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Chapter 1

Introduction

The celebrated Riemann Mapping Theorem states that the open unit disk
B in the complex plane C can be mapped conformally onto any simply connected
domain D in C with non-degenerate boundary. A comprehensive treatment of the
boundary behavior of conformal mappings-is presented in Pommerenke’s mono-
graph [11], which also contains an extensive list of references.

In [10] Pommerenke characterized the domains DD onto which the Riemann
mapping of B admits a continuous boundary extension as follows: a conformal
mapping of the open unit disk B onto D can be extended continuously to B if and
only if the complement-of D is locally connected. In this-thesis we show that this
result also holds for:quasiconfomal mappings. Additional characterizations, valid
not only for quasiconformal mappings in the plane but also for higher dimensional
quasiconformal mappings as well, can be found in [7] and [13]. The main tools
employed in establishing the quasiconformal analogue of Pommerenke’s result are
the modulus of a path family introduced by Ahlfors and-Beurling in their land-
mark paper [2] and a quasiconformal version of Wolff’s lemma which is introduced
by Becker, see [3], in ‘companion with some topological considerations.

We also investigate the uniform convergence of a sequence of K -quasiconformal
mappings. Let (f,,) is a sequence.of K-quasiconformal mappings of the open unit
disk B into bounded-domains which converges in B-to a homeomorphism f. We
show that the following statements hold:

(1) If the collection & = {E, = C\ f,(B)} is uniformly locally _connected, then
the mappings f, can be extended to continuous mappings f, of B and the
sequence (f,) converges uniformly in B.

(2) If the convergence f, — f is uniform and if each f, extends continuously to
B, then & is uniformly locally connected.



Chapter 2

Modulus of a Path Family

In this chapter we study the main geometric tools used in studying qua-
siconformal mappings. We associate a number, called the modulus, to each path
family to describe, albeit in-an abstract-way, hew long or short or how plentiful
the paths in the family are. The idea of doing so is due to Beurling and was first
published in the seminal-paper [2] by Ahlfors and Beurling-in 1950. Most of the
results follows Véisala [13].

2.1 The modulus

Before defining the modulus, we need to introduce some pertinent terminology.

Let I be an interval in R. A -mapping » from I into R2 = R?U{oco} is called
a path if it is continuous.~We call a restriction of the path 4 to a subinterval of
I a subpath of 4. The path 7 is called open-or closed if the interval [ is open
or closed, respectively.

To define thelength of a path, let v : [a, b] —R*bea closed path. We call
a subset P = {to, t1y. . .4 t,} of the interval {a,b] a partition of [a,b] if

a=tyg <t <...<t,="1".

Define the length of v by the supremum of the sums
Z [v(te) — (k-1
k=1

over all partitions of [a,b] and denote by ¢(v). If v is a nonconstant path in R2
that contains oo, then we define ¢(y) = oco. For the constant path v (t) = oo, we
define /() = 0.

Clearly, 0 < () < oo for any path v. A path v is called rectifiable if it
has a finite length, otherwise non-rectifiable. A path ~ is locally rectifiable
if every closed subpath of v is rectifiable. Hence any path v that contains oo is



non-rectifiable, except only when it is a constant path.

Next, we will present a definition of a line integral. Let v : [a,b] — R? be
a rectifiable path. The path 7Y : [0,4(y)] — R? is called the normal represen-
tation of ~ if it satisfies the following properties:

1. there exists an increasing continuous mapping h from [a, b] onto [0, £(~y)] such
that v =% o h.

2. L(7°|0,9) =t for all 0 < ¢ < L().

The function 1 is unique, see [13, Theorem 2.4, p. 5].

Let p be a Borel function from.a Borel'set A in R? into the interval [0, oo].
For any rectifiable path ~: [a,b] = A, -we define the line integral of p over v by

Lpds = /Oémp(yo(t)) di.

We sometimes use the notation fv p(z)|dz| instead of fy pds—For an open or half-
open locally rectifiable path < the line integral of p is defined as the supremum of
the line integrals of p over all closed subpaths of «.

