

0

0
0 0 0 O

0

0 G D B 0

0

00 0.G D B 0
0.0+0 G D B

0 0700

G F

Az =h

where

(@+d)

b

(a+d)

b

a
(a+d)

(& +d)

b

(@ d)

b

(&4 d)

b

b

9110x10

=9

0 110x10
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[a—e) (e—a) 0 0 0 0 0 0 0 0
=) U (e — a) 0 0 0 0 0 0 0
0 =) U (e — a) 0 0 0 0 0 0
0 0 ) U (e — @) 0 0 0 0 0
D= 0 0 0 b-1 U (e — @) 0 0 0 0
- 0 0 0 0 b= U (e — @) 0 0 0 ’
0 0 0 0 0 &-1 U (e — @) 0 0
0 0 0 0 0 0 b-1 U (e — @) 0
0 0 0 0 0 0 0 b-1 U (e —a)
| o 0 0 0 0 0 0 0 G- -9 19x10
where U=(a—e+ f—d)
(e e 0 0 0 0 0 0 0 o]
—f (f—e e 0 0 0 0 0 0 0
0 —f (f —e) e 0 0 0 0 0 0
0 0 —f f = e e 0 0 0 0 0
E=1|° 0 0 —f (f—e e 0 0 0 0
0 0 0 0 —f (f —e) e 0 0 0
0 0 0 0 0 —f (f—e) e 0 0
0 0 0 0 0 0 =f (Ff — e e 0
0 0 0 0 0 0 0 =f (Ff—e e
o 0 0 0 0 0 0 0 =L f110x10
such that
1 plem 1
g — —b — & —mn) d€dn,
A A ()t Dl e/ midkan
1 1—n 1
7= [ Corrome) — e agin,
Lomp ) 1
fr= /O /0 (m) —b)(1 =€ =) d&dn,
1 _r1—n 1
e/= — " ) b)¢ dédn;
/0 /0 ((n‘ﬂ 4 h&)) <
X 1 pl—n 1
b= /0 /0 (m) — b)& d&dn,
1 1—m 1
9:‘/0 /0 (7(”7}@)*6)17 dgdn,
r1—mn 1
= — ) —b)n dédn.
c /o ((w n h&)) )n dédn
The matrix A4 can be determined as
1 b 1 b
Ar= [ [(5+ Do) d2= [ [ [(5+ Dpipj] drdz, (4.23)
2 2
QT T QT T

After the transformation, we have

Ne o1 plon 1 b
= 2 —_— p— ~. ~.
As=h ;/0 /0 (5 + )] degdn. (4.24)
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where Q' :r =7, + hE, Q%2:r=r; —hé and N, is number of reference element.

For a fixed j, we have 7 cases for i, i,j = 1,2,...,100.
Interior nodes

case 1:1 =7

v \A
ks 2

A 0 b/ 5% 1 b
' _/ / n+h€> o A g e + G — g )
b 1 b

(((m_1 YDA hg))Am) + (((” ol hg))Ml)
1 b » 1 b
+ (((Tz T hé)? + T hf)>>\3)\3) + (((Ti+1 . h§)2 7V h§)) Xo)] dédn
1- n / )
_h2/ / (ri + h&)? (m~|—h£))(1_£_77)2+((7«2._hg)z'i' (ri—hg))(n)z
1 b
)62 J(1—e L p)?

" ((”—1 Fhe| (7”2‘—1 + he) (- heP (i~ )
1 b : { -

(ri + h&)? - (r; + hf))(n) I ((riJrl T hEP v el

= (M)[a+b+cH+d+ f+g]-

+ )(&)?] dedn

case 2:1 =75 —1

R OR
& ek

R
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A 7 b s 1 b
T / / n + h&)? (ri + hg))Al)‘Q) + (((Ti+1 — hé)? + (rit1 — hf)) )] d&dn

1- n
"W/"/ CEYE rr+%9u—g—m@>

HEA =& —n)] dédn

i ((Ti+1 — hé)? (T‘i+1 — h§)
= (W)[k+1] .

case 3:1=35+1

1— 77 b \ / 1 b
a0 1+h£> S 1)) S tae o rey )

1- n
2
_h// (ri1 + )2 (r11+h§))(£)(1_£_n)

I —&= n)(€)).dédn = (h?)[k+1]..

