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Let X be a nonempty set, and let I={Y;:iel} be a family of nonempty
subsets of X with the properties that X =J Y, and ¥,NY, =< forall 7,je/ with

iel
i#j.Let @-Jc1,andlet
I (X)={ael(X):Viel,3jjeJ,YacY,}.
Then T¢”(X) is a subsemigroup of the semigroup T'(X,Y"”) of functions on X
having ranges contained in Y, where Y =| Y. For each aeTi”(X), let
ieJ

2@ :I—J be defined by iy'” = j < YacY,. Next, we define two congruence
relations y and 7on 71" (X) as follows: (o,f)e y =y =4 and (a,f)e ¥
< 79 ,= 4" |,. We begin this thesis by studying the regularity of the quotient
semigroups 7.”(X)/ y and T”(X)/j7 and the semigroup 7.”(X). For each
aely(X)= TP(X), we see that the equivalence class [@] of @ under y is
a subsemigroup of 7,(X) if and only if %' is an idempotent in the full
transformation semigroup 7'(/). Let I (X), S;(X) and B (X) be the sets of
functions & in 7, (X) such that y'* is injective, surjective and bijective respectively.
Then I,(X), S;(X) and B,(X)are subsemigroups of 75(X). We end this thesis by
investigating the regularity of the four semigroups [a], I5(X),S;(X) and B;(X).
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Chapter 1

Literature Review and Preliminaries

We call an element ‘@ of a semigroup S a regular element of S if there is
an element b of S such that aba = a. A semigroup whose every element is regular
is called a reqular semigroup.) For-any-nonempty. set X, it is well-known that the
semigroup T'(X) of all functions. from X to itself under the composition, called
a full transformation semigroup, is regular (see [2|, Exercise 1.9, page 33). That
is, for every a € T'(X), there exists a € T(X) such that afa = «, in fact, for
each a € T(X), the function pon X defined by x5 '= a, if x € X and 28 = a
otherwise, where a is a point in X which isfixed and for each z € Xa, a, is a
point in za~! which is-also fixed, satisfies aBa = a.There have been several
research works on studying subsemigroups of the full transformation semigroups.
We mention some-of them as follows:

For each nonempty.set X and nonempty subset ¥ of X let

T(X.Y) = {o-€ T(X)+Xa S VY,

and

T(X,Y)=4{aeT(X): YaCY}

The two subsemigroups T(X, Y)-and T(X,Y) of the full transformation semigroup
T(X) were considered by J. S.'V: Symons in [19) and K. D:"Magill Jr. in [14] re-
spectively. Since then, they.have been studied by many people (see [6], [16], [17],
[18] for some related works). In [16];"Nenthein, Youngkong, and Kemprasit stud-
ied the regularity of the semigroups 7'(X,Y) and T(X,Y). The authors provided
some characterizations of regular elements in these two semigroups and made use
of those results to deduce the regularity of them. The following are what they
obtained.

Theorem 1. ([16], Theorem 2.1, page 308) Let X and Y be nonempty sets such
that Y C X. For any a € T(X,Y'), the following are equivalent:

(1) « is reqular;
(2) Xa=Ya;

(3) xkeraNY # O for all x € X;



(4) za™'NY #£0 for all x € Xa,

where xkera = {z € X : xa = za} for each v € X.

Theorem 2. ([16], Corollary 2.2, page 309) Let X and Y be nonempty sets
such that Y C X. Then T(X,Y) is reqular if and only if Y = X or |Y| = 1.

Theorem 3. ([16], Theorem 2.3, page 309) Let X and Y be nonempty sets such
that Y C X. For any a € T(X,Y'), the following are equivalent:

1) « is reqular;

(1)
(2) XanY =Ya;

(3) zkeranNY #0 for all w.€ X with xa € Y ;
(4) za™'NY #£0 for allz e Xany,

where for each v € X the set xker v is defined as in - Theorem 1.

Theorem 4. ([16], Corollary 2.4, page 310) Let X and Y be nonempty sets
such that Y C X. Then T(X,Y) is reqular if and only if Y = X or |Y| = 1.

Remark 5. In the proof of Theorem 2 mentioned above, the authors showed
that if |Y| > 1 and Y #£ X, then T(X,Y) is not reqular by defining a function
a € T(X,Y) which is not-reqular-as. follows: xov=a-if v’ € ¥ and ra = b other-
wise, where a and b are two-fired different points-in Y.

In [18], Sanwong-and. Sommanee-also studied the regularity of the semi-
group T(X,Y). The auther obtained the same result as that of Nenthein et al.
mentioned above that T'(X,Y’) is regular if and only-if X = Y or |Y| = 1. They
also found that theset of all regular elements-of 7'(X,Y") is‘exactly the set

F(XY)={a € T(X,Y):Xa= Yo}

and forms a regular subsemigroup.of 7'(X,Y).-Observe that the studies of semi-
groups mentioned above deal with functions on a set without any mathematical
structures. However, there have also been a bunch of research works on semigroup
regularity dealing with functions on a set along with a mathematical structure,
for instance, a vector space and a partially ordered set (see [1], [7],[9], [12], [15],
[20], [21] for some references). Another interesting one is a set together with an
equivalence relation.
Let X be a nonempty set, and let £ an equivalence relation on X. Let

Te(X)={aeT(X):Va,y € X, (z,y) € £ = (xa,ya) € £}.