Now, we are ready to give the definition of the modulus of a path family.
Let T' be a family of paths-in R2.. A Borel function p: R2 = [0,00] is called
admissible for I if
/ pds >1
£

for every locally rectifiable path ~ in T Let .Z (I') denote the collection of all
admissible functions for I'. Define the themodulus of I' as

M(T) = inf °d
= nt | i

where m stands for the Lebesgue measure inR% 1f Z(T) = ), we define M (T') =
00. Obviously, 0 < M(I") < 0.

The following theorem establishes some basic properties about the modulus
of path families.

Theorem 2.1.1. [13, Theorem 6.2, p. 16] M is an outer measure in the collection
of all path families:

(1) M(©) =0,
(2) Fl C FQ ’melZCS M(Fl) S M(FQ),

@ ar (0 1) < £ arr).

k=1



Let I'y and I'y be two families of paths. We say that I'y minorizes I',
denoted by I'y < I'y, if every path v € I'; has a subpath in I';.

Theorem 2.1.2. [13, Theorem 6.4, p.17] If I'y < Ty, then M(I'y) > M(I'y).

Proof. Suppose first that I'y < T's. We will show that Z#(I';) € Z#(I'g). Let
p € Z(I'1) and let v be an arbitrary locally rectifiable path in I'y. Then v has a

subpath +" € T'; and then
/ pldz| > 1.
,y/

JECEY NICES
ol v

and hence p € Z#(I'). Since

Hence

/ p2dm-> M(T,),
R2

we obtain by taking the infimum over all such p € .#(I'y) that

M(T;) =" inf /p2dm.
R2

peZ (1)
Therefore M (T'y) > /M (L5)- O

The result of this theorem-is called the minorizing principle. It is one of
the most useful tools for finding anupper bound-or a lower bound for the modulus
of path families. We.will-use-this principle several times latter.

Next, we introduce the notation and terminology that will be used for the
rest of this thesis. All sets considered here are-assumed to lie in the plane R2.
We use B(z, ) to denote the open. disk of radius » centered at z, we let S(z,7r)
denote the boundary of B(z;). For convenience, we abbreviate B(r) = B(0,r),
S(r) = S5(0,7), B=2DB(0,1) and S = S(0,1). The topology used for sets in R? is
the relative topology induced by the Euclidean metric. For a given path family I,
it is very difficult (in general impessible) to compute M (I"). There are only very
few such families I" for which the modulus M (I") can be computed precisely. We
next compute the modulus M (T") for some specific families T'.

Example 2.1.3. Let A be a spherical annulus B(b) \ B(a) where 0 < a < b. Let
I’ be the family of all radial segments in A. Then

2T

:logg'

M(T)

Proof. We will first show that M (T') > —2%-. For each § € [0, 27], let vy : [a,b] — A

log

be the line segment in I' defined by

Yo(r) = ret?.



Let p € #(I'). Then

b
/ pldz| :/ p(re?)dr > 1.
Yo a
By the Cauchy-Schwarz inequality, we obtain
b 2
= ()
b
= (/ pr1/2 . r_1/2dr)
b b
< /( 1/2) dT/ ( 71/2)2d7,
: /prdr/ —dr

= log — /prdr

2

Thus we have [
1

Integrating over all 6 € [0, 27}, we-get

2w 2m b
/ ] / 7do < / (/ pQrdr) do = / pldm < / prdm.
o 108, 0 a A R2

It shows that h
7Tb S/ p2dm
log 2 R2

for all p € .#(I'), and hence

M(T) =" inf 2dm > .
o pe{lﬂ}(l“)/ugzp m_logg

. Let

3
D\cr

Next, we will show that M(T') <
L if z € A,

ng

pO(z):{ o itz ¢ A

For v € I', we have
1
sdr =1,
&4

1 b
dz| = -
/7,00| ? /| | log 2 gld=l = /rlo

that is, p is admissible for I'. Hence



M(Ty) < /Pgdm
]RQ
= /pﬁdm
A
1
= [ ——d
/A\zmogg)? "