+(

(i—hi) (i—hﬁ)

cased:1=75—n

i
0l =1
2 B =1
% b=
. . 8=1s
f ¢=h

jn

1— 17 b = T b
A4—/ / m+h£ (ri+h£))/\1A3)+(( - 5+ )Ash1)] d€dn

1- n
—h?/(/ CEYIE n+h®x1—g—nxm

Y(n)(1 =& — )] dédn = (h*) i + 7] .

+

(z—hé) (z—hé)
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case H:i=5—n+1

1— 17 b o 1 b
he / / o hé) o) (e T e )
1- n
B h2/ / i T hE2 | (ri 1+h§))(577)
(s hg) T hé))(né)] dédn =/(1h)[s +¢]\
case 6:1=7+n
1— 77 b -, 1 b
A4 o / / Tz 4 hf (Ti « hf)))\g/\l) + (( (ri '] hf)2 + (Tz' — hf))/\l)\g)] dfdn
1—
—hz// n (12 - HE) m+h§))( n)d—§ -m)
(s hg) - hg))(l = &~ )] dédn=(1)[m + 3] .
case 7:1=7+mn—1
1— 17 b o 1 b
A= / / NCERAE (ri T (e s hg)) As)] dédiy

_ h2 - 77 1 b
/ / (ri +h&)?  (ri + hf))(né) + ((Tz'—i—l — hE)? + (ris1 — hf))(én)] d&dn
= (h*)lg +17] .



This gives the matrix A4 has the form,

Cc B o0 0 0 0 0O 0 0 o0
G D B 0 0 0 0 0 0 O
O G D B 0 0 0 0 0 O
0O 0O G D B 0 0 0 0 0
, 10 0 0 G D B 0 0 0 0
Ay =nh
O 0 0 0 G D B 0 0 O0
O 0 0 0 0 &D B 0 O
O 0 0 0 000.G D B 0
O 00,0 000 G D B
O 0.0 0 -~ 0-0-0,0 G FE
L 4100x100
where
[a k 0 0 0 0 0 0
E (a+b+4c) k 0 0 0 0 0
0 k (a+b+c) k 0 0 0 0
0 0 k (@+b+c) k 0 0 0
O — 0 0 0 k (& + b+ k 0 0
o 0 0 0 k (a4 b+ c) k 0
0 0 0 0 0 k (@+ b+c) k
0 0 0 0 0 0 E (@+b+c)
0 0 0 0 0 0 0 k (a+
K 0 0 0 0 0 0 0
[ 0 0 0 0 0 0 0 0 0
(s+1t) (m+mn) 0 0 0 0 0 0 0 0
0 (s+1t) (m+n) 0 0 0 0 0 0 0
0 0 (s+1) (m+n) 0 0 0 0 0 0
B — 0 0 0 (s+1t) (m+n) 0 0 0 0 0
- 0 0 0 0 (541  (m+n) 0 0 0 0
0 0 0 0 0 (s+1t) _(m¥n) 0 0 0
0 0 0 0 0 0 (s.4+ t) (m+mn) 0 0
0 0 0 0 0 0 0 (s +¢t) (m+mn) 0
| o 0 0 0 0 0 0 0 (s+t) n
ERRCER)) 0 0 0 0 0 0 0 0
0 (m+n) (qg+7) 0 0 0 0 0 0 0
0 0 (m+mn) (¢+7) 0 0 0 0 0 0
0 0 0 (m +n) (g + 7) 0 0 0 0 0
G = 0 0 0 0 (m +n) (g +7) 0 0 0 0
o 0 0 0 0 (m+n) (qg+7) 0 0 0
0 0 0 0 0 0 (m +n) (g+7) 0 0
0 0 0 0 0 0 0 (m +n) (g +7) 0
0 0 0 0 0 0 0 0 (m+mn) (qg+7)
K 0 0 0 0 0 0 0 0 n

