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Chapter 1

Introduction

A circulant matrix is an n X n matrix whose rows are composed of cyclically shifted

versions of a list (ag, ai, .. ;a,-1). Precisely, a circulant matrix is of the form
Qo aq Ao ... Ap—92 Ap-g
ap—1 Ao A1 ... Gp=3 4p_2
Ap—2 Gp—1 Ap~ ... Ap—yg 0dAp_3 B} Cil’(CLO, ag, - - 7an71)-
aq as asg.. ... A1 ag

Circulant matrices are interesting due to their rich algebraic structures and various ap-
plications (see [2]; [5]; [13], [12],-[14] and references therein). Such matrices have been
applied to various disciplines such-as image processing, communications, signal process-
ing, networked systems and coding theory (see, for examples,; [13], [12] and [14]).
Circulant matrices have continuously been studied since their first appearance in the
paper by Catalan [1]. In 1994, P. J. Davis [2] published the book “Circulant Matrices”
which summarizes the algebraic structures, properties and some applications of circulant
matrices. Circulant matrices have been shown to be diagonalized by a discrete Fourier
transform. Therefore, a linear system whose coefficient matrix is circulant can be quickly
solved using a fast Fourier transform. In cryptography, a circulant matrix is used in the
Advanced Encryption Standard (AES). In 2009, M. Grassl and T. A. Gulliver [5] discovered

that circulant matrices over finite fields can be applied in constructing good codes and

1



good self-dual codes. In 2015, Y. Zheng and S. Shon [14] studied the inverses of some
circulant matrices.

The Fibonacci sequence F,. of Fibonacci numbers is defined by the recurrence relation
F.=F._1+F._»

for all » > 3 with the initial values F; = 1 and Fy, = 1. A Fibonacci circulant matrix, a
circulant matrix whose entries are given by Fibonacci numbers, has been studied in [9].
Precisely, an n x n matrix is called Fibonacci circulant if it is of the form cir(F, : n) :=
cir(Fy, Fri1,..., Friyq) for some positive integers r and n. In [9], D. Lind determined
the determinant of Fibonacci circulant matrix cir(F}.: n).

In this thesis, we focus on a generalization of circulant matrices and a generalization
of Fibonacci circulant matrices.

Given a positive integer n'and.a nonzero complex number.z, an n x n complex matrix

A is called a z-twistulant/[2] if

QAo ay a9 o Ap—9 Qp-iq
ZQp L1 (%) (041 N - Ap—3 ~Qpio
A= 26, A\ \RA YN0 N Tk AU, .., 00 1)
21 2a9 23 ... [ ZQp_1 Qo
for some (ag, a1, ..+ an_1) € C"~We note that.if-z = 1, a z-twistulant matrix is just
a circulant matrix. A z-twistulant'matrix is called negacirculant matrices when z = —1.

Denote by Cir,, ,(C) := {cir,(w) | w € C"} the set of n x n z-twistulant matrices over
C.
As a generalization of the Fibonacci sequence, F.D. Parker and E. Halsey (see [11] and

[6]) introduced a real-valued Fibonacci function F' : R — R defined by

a® — (cosmx)a™™

V5

for all real numbers z. Note that the restriction of this real-valued

F(z) =

1+v5
2

where o =

Fibonacci function to the set N of natural numbers is the Fibonacci sequence. A real-



valued Fibonacci circulant matrix is a matrix of the form cir(F'(r) : n) = cir(F(r), F(r +
1),...,F(r+mn—1)) for some positive integer n and real number r.

As discussed above, the algebraic structure and the determinant of circulant matri-
ces are given in [2] and [7], respectively. The determinant of Fibonacci circulant matrices
is determined in [9]. However, to the best of my knowledge, properties of z-twistulant
matrices and the determinant of a real-valued Fibonacci circulant matrix cir(F'(r) : n)
have not been well studied. It is therefore of natural interest to determine the determi-
nant of a z-twistulant matrix, the determinant of a real-valued Fibonacci circulant matrix
and characterize the algebraic structure of Cir,..(C).