27 b 1
— ————rdrdf
/0 /a r2(log§)2r "
2w

logg'

It follows that M (I") = 102;2 as desired: O

Example 2.1.4. Let A be a-spherical-annulus B(b) ~B(a) where 0 < a < b, and
let T be the family of all-paths-in A-joining the boundary components of A. Then

2

M) = n

Proof. We will show first that M(T) > 102;& . /Let Tg be the family of all radial
segments in A. Clearly, I'g € I".. By Theorem 2.1.1 and Example 2.1.3, we obtain

?
M) > .
log 2
Next, we will show that M (I') < 102;2 et
1 .
Y Fiog T itz € A,
0 ifz ¢ @

Given a locally rectifiable path v in I', we have

b
/p0|dz\ 2/ podr = 1.
¥ a

So pp is admissible for I". Hence, by Example 2.1.3 we obtain,

27

logg'

ur) < [ phim—
A

It follows that M (") = 102;2 as desired. O




By using the similar argument, we can modify the previous computation
to get the modulus for some subfamilies of the path family I" in Example 2.1.4.
More precisely, let A, be a sector of central angle o and let I',, be the family of
all paths in A, joining the boundary components of A. Then we can show that

M(T,) = —

B log g

Example 2.1.5. Let A be the spherical annulus B(b) ~ {0} where b > 0, and let

I’ be the family of all paths in A joining the boundary components of A. Then
M(T) =0.

Proof. Fix a number a with 0 < a </b. Let IV be a family of all paths in the
spherical annulus B(b) \. B(a) joining the boundary components of the annulus.
Clearly, I < I". By Theorem 2.1.2, we obtain

M(T") > M(T).
Note that M(I") = 2% by Example 2.1.4. Thus

log%
\J
MOWZE
log 2
Since lozg’rg — 0 as a —/0, we obtain_that M(I") =0 as desired. O

We next give 2 more examples whose results will be used several times
later.

Example 2.1.6. Let A be-the family of all circles that separate the boundary
components of the spherical-annulus A' = B(b)~ B(a) where 0 < a <b. Then

1 b
M(A) = —1log—.
(8) = 5~ log—
Proof. We will show first ‘that M(A) > sLlog2. ‘For each € (a,b), let 7, :
[0,27] — A bea circle in A defined by
0

() =re”.

2m
/ pldz| —/ p(re®)rdf > 1.
Tr 0

By the Cauchy-Schwarz inequality, we obtain

27 2
1 < (/ prd&)
0
2T
— (/ pr1/2 . T1/2d9>
0
27 2T
< (/ p2rd9> </ rd@)
0 0
2T
= 27r </ pzrdﬁ) :
0

Let p € #(A). Then

2



That is
1 27
— < / p*rdd.
0

2mrr

Integrating over all r € (a,b), we obtain

1 b b 1 b 2 ) ) )
—log — = —dr < pordd | dr = | p°dm < pedm,
2m a o 2mr a 0 A R2

for all p € .#(A). Hence

1 b
M(A) = inf 2dm > — log —.
() pe%g(A)/Rzp "= on Oga

Next we will show that M(Ag) < 4 log%. Let

2m|z|

0 if-z &) A

1 Hza A
po<z>:{

For v € A, we get

1 7 1
poldz] = |z df= —df = 1.
N 5 2mjz] 0 S

Hence pg is admissible for-A. It follows that

S 7
R2

= / podm
A
1
= A Ny
A4z|2<2w>2 -
27 b 1
S /o /a—(27r)2r2rdrd9
1 21

- ) (L)

11 b
= —log—.
27 ga

Therefore, M(A) = 5-1log 2. O

Example 2.1.7. Let A be the collection of all closed paths that separate the bound-

ary components of the spherical annulus A = B(b) \ B(a) where 0 < a < b. Then

1 b



Proof. We will show first that M(A) > Llog?2. Let Ag be the collection of all
circles centered at the origin that separate the boundary components of A. Clearly,
Ag C A. By Theorem 2.1.1 and Example 2.1.6, we have

b

a .