This semigroup was observed in [8] by Huisheng. The author proved that Te(X)
is exactly the semigroup of all continuous functions on X equipped with the topol-
ogy having the family of all equivalence classes as a base. The regularity of this



semigroup was studied in [10] by the same author in 2005. He obtained that a
function « in Tg(X) is regular if and only if for each equivalence class A, there
exists an equivalence class B such that AN Xa C Ba. It was remarked that if
the equivalence relation £ on the set X is neither {(x,z) : x € X} nor X x X,
then the semigroup Tg¢(X) is not regular. To see this explicitly, the author defined
a function a € Tg(X) which is not regular as follows: fix an A € X/ such that
A # X and |A| > 1, choose a,b € A with a # b, and let a : X — X be defined
by xa = a if x € A and xa = b otherwise. The nonregularity of o was deduced
from the fact that A N X« is not a subset of Ba for all B € X/&. From this, the
following result was stated.

Theorem 6. ([10], Proposition 2.4, page 111) For any nonempty set X and
equivalence relation € on X, Te(X) is reqular. if and only if € = {(z,z) : x € X}
or& =X x X.

There have been a number of works extending the results of Huisheng
mentioned above (see [4], [11], [13] for some references). In this research, we deal
with another approach of thesetting of Huisheng and extend it to a more general
setting.



Chapter 2

Theoretical Background

In this section, we provide some elementary definitions and facts about
relations, functions and semigroups which are necessary for understanding the
main results presented in Chapter 3.. These can be seen in some texts in set
theory and semigroup theory (see [5] and [3] for/some-examples).

2.1 Relations and functions

Definition 2.1.1. Let A and B be sets, and let »r €A x B. Then r is called a
relation from A to B. For.each (a;b) € A x B, if (a,b) € r;we denote this by arb.
A relation from A to itself is called a relation‘on A.

Definition 2.1.2. Let A and B be sets, and let v be a relation from A to B.
The set D, = {a € A:3b € B, (asb) € r}is called the domain of r and the set
R, ={be B:3ac A, (a;b)€ r} is called the range of r.

Definition 2.1.3. Let A; B and C be sets: Let r_be a relation from A to B,
and let s be arelation from B to O Therelationr o s = {(a,¢c) € Ax C :3b e
B, (a,b) € r A (byc) € s}is called the composition-of r_and s. We may write just
rs in place of r o s.

Definition 2.1.4. Let A be set,.and let ~ be a-relation on A. The relation ~ is
said to be an equivalence relation on A if the following properties are satisfied:

(1) Reflexivity : for all a € A,a ~ a;
(2) Symmetry : for all a,b € A, if a ~ b, then b ~ q;
(3) Transitivity : for all a,b,c € A, if a ~ b and b ~ ¢, then a ~ c.

Definition 2.1.5. Let ~ be an equivalence relation on a set A. For every a € A,
the set [a] = {b € A : a ~ b} is called the equivalence class of a under ~. Let

Af ~={[a] : a € A}.

Theorem 2.1.6. If ~ is an equivalence relation on a set A, then the following
hold:



(1) foralla € A, a € [a);
(2) for all a,b € A, a ~ b if and only if [a] = [b];
(3) for all a,b € A, either [a] N [b] =0 or [a] = [b].

Definition 2.1.7. Let X be a nonempty set. A family {A; : ¢ € I} of nonempty
subsets of X is called a partition of X if the following properties are satisfied:

(1) UAi = X;

el
(2) for all ,j € I, either A;NA; =0or A; = A;.

Theorem 2.1.8. Let A be a nonempty set. For any equivalence relation ~ on the
set A, the family A/ ~ is a partition-of A.>On the other hand, any partition F
of A determines an equivalence relation. ~-on A such that A/ ~= F.

Definition 2.1.9. Let A and B be sets; and let f be a relation from A to B.
We call f a function from A to B and write f : A — B if for all a € A, there
exists a unique b € B such-that (a,b) € f. If f is a function from A to B and
(a,b) € f, then we call b'the image of a under f'and denote b by (a)f or just by
af if no confusion seems to occur. That is, we write (a) f = b or af = b whenever

(a,b) € f.

Definition 2.1.10. Let f A — B.-We call f an injective function from A to B
if for every a,b € A;af =Dbf mpliesa = b. If the range of f-is exactly B, that is,
for any y € B there is an a. € A such that af =y, we call f a surjective function
from A onto B. We.call f a bijective function from A-onto B/if f is both injective
and surjective.

Definition 2.1.11. Let f: A — B, and let ' ©"A. We call the function
g : C'— B defined by xg =2 f for all z € C-the restriction of f to C and denote

g by fle-
Definition 2.1.12. Let f: A — B, let C"C A, and let D & B. We call the sets

Cf=Ay€ B3z ecCiaxf=y}

and
Df '={xeA:af € D}

the image of C' under f and the inverse tmage of D under f respectively. If
D = {z}, we denote {z}f~! by just zf~'.