The thesis is organized as follows. In-Chapter.2, some basic properties of matrices,
groups and rings are recalled: In-Chapter 3, the algebraic structure of z-twistulant matrices
is studied and the characterization of n x n z-twistulant matrices is established. The
explicit formula of the determinant of z-twistulant matrices with |z| = 1is given in Chapter

4. In Chapter 5, the determinant of a real-valued Fibonacci circulant matrix is determined.



Chapter 2

Preliminaries

In this chapter, we recall some basic properties about matrices, groups and rings.

2.1  Matrices

In this section, we recall some special matrices together with their basic properties.
Given a positive integer n, denote by M, (C) the set.of all m-x n. complex matrices

over C, where C denotes the ‘'set of complex numbers.

Definition 2.1.;Acirculant matrixis an.n x n-matrix whose rows are composed of cyclically

shifted versions of a list (ag, @4, . . . ;an—1). Precisely, a circulant'matrix is of the form
Qo ay Ao v Ap—2 Ap_1q
an—1 o ~.aip ©... Qp-3 Qnp_2
Ap—o Qp_1 Ay ... QGp_g Ap—3 | = Cir(am Ay, ... aanfl)'
aq a9 as ... QAp—1 Qo

Example 2.2. Let (=3i,7,—9,5+1i) € C%. Then

—3i 7 -9 5+4i

cir(=3i,7,—-9,5 +1i) =




is a4 x 4 circulant matrix.

Definition 2.3. For a non-zero z € C, a matrix A € M,,(C) is called a z-twistulant if

ap ay as ... Ap—9 Ap—1
ZQp—1 Qo ay c. Ap—3 Ap—2
A= ZQp_9 ZAp—1 Qg ... Apn—4 QAp—3
Za1 Za9 zas ... ZQp—1 Qo
=:cir,(agyai, ../, an_1)
for some (ag, ay,...,a, 1) € C™

Denote by Cir,, .(C) :={cir,(w) |iw €-C"} the set-of n xn z-twistulant matrices
over C.
A z-twistulant matrix is called circulant and .negacirculant matrices if z = 1 and

z = —1, respectively.

Example 2.4. Let (2,5i,3,2 ~i).€ C* Then

2 ol 3 2—i

1+ 2i 2 Ol 3
ain(245i,3,2 =1).=
3i 1+ 2i 2 oi

-9 50 Wa WP,

is a4 x 4 i-twistulant matrix which is not circutant.

The determinant of a Vandermonde matrix and the following properties of matri-
ces play an important role in determining the determinants of circulant matrices and

z-twistulant matrices.

Lemma 2.5 ([10, Chapter 3, Section 3.4, Theorem 2]). Let ag, ay, as, . .., a,_1 be complex



numbers and let n > 2 be an integer. Then the determinant of a Vandermonde matrix

1 1 1 1 1
ao ay asg e Qp_9 Qp—1
2 2 2
Qg ay as Ap_o Gy
n—1 n—1 n—1 n—1 n—1
Qg ay Qg Ap_9 Qp_q

is of the form

1<5<i<n
Theorem 2.6 ([8, Chapter 5,Theorem 5]). An"n-x-n complex matrix A is diagonalizable

if and only if the Eigen vectors of A are linearly independent.

2.2  Groups and Rings

In this section, the definitions-and some-basic properties of groups and rings are recalled.

Definition 2.7. A group:is an ordered pair (G, ) where G'is a-non-empty set and * is a

binary operation on G-satisfying-the following axioms:
i) (a*b)xc=a*(bxc)foralla,b, ce G, ie.,xis associative.

i1) There exists an element e in G, called the-identity of G, suchthat axe = exa = a

forall a € G.

iii) For each a € G, there exists an element a~tin G, called the inverse of a, such that

Definition 2.8. A group (G, *) is called abelian (or commutative) if a x b = b a for all

a,b e G.

Example 2.9. The set M,(C) of 2 x 2 matrices over C is an abelian group under the

matrix addition.