1
M(A) = M(Ag) = 5—log
2
Next we will show that M (Ag) < 5-log 2. Let
L ifzcA
_J o ! )
pol2) { 0 ifzé¢ A
Given a locally rectifiable path v in A, we obtain

/p\dz|—/ . |z|d9>/2ﬂid9—1
N 0 {4 2112] O, W '

So pg is admissible for A Hence
/ podm
R2

{ / podm
A

11 b
= —log —.
21 ga

Therefore, M(A) = 5-log 2. O

M(A)

A

We can modify the-argument in Example 2.1:7 to derive the modulus for
some subfamilies-of the path family A. More precisely, let A, be-assector of central
angle a and let A, be the family of the subpaths of all paths'in A that lie in A,.
Then

M(A,) = llogb

Ol
2.2 Rings

Given sets E, F,G C R2. We denote A(E, F : G) the family of all closed
paths with initial points in E, terminal points in F' and otherwise lying in G.

Next, we will introduce the modulus of path families in a domain, namely
a ring. A domain A in R2 is called a ring if its complement consists of exactly 2
components, say Cy and C;. We denote A by R(Cy, C). Then the boundary 0A
of A has also two components, namely By = Co N A and B; = C; N A, where A
is the closure of A. For each ring A = R(Cy, C), let 'y = A(By, By : A) be the
family of all closed paths that join By and B; in A.

Observe that I'4 has the same modulus as I'y = A(By, B; : @), Iy, =
A(Cy,Cy : A) and Ts = A(Cy, Cy : R2). For instance, M(T'4) = M(T) because
I'y cT';y and I'4 minorizes I';.
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Theorem 2.2.1. [13, Theorem 11.4, p.34] If A = R(Cy, C}) and A" = R(Cy, C})
are rings such that C; C C;, then M(I'y) < M(T ).

Theorem 2.2.2. [13, Theorem 11.5, p.34] If A is a ring, then M (T 4) is finite.

Given a ring A, to obtain a lower bound for M(I'4), we introduce the s-
function as follows. Given r > 0, let ®(r) be the set of all rings A = R(Cp, Cy) in
R? with the following properties: (1) Cy contains the origin and a point a such that
la| = 1, (2) C} contains co and a point b such that |b| = r. Define the x-function
k:(0,00) = R by

= inf M(T
K =, M)
Theorem 2.2.3. [13, Theorem 11.7; p:34] The function  : (0,00) — R has the
following properties:

(1) K is decreasing.

(2) lim s(r) =0.

r—00

(3) lim k(r) = co.

r—0
(4) k(r) > 0 for every r >0.

The generalization of the modulus of the path family in Example 2.1.6 is
the following theorem.

Theorem 2.2.4. [13, Theorem 11.10, p. 36] Supposethat A = R(Cy, C1) is a ring.
Then M (T 4) = 0 if and only if Co-or Cy consists of a single point.

2.3 Modulus estimates in the spherical metric

Here we consider the plane R? as a “complex plane and denote the extended
complex plane C'U {oco} by C;that is C = R2" The chordal metric or the
spherical metric ¢ in Cs defined by

|21 —22] .
q(z1,22) = ,if 21,20 € C
NPTV ET
1
q(z1,00) = ———, if z1 € C, and
\/1+ |Zl|2

q(oo,00) = 0.

Clearly, q(z1,22) < 1 for all 21,29 € C. Hence C is indeed a compact space under
the metric ¢. o
Let E be a non-empty subset of R2. Define the diameter of E by

dia(E) = q(F) = sup {q(a,b)|a,b € E}.

Clearly, ¢(F) <1 for any subset F of@.
If £ and F' are non-empty subsets of R?, we define the distance from E to I’ by
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q(E,F) =1inf{q(a,b)|a € E,b € F}.

Next we present some basic results of modulus estimates in the spherical
metric. Given 0 <7 <1, let ¥(r) be the collection of all rings A = R(Cy, C1) in
R? such that ¢(Cy) > r and ¢(Cy) > r. We denote

A(r) = Aé%f(r) M(T 4).