Definition 2.1.13. Let A and B be sets. We say that A and B have the same
cardinality or A has the same cardinality as B if there is a bijective function from
A onto B. In this circumstance, we write |A| = |B|. Any set which is either empty
or has the same cardinality as the set J, := {1,2,...,n} for some positive integer
n is called a finite set. If A is a finite set having the same cardinality as the set
Jn, we write |A] = n. In other words, |A| is used to refer to as the number of
elements of A when A is finite.



Theorem 2.1.14. Let A and B be finite sets. Then the following are equivalent:
(1) A and B have the same cardinality;
(2) every injective function from A to B is surjective;
(3) every surjective function from A onto B is injective.

Theorem 2.1.15. Let f : A — B and g : B — C.Then fg : A — C and
(x)fg = (zf)g for all z € A.

2.2 Semigroups

Definition 2.2.1. Let S beia nonempty set. A binary operation % on S is a
function from S x S to S. For'any a.b €S, we write a* b to refer to as the image
(a,b)* of (a,b) under the binary operation .

Definition 2.2.2. A binary operation = on a set Sris said to be associative if
(xxy)*xz=ux=x(y=xz) forallz,y, 2 €S-

Definition 2.2.3. Let S be'a nonempty set, and let * be an associative binary
operation on S. We call the pair (S;%) a semigroup. We may sometimes write just
the underlying set S as a‘semigroup if no confusion of which associative binary
operation being considered seems to occur. And in this situation, we write just ab
to stand for the image of (a,b) under the binary operation on.the semigroup S.

Definition 2.2.4. A semigroup .S is called a monoid if there exists an element e
of S such that ea =a = ae for all.a'&.S.

Let (S, %) be a semigroup; and let ‘A be a nonempty subset of S, if the
restriction |45 4 0of % to A X ‘A has the range contained 'in‘A, then we have
immediately that (A, | 1x4) 1S a semigroup.

Definition 2.2.5. Let (S, *).be a semigroup, and let ‘A be anonempty subset of
S, if the restriction *|4x4 of % to A x ‘A has the range contained in A, then we
call the semigroup (A, *|axa) a-subsemigroup of (:S;*).

Definition 2.2.6. Let S and T be semigroups. A function ¢ : S — T is called
a homomorphism if for all a,b € S, (ab)yy = aybyp. If a function ¢ : S — T is a
bijective homomorphism, we call ¢ an isomorphism.

Definition 2.2.7. Let S be a semigroup, and let a € S. If a> = a, then we call a
an idempotent of S. We call a a regular element of .S if there is an element b of S
such that aba = a.

We see that an indempotent of a semigroup S is necessarily a regular ele-
ment of S.

Definition 2.2.8. Let S be a semigroup. We call S a reqular semigroup if every
a € S is regular. The set of all regular elements of S is denoted by R(.5).



Definition 2.2.9. Let S be a semigroup. An equivalence relation ~ on S is called
a congruence relation if for all z,y, z,w € S, x ~ y and z ~ w implies xz ~ yw.

Theorem 2.2.10. Let S be a semigroup, and let ~ be a congruence relation on

S. Then the relation x from S/ ~ xS/ ~ to S/ ~ defined by
*={((la], [b]), [ad]) : a,b € S}
is a function from S/ ~ xS/ ~ to S/ ~.

Corollary 2.2.11. Let S be a semigroup, and let ~ be a congruence relation on
S. Then (S/ ~,x), where x is the binary operation on S/ ~ defined in Theorem
2.2.10, is a semigroup.



Chapter 3

Regularity of Transformation

Semigroups Defined by a Partition

In this chapter, we present the main results of this research. Our main
results are divided into two sections as follows.

3.1 Semigroups of transformations defined by a
partition

In this section, we define-a-new _subsemigroup of the full transformation
semigroup 7T'(X), where X-is a fixed nonempty set, and then study its regularity.
Our setting is an extension of that of Huisheng defined in [8]

Definition 3.1.1. Let X be-a nonempty set, andlet .7 ={¥; : i € I} a family of
nonempty subsets of X. We call % a partition of X-if X = UYZ' and Y;NY; =10

icl
for all i, j with.i # j.-Let-Xx ={X} and Ax ={{a} : a€ X}. Each of these two

partitions is called a trivial partition of X.

Notice that the definition of a partition of a set provided above is stronger
than the one stated in Definition.2.1.7. Throughout the rest of this chapter, let
X be a nonempty set which is arbitrarily fixed. For any o € T(X), if Xao = {a; :
i € J} with a; # a; for all i # j, then we write « in a form of matrix by

a;o
a= .
a;

This notation was introduced by Clifford and Preston in [3] (see page 241). We
also make use of the following notation: if {Y; : i € I} is a partition of the set X,
then for each o € T'(X), we write

(Yi)
o= ,
Q4



where for each ¢ € I, a; is the restriction of a to Y;. Next, we consider another
approach of the setting of Huisheng originally defined in [8]. Here, we begin
with a fixed partition of the set X. It is well-known that any partition of a set
induces naturally an equivalence relation on that set (see Theorem 2.1.8). Let
F ={Y,; i € I} be an arbitrarily fixed partition of X, and let

T7(X)={aeT(X):ViecI3j €I YaCY}.