Definition 2.10. Let (G, %) be a group. A subset H of G is called a subgroup of G if H

is a group under x|,,_,.. If H is a subgroup of G, we write H < G.

a 0 a b
Example 2.11. Let H = a€Cjand K = a,b e C 3. Then

0 a b a

Definition 2.12. A ring R is a non-empty set together with two binary operations + and
- (called addition and multiplication, respectively) satisfying the following axioms for all

a,b,c € R:
i) a+b=>b+a.
it) (a+b)+c=a+ (b+c).
i11) There exists an element 0.in" R such that 0 4 a = a.
iv) For each a in R, there exists an element’ —a € R such that a + (—a) = 0.
v) - is associative, i, (a-b)-c=a-(b:¢).
vi) The distributive laws hold-in R, i.e.,
(a+0) le=(a-e)+(b-¢)

and

¢-(a+b) = (e a)+(c-b)

Aring R is said to be commutative if the multiplication is commutative and it is said to

be a ring with identity if there exists an element 1 € R such that

forall a € R.

Example 2.13. The set M5(C) is a non-commutative ring with identity.



Definition 2.14. Let S be a subset of a ring R. The set S is said to be a subring of R if S

is a ring under +; ¢ and -4 .

Example 2.15. The sets H and K in Example 2.11 are subrings of M;(C).
Definition 2.16. Let R and S be rings.

(1) A ring homomorphism is a map ¢ : R — S satisfying the following conditions.

i) pla+b) = p(a)+ ¢(b) forall a,b € R.
i1) @(ab) = p(a)p(b) forall a,b € R.

(2) The kernel of a ring homomorphism ¢, denoted kery, is the set of elements of R

mapped to 0 in S.

(3) Aring homomorphism ¢ : R~ S is called a ring isomorphism if ¢ is one-to-one and

onto.

Theorem 2.17. A ring homomorphism @ : R-— S is one-to-one if and only if kerp = {0}.

N
Example 2.18. Let S = a,b € C} andlet K be defined in Example 2.11.
b a

Then S and K are subrings of M5(C). Let @ : K*—.S be defined by

It is not difficult to see that
p(A+ B) = ¢(A) + »(B)
and

©(AB) = ¢(A)p(B) forall A,B € K.

a b a b a b
For each € S, we have ¢ = , and hence, ¢ is onto.

—b a b a —-b a



a b
Let € ker ¢. Then
b a
0 0 a b a b
= SO =
0 0 b a —-b a
0 0
It follows that @ = 0 and b = 0. Hence, ker ¢ = . It follows that ¢ is
0 0
injective.

Therefore, ¢ is a ring isomorphism.

Definition 2.19. Let R be a commutative ring and let [ -be a subset of R. The set [ is

called an ideal of R if
(1) (I,4+) is a group.
(2) ar e Iforallr € Randa€ 1.
Lemma 2.20. Let R-be a commutative ring and let a- € R. Then
aR=Har |'r € R} isan ideal of R.
The ideal aR inLemma 2.20'is called theideal generated by a, denoted by (a).

n .
Example 2.21. Let C[z]| = {Z a;x"
i=0

aieCandnENU{O}}.Then

(z* — 1) is an ideal in C[z]generated by x? — 1.

Proposition 2.22 ([4, Chapter 7, Proposition 6]). Let R be a commutative ring and let
I be an ideal of R. Then the (additive) quotient group R/I is a ring under the binary
operations :

(r+0)+(s+1)=(r+s)+1

and

(r+0)x(s+1):=(rs)+1

forallr,s € R.



10

Definition 2.23. When [ is an ideal of R the ring R/I with the operations in Proposition
2.22 is called the quotient ring of R by I.

Example 2.24. From Example 2.21, it follows that C[x]/(z* — 1) is a quotient ring.




Chapter 3

Characterization of Complex Twistulant

Matrices

In this chapter, the algebraic structure of Cir,; s(C) is determined in terms of polynomials
over C and Cir,, ,(C) is shown tobe a commutative ringwithidentity. Moreover, Cir,, ,(C)

and Cir,, _,(C) are isomorphic as rings.

Proposition 3.1. Let n be a positive integer andlet .z € € \ {0}. Then Cir,,.(C) is a

vector space over C with the usual addition and-scalar multiplication of matrices.