© © © © ©o ©o o

e

lA7+c)
k

oo

110x10

410x10

+ » ©o ©o o o © o o ©

o

87

10x10



_(&+f+g) (k+1) 0 0 0 o o 0
(k+1) U (k+1) 0 0 o o o
0 (k+1) U (k+1) 0 o o o
o A 0 0
D= 0 0 0 (k+1) U (k+10) 0 o
— 0 0 0 0 (I;:+L) U (k:+f) o
0 0 0 0 0 (k+ 1) U b+ )
0 0 0 0 0 0 G+ -
0 0 0 0 0 0 o G+
L 0 0 0 0 0 o o 0
where U= (a+b+c+d)
EY] i 0 0 y o
l (d+f+g) 7 0 0 0
0 t (d+f+9) i p o
0 0 t @+ f+9) i )
E=]|" 0 0 ! @+Thg) ;
’ ’ 0 2 ! (d+Ff+9)
0 0 0 0 3 . 22
0 0 0 0 - 0
0 0 0 o o y
L 0 0 0 0 0 b
such that

4= ‘/01 -/0147,( (Ti

. Qi Nt b y
= [) [) ((Tz — h&)z + (ri — hé))(ﬂ) d&dn,

1

1

Lori=mn 1 b
\ '/O ‘/O ((’"i-l + he)? ¥ (ri=1 + h§)

A (e —1h£>2 bR )
Y N /olin(m
‘G /01 /01_77((7“i+1
“ME Y7

1 b

+
ThE? (ri+
1

b
+
—h&)2 " (riy1 —
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such that

1 rl—m 1 b
"= /0 /0 ((T'z’ — h&)2 + (rs — hg))(l — & —mn)(n) dédn,
1 rl-n 1 b
o /0 /0 ((T'i—l + hé)? - (ri—1 + hg))(én) dedn,

1 rl-n 1 b
- /0 /0 ((T'i — h¢)2 + (ri — hg))(nf) dgdn,

1 rl-=n 1 b
= -/0 /0 I« (r; + h&)? + (ri + hE))(”I‘S) d&dn,

ﬂ_/l/lin( : + L y(en) ded
“Jo Jo (rigy1 — h&)2 (rig1 — h€) n 7.

The system becomes

A =10,
[ H, v 0]
Hs 0
[A“ = A1(i,5) + A20i.5) + Aslag) T A1) | g0 d00 | =
Hn—l 0
1,7 100x1 © 54 100x1

Observe that the boundary conditions (4.2) . Hi,Ha, ... Hip and, Hipct1, Hioc41),
n=12...,100 and C'=1,2,.::,8 and Hoy, Hos, . .. +Hygp are known value. So we don’t
have to solve for H is known value.

The system becomes

Af /R,
Hyri Tar
Hayro fur2

[Ai’j]mxm ' - . ;
Hs | fus

- - 64x1 - 64x1



where ) )
Hioc+2
Hiocqs
Hye =
H
10049 ] ¢ 4
C=12....8.
Here

and  fuc =

fi2 = fio — A12pHo — A1 1H1 — A1z 11 Hua,

fi9 = fi9 — ArggHg — A19,9Hg — Ay9,20H20— A19,30H30,

fs2 = fe2 — Ao 11 Hr1 — Asga g1 Hgr—~ Aga92 Hoos
f89 = fgg — Asgg,90Hog — Asgg,100H100 — Ago,00Hoo,

Let i = 13,14, 15,16, 17, 18

fi=fi — Aii—10)Hi—10) — Ai i1 Hie11);

Let i = 22,32,42, 52, 62,72

fi=fi — A i—yH—1y) A5 a2y H i 2y
Let 7 = 29, 39,49, 59, 69,79

fi = fi = Ai ey Hirny = Ai GrinH

flOC’+2

fioc+3

| f10c+9 ]

8x1

90



91

4.2.1 Numerical Experiments

Numerical results of the magnetic field intensity from equation (4.1) are obtained by
using the Finite Element Method form triangular elements. There is a source providing
a DC voltage of direct current I = 1A and receiver on the ground surface which picks up
the signal from r = 10 to » = 190 m. The depth z start from the ground surface z = 0
to z = 180 m. The grid size h = 20 m. a and b are given constants . The magnetic field

intensity is computed by using MATLAB programing.