The semigroup T#z(X) can be generalized by fixing, in addition to the partition
Z of X, a nonempty subset J of the index set I as follows. Let J C I with J # 0,
and let

TY(X) = {a e T(X): Vi€ I3j € J,Y;a CY;}.

Let Y/ = UYi' We can' easily see that TSN X) € T (X,Y)). Furthermore,
ieJ

T;])(X) is subsemigroup of 7' (X,Y'V)). Indeed, for any «,j € T(;)(X) and

i € I, there are j,k € J such that Y;o € Y; and Y;8 C ¥, which yields that

Yiaf = (Yia)B C ;8 Q¥

Proposition 3.1.2. (1) T5(X) = T(X, Y D)if and only if |J| =1 or F =
Ax.
(2) Tgi])(X) = T(X)if and only-if J-= 1 and .Z s trivial.

F

Proof. (1) Suppose-that [J| >2,and that # # Ax. Then there are v, u € J and
i € I such that v # pand |¥;|-> 2. Next, wefixa €Y, b€ Y, and c € Y; and
then define a map a : X — X as follows:

N AV TC RS R

a b '
Clearly, « € T (X &Y )) \TL(O/-;] ) (X). We are now going to prove the necessity. Sup-
pose that |J| =1 or«# =Ax. We have alrcady had that T;;])(X) CT(X,YW).
According to the assumption that |J| =1 or . = Axy there are two cases to be
considered.
Case 1 |J| =1, says J = {j}: We have for every a € T (X,Y)) and i € I that
Yo C Xa C YY) =Y, which yields a € TY)(X). So T (X,Y)) c TY)(X).
Case 2 .F = Ax = {{z} : = € X}: For each z € X, let Y, = {z}. Then

F={Y,:z€X}and YV = UY;E = U{x} = J. So, for every a € T (X, Y))

€] weJ
and z € X, we have that Y,a = {z}a = {za} = Y,, and za € YY) = J. Thus
T (X, yW) c 1Y (X).
(2) Assume that TY)(X) = T(X). Then TY)(X) = T (X,Y)) = T(X).
Since T (X,Y)) = T(X), it follows that X = Y). Hence J = I. And since
Tg)(X) = T (X,Y"), we have by (1) that |I| = |J| = 1 or # = Ay, which
yields that .# is trivial. To prove the necessity, suppose that J = I and % is
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trivial. Then by the assumption that .# is trivial, we have two cases to consider.
Case 1 F = Yx: We have in this case that |J| = 1 = |I|. Since |J| = 1, we
get that by (1) that Tg)(X) =T (X,Y")). And since |I| = |J|, we obtain that
X =Y ), which implies that T (X,Y)) = T(X). Accordingly, Tg) (X) =T(X).
Case 2 .% = Ax: In this case, we have that J = I = X. For each x € X, let
Y, = {z}. Then # = {Y, : v € X}. Thus, for each o € T(X), we have that
Yoo = {z}a = {za} = Y, for every © € X, which yields that o € Tg)(X).
Therefore, ngi]) (X)=T(X). O

Form the above proposition, we obtain immediately that Tz (X) = T'(X)
if and only if # = X x or % = Ax. By the assumption that .# is a partition of
X, we have for each a € T}]) (X) that for every i € I, there is a unique j; € J
such that Y;a C Yj,. Thus we can define'a function x'¢) : I — J corresponding to

« as follows: :
X(a) = < Z ) .
Ji

The function x® is called-the character-of a.
Lemma 3.1.3. For all o, 5 € Td(@‘])(X), 3 (08) = (e ()

Proof. Let o, € T;;])(X), and let i € 1, ix'" = 4, and jx» = k. Then
Yiaf = (Yia)B C Y;8.C Yy Thus ix® = k = jx® =ix(@x®. The proof is
complete. O

The notion of character provided above leads us to define two relations y
and Y on T;;] ) (X) as follows:

(@/B)E )X o =x®

and
(e.8) €X & XY = xPs.

It is obvious that x €Y, and that y = y-if'and only if I'= J. The relations y and
X are, in fact, congruence relations. We will prove theseas follows. Let «, 8,7, X €
Tg)(X). Since x(®) = (@) we have(aya)-€x. Tt follows that x is reflexive. To
see that y is symmetric, we suppose that («,3) € x. Then x® = x®. That
is, x/¥ = x(®, which yields that (8,a) € x. Thus x is symmetric. Next, we
will show that x is transitive. Assume that (o, ) € x and (5,7) € x. Then
X = x® and x® = xO) which implies that y® = x(). Hence (a,7) € ¥,
and so Yy is transitive. We now have that x is an equivalence relation on 7' g ) (X).
Next, suppose that (o, ) € x and (7, A) € x. Then x(® = x® and y( = y&.
Hence, by Lemma 3.1.3, we have that

X(av)

Il
< =<
>0
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which means that (ay, B\) € x. Therefore, y is a congruence relation on Tg ) (X).
Similarly to x, it can be shown that Y is a congruence relation on T},}I ) (X) as well.
Whence, by Corollary 2.2.11, both Tg) (X)/x and Tg) (X)/X are semigroups. For

each a € TJS}I (X)), let [a] and [o denote the equivalence classes of o under the

equivalence relations y and Y respectively.