Proof. It is not difficult te see that cir,(a + ¢b) = cir.(a) +¢cir,(b) for all a,b € C" and

¢ € C. Hence, Cir,,(C) is a subspace of the complex vector space M, (C). ]

Theorem 3.2. Let n be a positive integer and let z € C\ {0}. Then Cir, ,(C) is a subring
(with identity) of M,,(C).

Proof. Clearly, I, = cir,(1,0,0,...,0) € Cir, .(C). Let @ = (ag, a1, ..., an-1),

11
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b= (bo, bi,..., bn—l) € C,. Then

cir,(a) = ciry(ag, a1, ..., ap_1)
Qo aq a9 N e |
Z0p—1 ao ay oo Qp_29
= ZAp—9 ZAp—1 Qo ... Qp—3
Zaq Za9 zas ... Qo

and

CIrZ(b) = CirZ(bo, b17 e ;bn—l)

bg by YR~ W)

an,1 bo b1 P bn72

. anﬁg an—l b() .. bn,3
Zbl Zb2 Zbg o bO

It is not difficult to see that cirz(a) = cirs(b) = cir;(@ —b) & Cir,;.(C). To show that
cir,(a)cir,(b) €-Ciry.(C), let e }nxn = cirz(a@)cir,(b). We show. that-[c; j]nxn is @ 2-

twistulant matrix, i.e.,
1. ¢ j = cip1,541 foralld <i <nm=3.andi<j < n—3,
2. 2Cip—1 = Cip10 forall 0 <i<n —2,and j =n—1.
3. ¢ij = Ciy1jp foralll <i<m—2and0 <75 <i—1

We consider the following 3 cases.

Casell1<i<n—3andi<j<n-—3 Wehave

it n-1
Cij = E agb_iyjk+ 2 E agb_itj
k=0 k=—itjt1

= Cit1,5+1-
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Case20<i1<n—2andj=n—1. We have

n—(i+1) n—1
Cin—1 = E apbn_(iy1)—k + 2 E arbn—(iy1)—k-
k=0 k=n—1i
Hence,
n—(i+1) n—1
2Cip_1 = 2 E Webn—(it1)—k + 2 E arbn—(iv1)—k
= k=n—1i
= Ci+1,0-

Case31<i1<n—2and 0 <y <7— 1. We have

n—i+j n—1
2
Cij =% E f.0f v k% E arbn—iti—k
k=0 k=n—i+j+1
= Cit1,j41-

From the 3 cases, cir,(a)cirz(b) = [¢i j]lnxn € Cirp,.(C)-
Therefore, Cir,, .(C) is a subring of M,,(C). []

Let C[x] denote the.ring-of polynomials-over C and let (f(z)).denote the ideal of

C[z] generated by a polynomial. f(z)-€ Clz].

Theorem 3.3. Let n be-apositive integer and-let z . € C\{0}. Then Cir,, ,(C) is isomorphic

to Clz]/{z™ — z) as.rings.

Proof. Let W : Cir,»(C) —Clz]/(z" — z) be defined by
U(cir,(agyay, - - =5 an_1)) = Zaixi +Az" — 2).

Let @ = (ag,ai,...,an,_1),b = (b, b1,...,b,_1) € C". Then

U(cir,(a) + cir,(b)) = ¥(cir,(ag + bo, a1 + b1, ..., an_1 + bp_1))

3
—

(a; + b))x" + (2" — 2)

a;x" 4+ (x" — z>> + (i: bix' + (z" — z>)

= U(cir,(a)) + ¥(cir.(b)).

M

i}
§|>o

7

I\
=)
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To show that ¥ (cir,(a)cir,(b)) = ¥(cir,(a))¥(cir,(b)), let [¢i jlnxn = cir.(a)cir.(b).