Consider for the case of an exponentially decreasing conductivity o(r, z) = ogelaztbr)
when a < 0 and b = 0, the graphs of the relationship between magnetic field intensity
and spacing of source-receiver at various depths are plotted as shown in Figure 4.17 and

4.18.

() (d)

Figure 4.17: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0, a is varied and z is fixed (a) a = —0.0001 m™ (b)

a=-0.001 m™t (¢) a=—-0.005m™" and (d) a=—0.01 m~*.
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From Figure 4.17 (a) to (d), when a = —0.0001,—0.001,—0.005 and —0.01 m™!,
respectively, we can see that the values of magnetic field decrease exponentially as r and

z increase. The values of magnetic field decrease as a decreases.

Figure 4.18: Graphs of the relationship between magnetic field intensity and dis-
tance of receiver from source where b= 0,'a varies-from.—0.0001, —0.001, —0.005
and —0.01 m~!and z isfixed. (a) z =20m_(b).z=60m (c) z =100 m and
(d) z =140 m.

From Figure 4.18 (a) to (d) represents the.values of magnetic field which are plotted
against r whereas a varies and.z is fixed at 20,60,100 and 140-m, respectively. We can
see that the values of magnetic fields where a = —0.0001, —0.001, —0.005 and —0.01 m~*
decrease exponentially as r increases and it has similar maner when 2 increases. Because
the values of magnetic field decrease to zero and have values near zero when z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.19.
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Figure 4.19: Contour graphs of magnetic field at-different distances of receiver from
source and different depths where b="0; (a) a= —0.000L. m ' (b) a = —0.001
m™ (c) a=—0.005m="and (d) a.= —0.0L.m~".

From Figure 4.19 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m~!, re-
spectively, the red color shows the area when the values of magnetic field is high and the

blue color shows the area when the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
where a > 0 and b = 0, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 4.20 and

4.21.

() (d)

Figure 4.20: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0, a “varies-and 2z is fixed—(a)a.= 0.0001-m~" (b) a = 0.001
m~t (¢) a=0.005m~ and (d) a=0.01 m .

From Figure 4.20 (a) to (d), when a=-0.0001,0.001;0.005 and 0.01m ™!, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.
The values of magnetic fields increase whereas a increases. The results agree to Tunnurak

et al. [12].



95

Figure 4.21: Graphs of the relationship between magnetic field intensity and dis-
tance of receiver from source where b =0, @ varies from 0.0001, 0.001, 0.005 and
0.00 m™' and z is fixed. (a)2 =20 m (b) 2 =60 m (c)z= 100 m and (d)
z = 140 m.

From Figure 4.21 (a).to (d) represents the values of magnetic field which are plotted
against r where a varies.and z is fixed at-20, 60, 100-and 140_m, respectively. We can see
that the values of magnetic fields-where a = 0.0001,0:001,0.005 and 0.01 m™' decrease
exponentially as r increases and it has similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.



96

Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.22.
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Figure 4.22: Contour graphs of magnetic field at-different distances of receiver from
source and different depths where b=0,(a) a="0.000L-m ' (b) a= 0.001 m™!
(¢) a=0.005 m~" and(d) a.= 0.0Lm "

From Figure 4.22 (a) to (d), when a = 0.0001,0.001,0.005 and 0.01 m~!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color

shows the area when the values of magnetic field is low. The results agree to Tunnurak

et al. [12].
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Consider for the case of an exponentially decreasing conductivity o(r, z) = opelaztor)
when a < 0 and b = —0.001, the graphs of the relationship between magnetic field
intensity and spacing of source - receiver at various depths are plotted as shown in Figure

4.23 and 4.24.