Theorem 3.1.4. (1) TY)(X)/x = T(1,J) by the isomorphism [o] — x(@.

F

(2) T;])(X)/S{ =~ T(J) by the isomorphism [a] + x¥|;.

Proof. (1) Let ¢ : T;i])(X)/X — T(I,J) be defined by [a]i) = x@. For every
lal, (0] € T;])(X)/X, if [a] = [A], then we have by the definition of  that x(®) =
W), Tt follows that [a]y = x@ ="y = [B]y. So ¢ is well-defined. Next, we
will show that 1 is injective.. To see this, let [o],[0] € T;i] )(X)/x, and assume
that [a]y) = [B], that is, ¥\ = ¥®. Then axp, which implies that [a] = [3].
Hence v is injective. To see-that 7 is surjective, let v € T'(1, J). We will find an
S Tg) (X) such that x(®= ~. For each i € I, fix an a; € Y}, and then define

a € T(X) as follows:
()
a= .
a;

Since for every i € I, Y;a = {a;} € Y7t follows that a € T;])(X) and y(@ = ~.
Thus ¢ is surjective. Finally, we will to show that ) is ‘a homomorphism. Let
(0], [8] € TS (X)/x: Then by Lemmia 3:1.3; we have that

[][Bly /= X%
)

— (B
=\ (1eliz)e.

Whence the function ¢is a homomorphism, and so it is-an_isomorphism.

(2) Let ¢ : TJE?(X)/% —.T(J) be defined by [?Jz/]gp = x¥|;. For every
[Ac;], [AﬁJ] € Tg)(X)/SZ, if [Ao;] = m, then by definition of ¥ we have x(|; = x\¥|;,
which yields that [/(\)4/]90 = x|, = P, = [Aﬁ/]gp. Therefore, ¢ is well-defined.
Next, we will show that ¢ is injective. Let [/(;], [/E] € T;i] )(X )/ X, and suppose that
X7 = x@|;. Then axp, that is, [,07] = [Aﬁ/] Thus ¢ is injective. To see that ¢ is
surjective, let v € T'(J). For each i € J, fix an a; € Y;,. Also, we fix an a € Y/,
and then define o € T'(X) by

(Y; X\Y“>>
o= )
@i a icJ

Obviously, a € T(; ) (X) and x®|; = ~. Finally, we will show that the function ¢
is a homomorphism. Let [o], [f] € Tg) (X)/X. Then by Lemma 3.1.3, we obtain
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that
leldle = x 1Py
X,
= [aB] e
_ (W)
Therefore, ¢ is surjective. Thus we have that ¢ is an isomorphism. O

From Theorem 2 and Theorem 3.1.4, the following corollary is immediately
obtained.

Corollary 3.1.5. (1) The following are equivalent:

(a) The quotient semigroup Tg) (X)/x is reqular;
(b) the semigroup T'(1,J) is reqular;
(¢) J=1or|J|=1.

In particular, the quotient semigroup Tz (X)/x ts regular.

(2) The quotient semigroup TJ(QZJ) (X) /X is regular.
o We now turn our attention to-investigate the regularity of the semigroup
TY(X).

F

Theorem 3.1.6. _The semigroup T(;) (X) isreqular if and only.if

or TY)(X) = T(X).
Proof. The necessity is oebviously true.-To prove the sufficiency, we suppose that
’T(;) (X)‘ > 1 and ngi]) (X) #£T(X). Wedivide the proof into two cases.

Case 1 J = I: In this case; by the assumption-that Tg/i]) (X) #T(X), we have .F
is not trivial. Hence thereis an i€ J-such that |Y;| >2. Let a,b be two different
points in Y;, and let j € I~with j-#£.4 be fixed.~We define a function o : X — X

by
S
a b

Clearly, o € T#(X). Next, let 8 € T#(X). If i € j (X(ﬁ))_l, then we obtain for

any point x € X \ Y; that xafa = a # b = za. For the case where i ¢ j (X(ﬁ))_l,
we have for each point = € Y; that zafa = b # a = za.

Case 2 J # I: We have in this case that Y(/) £ X which yields that T(/;]) (X) C
T (X,YY) ¢ T(X). And by the assumption that ‘Tg)(X)‘ > 1, we have |Y(J)‘ >
1. Let a be the nonregular element of the semigroup 7’ (X YV )) defined in Remark
5. It is clear that o € T;i] )(X), which yields that TE@J ) (X) is not regular. O

Remark 3.1.7. Case 1 in the proof of the above theorem can actually be deduced
from Theorem 6 of Huisheng mentioned in the introduction. Here, we prove again
by our own way. Our proof is just straightforward from the definition of reqularity.

T (X)] =1
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3.2 Some further subsemigroups of T'(X)

In this section, we introduce some new subsemigroups of the semigroup
T#(X) and study their regularity.