By Theorem 3.2, we have [¢; j]nxn € Cir, .(C). Hence,

U (cir,(a)cir,(b)) = ¥(cir.(cop, Co1s-- -5 Con-1))

k=0 \k=i+j k=i+j—n
n—1 n—1

=2 | 2 e f’f“Zz( 2 az‘bj)xkﬂx”—@
k=0 NK=itj k=0  \k=itj—n
n—1

S S i)+ +Z( S . >xk+n+<xn_z>
k=0 \k=i+j k=0 \k+n=i+j
n—1 2n—2

:Z Zaibj x—l—Z(Z )x + (2" — 2)
k0" \k=irkj n | kit

; j> VA —
k=i+j

G Tt 2™ —z)(be—i—x —z))

(cirs(@))¥(cirs(b)).

el
Il
o

I
Do
T
[N}
A
=
>

I
- ~
IYTE

Therefore, ¥ is a ring homomorphism.

For each f(x)+ (&" —z).eC[z]/{z" — z), we have

n—1
flz) 4z = 2)= a;xt + (= z),
=0
where a; € Cforalli=0,1,...,n — 1, and hence,

U(cir,(ag, a1, ..., an_1) = f(x) + (2" — 2).

It follows that W is onto.

To show that W is injective, let cir,(ao,as, .. -,an—1) € ker U. Then

(2" — z) = Y(dr,(ag, a1y, Q1)) = Zaiazi + (2" — 2).
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n—1 n—1
It follows that > a;z" € (2" — z). Since deg(> a;z") < n, we have a; = 0 for all
i=0 1=0

1=0,1,...,n—1. Then
cirz(ao, i, ... ,an_l) = Cirz(O) = [O]an

which implies that W is an injective.
Therefore, W is a ring isomorphism. Equivalently, we have Cir,, ,(C) is isomorphic to

Clz]/{x™ — z) as rings. []

Corollary 3.4. Let n be a positive integer-andlet z €-C \ {0}. Then Cir,.(C) is a

commutative subring of M, (C).

Proof. Note that Cir,, .(C) is isomorphicto C|z]/(x"—z) by Theorem 3.3. Since C[z]/{z"—

z) is a commutative ring, we-have Cir,, .(C) is commutative. []
Example 3.5. Let a = (i,2, —5i,4),b="(3,i, ~i,2i) € C*. Then

cin(a) =<in(i, 2, —5i, 4)

_ 112 AN\ -
di- i .2 =Oi
A of \I\\=>i 2
2i /5 i [

and

3 i =i 2




It follows that

—8—2i 9+10i —-7—-13i 15 —2i

2+151 -8—-2i 9-—-10i —7—13i
cir(a)cir;(b) =
13—-7 2415 —-8-2i 9-—10i

—-10+9 13-7 24151 —-8—-2i

16

= cir;(b)cir;(a).

We note that the rings C[z]/(z™ — 1) and Clz]/{z™ 4 1) are isomorphic as rings [3,

Proposition 5.1]. Extending this idea, it can be shown that C[z]/{x"™

— z) is isomorphic to

Clz]/(x™ + z) as rings, and hence, the following result can be obtained.

Theorem 3.6. Let n be a positive integer, then Cir, ,(C) is isomorphic to Cir, —.(C) as

rings.

Proof. Let n be a positive integer. By Theorem 3.3, it siffices to show that C[z]/(z" — z)

is isomorphic to Clz]/(z" 4 z) as rings. Let a/ be a primitive nth root of —1.

Let ¢ : Clz]/ (2™ — z) — Clx]/ (2" 4+ z) be defined by
(A2 ==)) = [lox) A1+ 2).

Let f(z) and g(x)be polynomials in C[z] be such that

F@)FA2" = 2) = g(2) 4 {a"=").

Hence,
flem) + ((q@)" =2)= glaw) + ((az)"~ 2)
if and only if
flaz) + (2" + 2) = glaz) + (2" + 2)
Therefore,

flaz)+ (2" + 2) = g(azx) + (2" + 2).

It follows that ¢ is well defined and injection.

It is not difficult to verify that ¢ is surjective and it is a ring homomorphism. Therefore,

@ is a ring isomorphism.

[]



Chapter 4

Determinants of Complex Twistulant

Matrices

In this chapter, the determinant of z-twistulant matrices over the complex field is studied.
A special case where z = 1, the determinat of circulant matrices is given in [2] and [7].
Here, we consider a general.case where z is an arbitrary non-zero-complex number.