For 0 <t <1, let W(r,t) = {R(Co, C1) € U(r):q(Co C1) <t} We denote

A(rt) = Aelgg’t) M(T ).

Observe that the number A(r, 1) is equal to the number A(r).

Theorem 2.3.1. [13, Theorem 12.5, p-38] The function A : (0,1] — R has the
following properties:

(1) A is increasing.

(2) lim A\(r) = 0.

r—0

(3) A(r) >0 for every 0 < r < 1.

Theorem 2.3.2. [13, Theorem 12:7; p.39] The function A:(0,1] x (0,1] — R
has the following properties.

(1)
(2)
(3)
(4)

(r,t) is increasing in.1.

3

A(r, 1)

A(r,t) is decreasing in t.

A(r,t) > A(r) >0 for every.r andt.
(

4) lim A(r,t) = oo _for every.r.
t—0



Chapter 3

Quasiconformal Mappings

In this chapter we present the definition of quasiconformal mappings and impor-
tant results on equicontinuity and convergence for quasiconformal mappings.

Let D and D’ be/domains in R? and let 1 < K < 60.-A homeomorphism
f from D onto D’ is said-to be K-quasiconformal if

M) < M{F(F)) < KAHT)

for all path families I in'D. Thesmallest’ K for which this double inequality holds
is called the dilatation of f. The mapping f is said to'be quasiconformal if it
is K-quasiconformal for some K.

It is not difficult to-show that a conformal mapping is’ 1-quasiconformal.
The converse is also true: a-l-quasiconformal mapping is always conformal. How-
ever, to prove this.is a somewhat more challenging assighment. One may think
of the number K in the definition of quasiconformalityto measure how much the
mapping differs from being confermal.

Standard texts on quasiconformal mappings are Ahlfors{1] and Lehto and
Virtanen [6] in two dimensions and Véaiséld [13]in higher dimensions.

3.1 Equicontinuity of Quasiconformal Mappings

We consider sets in R2. As a metric in R? we use the chordal metric ¢. We next
recall the definition of equicontinuity.

A family .# of mappings of a set E into R? is said to be equicontinuous
at a point z € F if for each € > 0 there is a 0 > 0 such that

q(f(z), f(y)) <e

whenever f € .7 and y € E with ¢(z,y) < 6. If .7 is equicontinuous at each
point in E, we say that .%# is equicontinuous in E. Clearly, all mappings in an
equicontinuous family are continuous and any finite family of continuous mappings
is equicontinuous. To define the uniform equicontinuity the same way as continuity

12
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is altered to uniform continuity, we can define as follows:
The family .# is uniformly equicontinuous if for each € > 0 there is a
0 > 0 such that

q(f(2), f(y)) <e

whenever f € .7 and z,y € E with ¢(x,y) < 0.

In the topological space version for equicontinuity, we say that the family
Z is equicontinuous at a point x € E if for each ¢ > 0 there is a neighborhood U
of z such that

q(f(2), f(y)) <e

whenever y € U and f € .%. The following theorem is the main result on equicon-
tinuity:

Theorem 3.1.1. [13, Theorem 19.2, p.65] Let # be a family of K -quasiconformal
mappings of a domain D inte R2..If each f € F omits 2 values ay and by with
chordal distance

qlag,by) =,
where r > 0 is fized, then % 4s equicontinuous.
Proof. Let xg € D and 0 < e <'r. Wecan choose neighb_orhoods U and V of x,
for example disks, so that U C V' C Dythat A =V ~U is a ring domain, and
so that KM(T'a) < A(e); where Alis the function introduced in Theorem 2.3.1.
Then f(A) = R(Co;C1), where Co = f(U) and Cr= (f(V)), is a ring. Since Cy

contains ay and by, we get

q(C1) Zqlap,by) >

For each z € U,

¢(f (x), f(0)) < q(Co).