According to Theorem 3.1.4, for any v € T(I), the equivalence class of
a € T'#(X) having the character v may be sometimes denoted for convenience by
7. For each v € T'(I), we see that the set 7 is a subsemigroup of T'z(X) if and
only if v is an idempotent. We will prove this as follows. Suppose that 7 is a
subsemigroup of T'z(X), and let a be a fixed element of 5. Then a? € 7, and thus

a2)

X = ~. Hence, by Lemma 3.1.3, we get that v2 = vy = (@) x(®) = X<°‘(2)) = .
Conversely, assume that v2 = v. Then for.any «, 8 € 7, we have by Lemma 3.1.3
that x(® = y(@y¥) = vy = 42 = 4 svhich implies that a3 € 7. Thus 7 is a
subsemigroup of Tz (X).

The following result on characterizations of idempotents in the full trans-
formation semigroup T'(Z), for any set Z, is elementary. We state and prove here
again for completeness and self-containness of the contents in this thesis.

Proposition 3.2.1. Let Z be a monempty set, and let v~ T(Z). Then the
following are equivalent:

(1) ~ is an idempotent;
(2) Y|z, is the identity on Z~;

(3) there is a partition{Z; + j-c E} of the set-Z, and there is a subset {z; :
Vj e E, z € Z;} of Z such that

N =%
Vi ( % ) '
In this situation, the partition {Z; : j.€ E} and-the subset {z;:j € E} of the set
Z are uniquely determined. by -

Proof. (1) < (2). The following argument shows that the equivalence (1) < (2)
holds.

7 is an idempotent < ~* =~
& i =idyforallic Z
& (iy)y=iyforalie Z
& jy=gforall j € Zy.

(2) = (3). Suppose that |z, is the identity on Zv. Then for all y € Z~,
we have yy = y. Let, for each y € Zv, Z, = yy~*. Then y € Z, and {Z,|y € Z~}
is a partition of Z. It is clear that
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(3) = (2). Suppose that there is a partition {Z;|j € E} of Z, and that
there is a subset {z; : Vj € E,z; € Z;} of Z such that

Thus Zy ={z; : j € £} and z;7 = z; for all j € E. Therefore, |z, is the identity
on /. O

Theorem 3.2.2. Let v € T(I) be an idempotent, and let {I; : j € E} be the
partition of I with the element i; of I; for all j € E such that

/ N
7, < I ) '
For each j € E, let W; = UYZ-. Then, for every a. €7, a € R(¥) if and only if
1€l
alw, € R (T(Wj,Y;j)) for all j € F.
Proof. Let o € 7. Suppose that « € R(7). Then there is a 5 € 7 such that
afa = a. For each j € F, let aj = a|w, and §; = Blw,. Since Y@ =) =~ we
have that both a; and 3; belong to '(Wj, ¥;;) forall j € E. And since afa = a,
it follows for each j € - that a;B;a; = ;. Therefore-a; € R (T(W;,Y;;)) for
all j € E. Conversely, suppose that'a; := alw, € R (T(W},Y;j)) for all j € F.
Then for each j € B, there is a-3; € T(W;,Y; ) such that-a;3;0; = ;. Since
{W; : j € E} is a partition.of X, the following function §: X — X is well-defined:

i

It is obvious that 3 &€ 7, and that afa = a; which yields that « is a regular
element of 7. The proof is-complete. O

Corollary 3.2.3. Let v € T({) be an idempotent, and let{Il; : j € E} be the
partition of I with the element 5 of I; for all j € E such that

(4
7_(%‘)'
Let W; = UY;fOralleE, and let By = {j € E : |Y;,| = 1}. If Ey # 0, let

S

W = U W;, Iy = U I, and define o : W — W as follows:

JEE JEED
W;
a = s
Y;

where y; is the only element of Y; for each j € Ey. Then the following are
equivalent:
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15 reqular;

) 7

2) T(W;,Y;,) is regular for all j € E;
) for every j € E, if j ¢ Ey, then W; =Y ;
)

v is the identity function on I, or 7 = {a}, or 7 is exactly the set of all
B € Tz(X) such that Blw = o and xP) |1, is the identity function on I\ I.

Proof. (1) < (2) and (2) < (3) follow immediately from Theorem 3.2.2 and
Theorem 2 respectively. We now prove (3) < (4).

(3) = (4). Suppose that for every.j € E, if j ¢ Ey, then W; =Y; . There
are three cases to be considered.
Case 1 Ey = (: We have in, this case that TW; = Y; for all j € E, which yields
that [; = {i;} for all j € E. Thus {{;:j € E}= A, and hence 7 is the identity
function on I.
Case 2 Ey = E: In this case; it is-clear that 7 ={a}.
Case 3 ) # Ey # E: In this case, we havethat )£ W-# X and 0 # E\ Ey # E.
Similarly to Case 1, we have {1 : j-€ E-\ Ey} = Apj,- This-yields that v is the
identity function on I\ I,.~Thus, for any 3 € 7, we get that y?| I\I, s the identity
function on I\ Iy. Since W = 1), the funetion @ can be considered in this case.
For each 3 € 7, since x|}, = |15 similarly to Case 2, we obtain that j3 lw, is
exactly afw, for all j €#y. Accordingly; B|lw = a forall-§ € 7.