Let z € C\ {0}. Then z = r(cos A+ isin Am) forsome 0.< A < 2 and a positive

real number r. Foreach 0 <'k < n, let

2k . R
Wy = COS — T + 1SIN —7
n n

and

s, =/({/7)"(cos %ﬂ' + isin %w)

Then wy’s are the nth roots of unity.

Example 4.1. Let n = 4 and z = cos 2 + isin 2F. Then, for each 0 < k < 4, we have
Wy = COS §7r 4+ isin §7r

and

S = COS =T +isin—m.
6 6

17
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The determinant of circulant matrices as given in [7]. Here, we determined the de-
terminant of z-twistulant matrices in Theorem 4.2. The result in [7] can be viewed as a

corollary of our result.

Theorem 4.2. Let (ag,a1,...,a,-1) € C" and let z € C\ {0}.Then

n—1 /n-—1
det(cir,(ag, a1, ..., an_1)) = H (Z ajsjw;‘?> :

k=0 \j=0

Proof. For each integer j € {0,1,...,n — 1}, let

S
=

Ni/= 1 apspwr,
k=0
and let ~ [
Sowg
1 $100]
Xi=—
Vn
Sn—1Wh,_1
Since
Sit; if 0 <i+7<n.
SZ'S]' =
ELP v X d) § i
Then
> ) : -
(Z aisiwg) Sowy)
i=0
n—1 . )
1 <Z aisiwf) S1wi
)\ij = T =0
n .

n—1 . .
J J
g A;S;W; | Sp—1Wy_q
1=0

n—1 .
D aiSiw]
i=0

n—1

J J
Z0n_1S0Wh + Y ai—18iw]
i=1

Si-

n—2 . .
J J
> 2i418iwW] + AoSp—_1Wy_q
L i=0 J
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and
_ - ' -
J
> aisiw]
i=0
. on—1 .
j j
. 1 Z0p_1S0wWh + Y 18w}
CH'Z(ao, Ay, ..., an,l)Xj = — 1=1
vn
n—2 . .
j j
> zajsiw] + agSp_1wl,_,
L =0 i
Hence,
Cil’z((lo, Ay, ... ,an,l)Xj = )\ij
forall 0 < j < n — 1. Therefore, A, is an Eigen value of cir,(ag, a1, .. .,a,—1) and Xj is

an Eigen vector corresponding to-\;.

Let
X 1
- T XO Xl . * anl
n
n—1
S0 SoWo g." SoWy
n—1
S1 S1W1 A Sy,
1
=3 vo— S SoWs J =)
Vi 2
n—1
Snil [ Sn—1Wn—1 (.. Sp_1W, 7
Then
n—1
LTy a\. Yy
n—1
1% ¥t Wy
= 1
det(X) =n72 sp51...5,—1det | 1 wy ... Wi~
n—1
1 wpr o0 w)
-_n
=n72 5)51...5,_1 H(wl — wj).
i>j

by Lemma 2.5. Since n2 595y ... 5,_1 # 0 and [Iis;(wi —wj) # 0, we have det(X) #
0. Hence X is a nonsingular matrix. It follows that {Xo, Xi,..., X, 1} is linearly

independent. Therefore, Xy, X1,...,X,_1 are linearly independent Eigen vectors of
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cir,(ag,a, . ..,a,—1). By Theorem 2.6, cir,(ag, ay, . . ., a,_1) is diagonalizable and cir, (ap, a, . . .

XDX™!, where D = diag(Mo, A1, ..., \n_1) is a diagonal matrix. Hence,

det(cir,(ag, a1, ..., a,_1) = det(X DX 1)

— det(X) det(D) det(X )

= det(D)
= XA A\
n—1
=[]
k=0
n—1 [n-1
Therefore, we have det(cir.(ag; a1,+ . -, an-1)) =[] | 2= @;s;w} | as desired. []
k=0 \ j=0

In the case where z = 1, we have the following result.

Corollary 4.3 ([9, Equation (3)]). Let (ag, ay, - .+ a,-1) € R™ Then

det(cir(ag, a1y s @n—1) H (Z ajwk) X

k=0
where the
2k 2k

Wi = COS—7 4 Isin —7
n n

are the n'"* roots of unity for.each integer k€ {0;1,~ .., n —'1}.