From the definition of A(¢) and K-quasiconformality of f,we obtain
KM(Ta) = M(Tya)) =2 A1)

where t = min (r,q (f(x), f(zo))). Thus A(¢) < A(e). Since A is increasing, we
have t < ¢ < r. Hence

q(f(x), f(x0)) < e.

for all x € U and f € .%. Therefore .% is equicontinuous at x. m

This theorem leads us to get two corollaries that give the conditions for a
family of K-quasiconformal mappings to be equicontinuous.

Corollary 3.1.2. [13, Theorem 19.4, p. 66] Let F be a family of K -quasiconformal
mappings of a domain D. Then F is equicontinuous if one of the following con-
ditions is satisfied:
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(1) There are points x1,x9 € D and a number r > 0 such that each f € F omits
a point ay and q (ay, f(x;)) > r fori=1,2.

(2) There are points x1,x2,x3 € D and a number r > 0 such that each f € F
satisfies the three inequalities q (f(x;), f(z;)) > r, for i # j.

Corollary 3.1.3. [13, Corollary 19.5, p.67] If Z is a family of K-quasiconformal
mappings of a domain D such that each f € F assume at three given points three
fized values, then F is equicontinuous.

3.2 Normal Families

Before defining the normal families, we recall the convergence of a sequence of
mappings from a topological space T inte a metric'space M with metric d.

Suppose that (f,,) is a sequence of mappings from T into M. The sequence (f,)
converges in 7" pointwise to a‘mapping f if for each z € T’

fulz) = f(2) a8 n —00;

that is,
Jinald( fy(2) (=) = 0.

We say that the sequence (f,) converges in 7" uniformly to a.mapping f if

supd(fn(2)sf(2)) = 0las n — oo;
AV

If (f,) converges uniformly-to & mapping f on every compact subset of 7', then
(fn) is said to converges.in-7' c-uniformly. to-the mapping f.

A family % of continuous mappings f from-7" into M iscalled a normal
family if every sequence in % has a subsequence-that converges c-uniformly in
T. Obviously, if .# is a mormal family, then every sequence in .# contains a sub-
sequence that converges pointwise.in all of 7.

Theorem 3.2.1. [13, Theorem 20.3, p.68] Let (f,) be a sequence of continu-
ous mappings of a topological space T into a complete metric space (M,d) which
converges pointwise in a dense set E in T. If (f.) is equicontinuous, then (f,)
converges c-uniformly in T'.

Proof. Let F be a compact set in 7', and let € > 0. From the equicontinuity it
follows that every x € F has a neighborhood U(z) such that

A(fil@), fuly)) < =



15

whenever y € U(z) and k € N. We choose a finite covering {U(z),...,U(z;)} of
F'. Since FE is dense, we can find points a; € U(z;) N E, 1 <i < j.
Since (f,,) is converges pointwise in F, there are integers n; such that

d(fn(ai), fula:)) <

ot ™

whenever m > n;, n > n,; for each i € {1,...,5}. Set ng = max{ny,...,n;}.
If x € F, m > ng and n > ng, then x belongs to some U(z;), we obtain

d(fm(x>v fn(x)) d(fm(:(}), fm(xl)) + d(fm(Q:z)a fm(az)) + d(fm(ai)u fn(a2)>
d(fn(ai), fu(r:)) +d(fulms), fulT))

AN+ IA
™

Since M is complete, (f,(z))-converges in M. Furthermore, (f,) converges uni-
formly on F' because the choice of ng does not depend. on x. O

Theorem 3.2.2. [13, Theorem 20.4, p.68] (Ascoli’s theorem) If T is a separa-
ble topological space and M is a compact melric space, then every equicontinuous
family F of mappings f T — M is a-normal family:

Proof. Let J = (fi, fo,-..) be a sequence of % Since T is separable, it contains a
countable dense subset = {a1,as, ...}. Consider the sequence (f,(a1)). Since M
is a compact metric space, this sequence has a converging subsequence. Denote
the corresponding sequence of mappings as follows

S, If 12 | )

Consider the-sequence (fy(as), fia(az), fiz(as)s..n). It has a converging subse-
quence. Denote the corresponding sequence of mappings as follows

Jo="(fa1, foz, fos,..").