(4) = (3). Suppose that (4) holds. We now have three cases to consider.
Case 1 v is the identity function on I+ In this case; we have that [; = {i,}, which
yields that W; = Y;, for all j.€ L. So, (3) clearly holds.
Case 2 7 = {a}: We have in this case that Ey = E. Thus (3) is true.
Case 3 7 is exactly the set-of all 3 € Tz(X) stch that 8]y-="a and x@|p, is the
identity function on I \ Iy: Let j€ E and assume that j ¢ Eq. Then i; € I\ I,.
Since |, is the identity on I \ Iy, we have that [ = {4;} ‘which yields that
W; =Y. O

From our notion of character, we obtain three more subsemigroups of the
full transformation semigroup T'(X) nested in the semigroup T'#(X) as follows.

Let I#(X), Sz(X) and-Bz(X) be the sets of elements in T'#(X) whose
characters are injective, surjective and bijective respectively. Then Bz(X) =
Iz(X)NSz(X). And by Lemma 3.1.3, both I#(X) and S#(X) are submonoids
of T#(X), and B#(X) is a submonoid of both I#(X) and S#(X). Notice that
In (X)), Say(X) and By (X) are exactly the sets of elements in 7'(X) which are
injective, surjective and bijective respectively. And that Iy, (X) = Sp,(X) =
By (X) =Tx,.(X) = T(X). We end this chapter by studying the regularity of
the semigroups B (X), S#(X) and I#(X).

Theorem 3.2.4. (1) The semigroup B#(X) is regular.
(2) R(I#(X)) = R(S#(X)) = Bz (X).
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Proof. (1) Let a € B#(X), and let v = (. For i € I, let o; be the restriction
of o to Y;. Then «; is a function from Y; into Y;,. We now let ¢ € I be arbitrarily

fixed, and for each =z € Y;a;, let ag) be a fixed element in za; 1 and let a; be
another point in Y; which is also fixed. Let f; : Yy — Y; be defined by

r Y\ Yia;
5¢_< (i) 7\ )

Ay Q;

(%)

where 7 € [ such that ¢ = jv. We now want to show that § is well defined. Let
xz,z € X. Then there are v;u €/1 such that x € ¥, and z € Y. Since v is
surjective, there are ¢,j € .I'such that v =4y and . = jv. Assume that x = z.
Then Y, = Y,, which yields that ¢y = v = p = jv. Thus, by the injectivity of
v, we have i = j. So xf8 = xf3, = a3, = 26;, = 28. Hence (8 is well-defined,
that is, € T(X). It is.evident that § € T(X), and that the character of
is exactly y~!. Therefore 8 € B#(X). Finally, we show-that afa = a. To
see this, let x € X. Then x € Y; for some i € I, and hence za € Y;a;. Thus

(xa)B)a = ((xay)Bi)a = (a(xzc)y) s (a%) a; Since al), € za;o; !, it follows

Next, we define g € T'(X) by

that ((za)B)a = (a%z) a; = xa;. = za. Consequently, cv.is a regular element of
the semigroup Bz (X).

(2) We obtain immediately from (1) that B (X) C R([#(X)) and that
B#(X) C R(S#(X)). To see that' Bz (X) = R(Iz(X)); let a be a regular
element of Iz(X). We want to show that . € Bz (X). Suppose to the contrary
that « is not-asmember of Bz (X)), which means %) is not surjective. Since « is
regular, there is a 5.€ Iz (X) such that afa = a, which yields from Lemma 2.3
that (@) y®y(@ = y(@  Thus, by the injectivity of y(®-and x® e have that
X(5)|1X(a) = (X(a))fl. Since @ is not surjective, it-follows that Jx(® # I, which
implies that x(® ismot injective. Thisis a contradietion. Hence o € B#(X), and
so R(I#(X)) = B#(X)- We now turn_our attention to-showing that Bz (X) =
R(S#(X)). Let a € R(S#(X))~Then there isaf € Sz(X) such that afa = «a.
And by the surjectivity of x(®, we have for each i € I that i (X(a))fl # (0. We
claim that for each ¢ € I, there is a unique j; € 1 (X(“))fl such that Y;5 C Y.
Let i € I, and fix z € Y;a™!. Then za € Y;. To get what we claim, we will
show that there is a j; € i(X(a))fl such that zaf € Yj,. If zaf8 were not in Y}
for all j € i(x(a))fl, there would be a k € I\ {i} such that zaf € Y, for some
ek (X(a))_l, which yields that za = zafa € Y,a C V). Since za € Y}, it
follows that Y; NY} # (), which is a contradiction. Hence there is a j; € i (X(C“))_1
such that zaf € Yj,, which implies by the definition of 7'z (X) that Y;5 C Yj,. It is
clear that j; is unique. Therefore ix®) = j; for all i € I. To see that o € B#(X),
suppose to the contrary that a ¢ B#(X), that is, x(* is not injective. Then there

isav € I such that

v (X(O‘))fl‘ > 1, which yields that x(?) is not surjective. This is
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a contradiction. Therefore, « € B#(X), and thus we obtain Bz (X) = R(S#(X))
as asserted. ]

From Theorem 3.2.4, we obtain the following result on the regularity of
I7(X).