Example 4.4. Letn = 4, 2 = cos? + isin2* and a.= (i,2,-2i,4) € C*. Then

=B LY 15

w():l,wl:i,u)gz—l,w;; =i 80—1 S1 |and83—|

By Theorem 4.2, we have

det(cir.(a H (Z a;sjw > (375 + 90v/3) + (180 + 48V/3)i.

k=0

From the proof of Theorem 4.2, we conclude the following corollaries.

Corollary 4.5. Let (ag,a1,...,a,—1) € C" and let z € C\{0}. Then the following

statements hold.

1. The matrix cir,(ag, ay, . .., a,_1) is diagonalizable.

9 an—l)
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n—1
2. The Eigen values of cir,(ag, a1, ...,an_1)are \y = ajsjwj’?, wherek =0,1,...,n—
=0

1

3. Foreach 0 < k < n — 1, the Eigen vectors of cir,(ag, ay, - .

to Ay is

X =

1
NG

S]_wl

k
Sp—1Wp_q

L -

., Gp—1) corresponding

Corollary 4.6. Let n be a positive integer and let z & C be such that |z| = 1. Then every

n x n z-twistulant matrix is diagonalizable.

Example 4.7. Let z = cos

2

=edsin %’T From-Example 4.4-and the proof of Theorem 4.2,

the Eigen values of cir, (i, 2, —2i,4) are Ao = 2V/3+5i,A\{ = (3—v/3) + (2+/3i), Ay = 3i
and A3 = (—3 — v/3) + (2 =/3i). The Eigen'vectors of cir.(i, 2, —2i,4) are therefore of

the forms

X

and

1
2
V3 1
T
1, V8
ANy

N[

7X1

+

u>|'
ks

I
&|n

[
v A

N

K
+ DO
mlL

NN
_|_
“




Chapter 5

Determinants of Real-Valued Fibonacci

Circulant Matrices

In this chapter, we study real-valued Fibonacci circulant matrices. First, we recall the
Fibonacci sequence and the determinant of Fibonacci circulant matrices studied in [9].
Finally, we study a real-valued Fibonacci function and determine.the determinant of a

real-valued Fibonacci-circulant matrix.

5.1 Fibonacci Circulant Matrices

In Chapter 2, a circulant matrix,-whose rows are composed of cyclically shifted versions
of a list (ag,as,...,a,_1).€C" is introduced.- In this section, we recall some circulant

matrices whose entries are from special.numbers-studied in [9].

Definition 5.1. The Fibonacci sequence F, of Fibonacci numbers is defined by the recur-
rence relation

F.=F_1+F_
for all r > 3 with the initial values F; =1 and F; = 1.
Example 5.2. The following numbers are the first 7 terms of the fibonacci sequence:
Fir=1F=1F;=2F,=3F;=>5F;=8and F; = 13.

22
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Definition 5.3. An n X n Fibonacci circulant matrix is a circulant matrix whose entries are
given by n consecutive Fibonacci numbers. Precisely, an n x n matrix is called Fibonacci

circulant if it is of the form
cir(Fr:n) :=cr(F., Friq, ..., Frinq)
for some positive integer r.

Example 5.4. From Fy = 3, F5 = 5, F5 = 8 and F7 = 13, we have

3 5 8 13

3.3 5 8
Cir<F4 : 4) = Cil’(F4, F’57 F67 F7) ey

.13 3 5

9.8 13 3

The determinant of a fibonacci circulant matrix is studied in[9]-and the main result is

as follows.

Theorem 5.5. Let n and r be-natural numbers. Then

(Fr - Fn—l—r)n / 1 (Fn+r—1 p 4 Fr—l)n
1 =L, A=)

where L, = F,_ + E..1is thew!™ Lucas number.

det(cin(Fy=n)) =

Lemma 5.6 ([9, Equation (d)]). Let z and y bereal numbers. Then

5.2 Real-Valued Fibonacci Circulant Matrices

F. D. Parker [11] and E. Halsey [6] introduced a real-valued Fibonacci function F': R — R
defined by

a® — (cosmx)a™™

F(x) = 7 :

where o = # for all real numbers z.
Note that the restriction function of the real-valued Fibonacci function to the set N

of natural numbers is the Fibonacci sequence.
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Example 5.7. Some values of the real-valued Fibonacci function are given as follows.