Continuing this process inductively, we_obtain a sequence J;, = ( fx1, fr2,...) such
that Jy is a subsequence ofJi_; and such that J, converges at a;,. Draw a picture
of mappings obtained

Ji = (fun, fiz, fiss o)
Jo = (fa1, faz, fo3, ")
Js = (fa1, f32, f33, )

Then the diagonal sequence J' = (fi1, fo2, ..., fk, -..) converges at every point of £,
By Theorem 3.2.1, J’ converges c-uniformly in 7". Hence .%# is normal family. [J

Corollary 3.2.3. Let F be a family of quasiconformal mappings of a domain D
into R?2. If % is equicontinuous, then ¥ is normal.
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3.3 Convergence of quasiconformal mappings

In this section we present the possibilities of the limit mapping of a sequence of
quasiconformal mappings. We first explore few examples.

Let f.(z) = z 4+ n. Then f, is a 1-quasiconformal mapping and then f, is
defined in R? and the limit mapping is f = co. In R?, the convergence is c-uniform
in R2. In R? by taking a closed chordal ball centered at co. This ball is compact,
but the convergence to oo is not uniform on this ball.

Let (g,) be a sequence of mappings defined by

() = oo if 'z = oo,
I T\ osherwisél

Then g, : R? — R? is a 1-quasiconformal mapping ‘and. g, — ¢, where

= O A
) =Y o= otherwise.

Hence g assume 2 values. Furthermore, the mappings g, |zs (o) converge c-uniformly
to the constant mapping g = oo.

Let h be a fixed K -quasiconformal mapping, and let h,, = h for each n € N.
Trivially (h,) converges c-uniformly to the K-quasiconformal mapping h.

In summary; there are-at-least-three different kinds of limit mappings. The
following theorem shows that no.other possibilities exist:

Theorem 3.3.1. Suppose-that f, : D-—-D, is K-quasiconformal and f, — f
pointwise in D. Then one-of the following three possibilities must occur:

(1) f is a constant. The convergence may be c-uniform or not:

(2) f assumes exactly 2 values, one-of whichis assumed only.at exactly one point,
namely ay. The eonvergence' is c-uniform.in D\ {a1}, but not uniform on
all compact subsets of D-

(3) f is a homeomorphism which is K-quasiconformal. The convergence is c-
uniform in D.

Proof. By the above examples, the possibilities (1) — (3) can occur. We will show
that no other possibilities exist. Suppose first that f assumes exactly 2 values,
say by = f(ay) and by = f(ag). Since f, — f pointwise in D, we get

fular) = f(ar) = by and fi.(az) — f(az) = ba.

We see that there exists an r > 0 such that

q(fn(ar), fulag)) = 7
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for all n. In D\ {ay,as}, each f, omits 2 values whose distance is at least r. Hence,
by Theorem 3.1.1, the family {f, : n € N} is equicontinuous in D \ {a1,as}. By
Theorem 3.2.1, f, — f c-uniformly in D \ {a;,as}. We conclude that f must be
continuous in D \ {ay,as}. Since f(D) = {by,bs}, the set D \ {a;,as} must be
mapped to one of these points, say bs, because D \ {a1, as} is a connected set and
f is continuous in D \ {a,as}. Hence, f(D \ {a1}) = {bo}, and so b; is assumed
only at one point a;.

Next we will prove that f,, — f c-uniformly in D\{a,}. Fix a compact set F'
in D\ {a;}. Choose 0 < s < dist(ay, '), where the distance is the chordal distance
between the point a; and the set F, so that the sphere S = S(ay,s) C D\ {a,az}.
By what was proved above, the convergence on S is uniform, that is, f,(S) — bs.