Corollary 3.2.5. I#(X) is reqular if and only if I is finite.

Proof. Suppose that I#(X) is regular. Then by Theorem 3.2.4, [#(X) = B#(X).
Thus, by Theorem 3.1.4, we have that for every v € T'(I), if v is injective, then
7 is bijective. This occurs only when [ is finite (by Theorem 2.1.14). Conversely,
suppose that I is finite. Then I#(X) = B#(X). Hence, by Theorem 3.2.4 again,
I#(X) is regular. O

Similarly, the following result on the regularity of the semigroup Sz (X) is
obtained.

Corollary 3.2.6. Sz(X) is-regular if and-only if I is finite.



Chapter 4

Summary

In this thesis, by a partition-of a'set X, we mean a family {Y; : i € I}
of nonempty subsets of X possessing the properties that for each ¢,j € [ with

i # 3,Y;,NY; = 0, and'that X = UYZ" Let' X be a nonempty set, and let
iel
F ={Y; i € I} be a partition of X. Let

T#( XY= {a el (X) Vie 13§ e1,Y,a/C Y;}.

This setting is another approach of the one of Huisheng in [8] by the well-known
fact that any partition oen a set induces an equivalence relation on that set in
a natural way. The set-T%(X) can-be generalized by fixing; in addition to the
nonempty set X and the partition..Z of X, a nonempty subset J of the index set
I as follows. Let J.C I with-J %0, and let

T (X) =fa € D(X) +Vieddj e J Yo C Y}

Let Y = UYi' Then we can easily see that Tg ) (X)) is a subsemigroup of
ieJ
T(X,YW).

For each o € T;i]) (X), the function () = ['—J defined by ix(® = j if
and only if Y;a C Yj is called the-character-of «o. By the definition of a partition
of a set stated here, the function x(® is well-defined for all o € Té;] ) (X). For
any o, 3 € TEO}])(X), we have that (@ = x(@)x(®) From the notion of character

provided above, we can reasonably define two relations xy and X on Tf; ) (X) as
follows:

(a,B8) € x & x =X,
and
(o, ) € X & X9 =xP,.

We have that the relations y and Y are congruence relations on Tg ) (X). Thus

both T;i] )(X )/x and T;J ) (X)/X are semigroups. The main results of this thesis
are divided into two parts.

18
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In the first part, the regularity of the quotient semigroups Tg ) (X)/x and
T Eji] )(X )/X and the semigroup T;i] ) (X) and are studied. We obtain that the quo-
tient semigroup Tf; )(X )/x is regular if and only if J = I or |J| = 1. While,
the quotient semigroup Tg ) (X)/X is always regular. To obtain the results on
the regularity of the quotient semigroups T(/f‘] ) (X)/x and T;J ) (X)/X, we establish
the following results: Tg )(X )/x = T(I,J) by the isomorphism [a] — x(® and
T;])(X)/S{ = T(J) by the isomorphism [Aa/] = x@|;, where [a] is the equivalence
class of a under y and [B;] is the equivalence class of o under y. For the semigroup
T (X) we get that it is regular if and only if ‘Tg)(X)) =1or Tg)(X) =T(X).

F
In the second part of our results, we study the regularity of some subsemi-
groups of the semigroup T#(X). From-the fact that T#(X)/x = T(I) by the
isomorphism [a] — x(®, we can identify the semigroup 7'(1) with the semigroup
T#(X)/x. For any v € T(I), let 7 denote the equivalence class of o whose charac-
ter is 7. We see that for eachy € T(I), 7 is a subsemigroup of T'z(X) if and only
if 7 is an idempotent. Let v € T'(I) be anidempotent. Then there is a partition

{I; : j € £} of I with the-element i, for {; forall j € E such that

s

Let W, = | J; forjall jo€ E, and'let Ey =A{j/€ B+ |Y;|=1}. If Ey # 0, let

icl;

W= | JW;, and let-Io = |-} I;, and define o+ W — IV as follows:

j€Ey JE€Ey
o = I/Vj
. 9
Yy

where y; is the only element, of Y;. for each j € Ey-~We ‘obtain that 7 is regular if
and only if v is the identity funetion on I, or ¥ ={a}, or7 is‘exactly the set of all
B € T#(X) such that 3]y=o'and x'@ |py, is the identity function on I'\ Iy. From
our notion of character defined above, we can-define some further subsemigroups
of T#(X) as follows. Let

I7(X) :={aeT#(X): X is injective},

Sz(X):={aeTz(X): x@ is surjective }
and
Bz(X) = {a € Tz(X) : X' is bijective} .

We have that the semigroup B (X) is regular, and that R(1#(X)) = R(S#(X)) =
B#(X). From these, we can deduce that [5(X) is regular if and only if I is finite.
Also, we can deuce that Sgz(X) is regular if and only if I is finite.
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