1 1
ply = L2552
2 10 2

@+ VB2 5. J(1++5)®
)=V T PR = e

Definition 5.8. A real-valued Fibonacci circulant matrix is a matrix of the form
cr(F(r):n) :=cr(F(r), F(r+1),...,F(r+n—1))
for some positive integer n and real number r.

Example 5.9. From Example 5.7 and Definition 5.8, we have

J 16 (1+3/5)8 (1+v5)°
10 40 160

1
air(F(5) : 3) = \/ (L5 \/ LB (/)

160
\/ TENGE @1 5)5 \/ /5
40 160 10

The determinant of a real-valued Fibonacci circulant matrix can be determined as

follows.

Theorem 5.10. Letn beapositive integer and let r € R. Then

(E(r)=Fm+r)"—(F(n+r=1) -+ F(r— 1))“

det(cir(F(r) »n)) = T (=0 ) (=T)"

Proof. For 0 < 7 <mn, let

™t — (cos m(j+T))a~0F"

a; = F(j+r)= — 3

Then

det(cir(F(r) : n)) = det(cir(ag, a1, . .., Gpn_1))-

By Corollary 4.3, we have Equation (5.1).
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(1m_o(1sod) — 1) (1m0 — 1) :
(1 — 4 Ftied (T — 1)) + (L + U)o — (g

(1'9)

(1y_o(1s0d) — 1) (Mo —)
((( % | ey e
(1—agu) P((T—d+U) L SOD)— 1,1 0 (12a)2O((T—4)2 500)— 2 0 () =P (4 1)£503) — ;4 O L_0o(1s00)— 0 -

(=0 {E503) =1)(Tw = Pg i

Q3A:l+5|dﬁ + )L S0 + :le?k s02) — ng? 502)))— ?+S|6A? + W) LSOD) - 4y D — ,_0(LLSOD) — O

fir,_o(i503) L) (062 g H

(1m0~ ) (0 () O (A U)2500) —4 20 (LL:502) )~ (1m0 (L $03) — T)(dm 40® — ,O)

L= ey oo — 1 v

w (1 0(Ls0)) = 1) (,0)(4L s0I) | (u(1mD) — Sgd

(e, WO) (L) (44 )L s0D) = (o),

HNO
:|
E

T
==

5 A <

@rp0((44 )2 so) — 0

o —~
Il
= 2

T
S

:
AHN
=

A )l )112)39p
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Hence,

det(cir(F(r) : n)) = kll F(r) — F(gtgw;((f(j (—C;)W—)Of’(lzzu];: r— 1))w;€-

By Lemma 5.6, we have

[[FEE) -Fn+r)+ (F(r—1) = F(n+r—1)w)
k=0
=(F(r)—=Fn+r)"—(F(n+r—1)—F(r—1))",
1:[(1 — awg) = (1 —a"),
and » 4
[ # (cosm)aT )= (L= (cosmn)a™).
Hence, )
ﬁ(l — awy) (1= (cosm)atay) = (1 —/a™) (1 — (cosmn)a™™)

=1+ (cosmm)a " —a" + cosn

1= (=1)"a™"=a" + (—1)"

L= (—a Y o™ 4 (—1)"

|

Therefore, we have

(F(r) — F(n+r)"— (Fw+or=1)—F(r—1)"

det(cir(F(T) 3 n)) y 4 1 (_a—l)n —an (_]_)n

as desired. []

Remark 5.11. If r is an integer, we have

(Fr - Fn—l—r)n - (Fn—i-r—l - Fr—l)n

det(cir(F(r) : n)) = 1— L.+ (=1

= det(cir(F, : n)).

Example 5.12. Consider F(3) = “t;gg)s,F(g) = (1+1g{)5)5 and F(%) = _(1@{)5)7‘

Then, by Theorem 5.10. below, we have

det(cir(F(;), F(g),F(;) :3)) ~ 8.1663.
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