() (d)

Figure 4.23: Graphs of the magnetic field intensity via distance of receiver from
source where b = —0.001; @ varies and~zis fixed  (a) a'=-=0.0001 m~ (b)

a=—0.001 m! (c) a==0.005m" and (d) a= ~0.0Lm

From Figure 4.23 (a) to (d), when-a.= —0.0001,—0.001, —~0.005 and —0.01 m™!,
respectively, we can see that the values of magnetic field decrease exponentially as r and

z increase. The values of magnetic field decrease where a decreases.
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Figure 4.24: Graphs of ‘the  relationship. between magnetic field intensity
and distance of receiver from source where-b =_—0.001, a varies from
—0.0001, —0.001, —0.005 and '=0.01" m~" as 2z .is fixed. ' (a) 2 = 20 m (b)
z=60m (c) z=100-m and (d) = =140 m.

From Figure 4.24 (a).to (d) represents-the values of magnetic field which are plotted
against r where @ varies and z.is fixed at 20,60, 100 and 140 m, respectively. We can
see that the values of magnetic fields where @ = —0.0001, —0.001,<0.005 and —0.01 m~*
decrease exponentially as r increases-and it has similar maner where z increases. Because
the values of magnetic field-decrease to zero.and have values near zero where z increases

as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.25.
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Figure 4.25: Contourr graphs of magnetic field-at-different distances of receiver
from source and different depths-where b = —0.001,+(a) a = —0.0001 m~! (b)
a=—-0.001 m™ (c) a=-0.005m7"and(d) a =-0.01 m~".

From Figure 4.25 (a) to (d), when a = —0.0001, —0.001, —0.005 and —0.01 m ™!, re-
spectively, the red color shows the area when the values of magnetic field is high and the

blue color shows the area when the values of magnetic field is low.
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Consider for the case of an exponentially increasing conductivity o(r, z) = opelaztor)
when a > 0 and b = 0.001, the graphs of the relationship between magnetic field intensity
and spacing of source - receiver at various depths are plotted as shown in Figure 4.26 and

4.27.

() (d)

Figure 4.26: Graphs of the magnetic field intensity via distance of receiver from
source where b = 0.001; @ varies-and z isfixed (a).a =0.0001-m~" (b) a =0.001
m~t (c¢) a=0.005m~ and (d) a=0.01 m .

From Figure 4.26 (a) to (d), when a=-0.0001, 0.001;0.005 and 0.01m ™!, respectively,
we can see that the values of magnetic fields decrease exponentially as r and z increase.

The values of magnetic fields increase when aincreases.
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Figure 4.27: Graphs of the relationship between magnetic field intensity and dis-
tance of receiver from source where b =0.001, @~ varies from 0.0001, 0.001, 0.005
and 0.01 m™' and 2z is fixed; (a) 2=20m (b) 2="60 m (¢).z =100 m and (d)
z = 140 m.

From Figure 4.27 (a).to (d) represents-the values of magnetic field which are plotted
against r where a varies.and z is fixed at20, 60, 100-and 140.m, respectively. We can see
that the values of magnetic fields-where a = 0.0001;0.001,0.005 and-0.01 m~' decrease
exponentially as r increases and it has similar maner where z increases. Because the val-

ues of magnetic fields decrease to zero and has value near zero wherez increases as a varies.
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Contour graphs of the relationship between magnetic field and distance of receiver

from source at various depth are plotted as shown in Figure 4.28.
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Figure 4.28: Contour graphs of magnetic field at different distances of receiver from
source and different depths where.b = 0.001, (a) a =0.0001 m~'(b) a = 0.001
m™ (c) a=0.005 m ' and(d) a = 0.01 m

From Figure 4.28 (a) to (d), when a = 0.01,0.05,0.1,0.2 and 0.3 m~!, respectively,
the red color shows the area where the values of magnetic field is high and the blue color

shows the area where the values of magnetic field is low.
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4.2.2 Summarize

In this section, we present a mathematical model by using the Magnetometric
Resistivity Method with 2—dimensional continuously conductivity model as o(r,z) =

(az+br)  The relationship between magnetic field and electric field is considered by

ope
using the Maxwell’s equations. The magnetic field intensity is obtained by solving par-
tial differential equation. The solution are obtained by using triangular Finite Element
Method. MATLAB program is used to calculate and plot graph for the value of magnetic
field intensity. The behavior of magnetic field intensity will be performed at different
depths and locations. In our research, the/behavior of magnetic field decreases to zero
when we increases the depth. As well as/'the case of increasing the space between source
- receiver, the magnetic field decreases to-zerotoo: The values of a and b are important
role for the conduction of the ground and effect to the magnetic field-quantities as well.

For the high conductive ground (a and b > 0), the response of magnetic field will be very

strong. In the opposite direction (¢ and b < 0), the response field will be very weak.



Chapter 5

Conclusions and Future Works

The aim of this thesis is to)present a mathematical-model by using the Magne-
tometric Resistivity Method with a 2-dimensional continueusly conductivity model as

az+br) - The relationship between magtietic field and electric field are con-

o(r,z) = oge!
sidered by using Maxwell’s equations. The magnetic field intensity is obtained by solving
partial differential equation. The solution are obtained by using Finite Difference Method
and Finite Element Method. MATLAB program is used to-calculate and plot graph for
the value of magnetic field intensity... The.behavior of ‘magnetic field. intensity will be
performed at different depths and loeations.’ In our research, the behavior of magnetic
field decreases to zero when the-depth of soiliincreases.~As-well asthe case of increasing
the space between source - receiver, the magnetic field decreases to zero too: The values
of a and b are important role for the conduction of the ground and effect to-the magnetic
field quantities as well.« For the high conductive ground (¢ and b > 0), the response of
magnetic field will be very strong. In the opposite direction (a-and b < 0), the response
field will be very weak. The comparision of the quantities of magnetic computed by Fi-
nite Difference Method and Finite Element Method are similar. Since the magnetic field
intensity can be able to inform the location of the ore body under the ground and the
behaviour of magnetic field clearly performs very good relation to the conductive ground

therefore the research results are very useful in geophysical exploration because normally

we can measure magnetic field on the ground surface.
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Even though the work presented in this thesis provides interesting idea about the
solution to the forward problems for the magnetic field response, the issues that we dealt
with suggest numerous avenues for possible extensions and future works. The following
outline is a list of interesting future directions that require further investigation:

1. Analytied solution should be developed.

2. Multiplyered earth model should be considered.

3. The inverse problem should be proposed.

4. The difference conductivity model should be considered.
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Abstract

In our study, mathematical model of finite difference method for
the magnetic field response from a two—dimensional continuously con-
ductive ground is presented. The magnetic field at various locations are
plotted by assuming the Earth structure having a two—dimensional ex-
ponential conductivity profile. There is a source providing a Direct Cur-
rent (DC) voltage and receiver on the ground surface. Finite difference
technique is applied to solve the partial differential equation. MATLARB
programing is used to perform both values and graphs of magnetic field
at varioug locations. The results show the intensity of magnetic field
for cross—section of the ground structure very well. The behaviour of
magnetic field clearly performs the relation to the conductive ground.
The research results are very useful in geophysical exploration since
normally we can measure magnetic field on the ground surface. The
magnetic field can be able to imply the ore under the ground via the
technique of inverse problem.

Mathematics Subject Classification: 86A25
Keywords: Finite difference; magnetic; magnetometric

1 Introduction

At present, natural resources are utilized extensively such as minerals,
petroleum and groundwater. Geophysical survey is very important to geologi-
cal structure survey or exploring the natural resources. During the past several
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