By topology, the set f,(S) as a'Jordan curve divides R2 into 2 components.
Since a; and F lie in different components of R2\ S, it follows that b, and f,,(F) lie
in different components of R2\ £,(S). Therefore f,(F) — by because f,(S) — by.
This means that f,, — f uniformly on F

It remains to show that the convergence is not c-uniform in D. For instance,
on the compact set B(ay,s) the .convergence is not- umiform, because if it was,
the limit mapping f[z,,sy would be continuous. But flg,, ;) assumes exactly 2
values, b; and by, and f would map a connected set B(ay, s) onto a disconnected
set {bl, bg}

Finally, assume neither (1) nor(2) occurs. We-must show that the situation
(3) happens. So now f assumes at least 3 values;say v = f(z1), y2 = f(22) and
ys = f(z3). We show first that f is continuous. Since f,(x;)— v;, 7 = 1,2,3,
there is an r > O/such that

q(fn(xl)>f($3>> Z T 7&]
for all n. By Corollary. 3:1.2, the mappings f, are equicontinuous in D. By
Theorem 3.2.1, f,, = f c-uniformly in/D. This forcesf to be continuous.

By topology, it'suffices to show that [ is.one-to-one. For this, we first show
that each z in D has a neighborheod U-such-that f is either one-to-one or constant
in U. Fix z € D Choose any neighborhood U-of z with ¢(/.(U)) < 3 for all n
and U C D. This is possible because-the mappings f, are-equicontinuous.

Assume, contrary to the assertion, that there exist 3 points u, v, w in U such
that f(u) # f(v) = f(w). Join u and v by an arc Jy C U. Next join w to a point
on QU by an arc Jy so that JyN J; = (). Then the domain U \ (Jy U J;) is a ring,
say A. Denote its image under f,, by A4, = R(Cy,C}), where Cf = f,(Jy) and
CP = f(U\J)°. Foreachn € N, let r,, = q(fn(u), fn(v)) and t,, = q(fn(v), fu(w)).
Notice that r, > 0 and t,, > 0 for all n, and ¢(C}) > r,, ¢(C) > q(fu(U))¢ = 1,
and ¢(Cy,CT) < t,. Hence M(I'4,) < A(rn,tn), where A(r,t) is the function in
Theorem 2.3.2.

Since r, — q(f(u), f(v)) > 0 and t, — q(f(v), f(w)) =0, M(T'4,) — o0
by a property of the function A(r,t). But M(I'4) > 0 is a fixed number. This
contradicts the fact that the mappings f,, are K-quasiconformal, which implies
M(T4,) < KM(Ty) for all n € N,

Finally, we show that f is one-to-one in D. Suppose that f is not one-to-
one in D. Then there exist z,y € D with x # y such that f(z) = f(y). We show

S
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first that x has a neighborhood in which f is constant. Let U be a neighborhood
of x, given earlier, where f is either one-to-one or constant. We may assume that
y ¢ U. We show that f is constant in U. For this, we look for a point z € U such
that f(x) = f(z). Choose a sphere S C U separating x from y. The point z will
be picked from S. Since f, is a homeomorphism, there is z, € S such that

q(fu(@), falzn)) < q(fal@), fu(y))-

Passing to a subsequence, if necessary, we may assume that z, — 2z € S. Now

q(f(x), f(2)) q(f (@), fu(2)) #4(fa(2), fuzn)) + a(fn(2n), £(2))
4(f(x), fu(2)) £ ¢(fn(2), Fa(y)) + a(fulzn), [(2)).

Obviously g(f(x), fu(x)) 4/0Jand 4(fale)s fu(0) —als (@), F()) = 0 as n = ox,
because f, — f pointwise in D. - Since {f,:'n € N} is equicontinuous at z,

q(fn(zn), f(2)) = 0 as n —-00. Hence, q(f(z),f(2)) =0, that is f(z) = f(2).
To complete the proof, let

IAIA

D, = {z € D :z has a neighborhood in which f is-ene-to-one} and
Dy = {x € D :x has a neighborhood in which f is constant} .

Clearly, Dy, Dy are disjoint-open sets and- their unionis D. Since D is connected,
either Dy = () or Dy = 1. We just proved that @€ Ds, hence-D; = (). This forces
f to be constant in D, a-contradiction. Therefore f is-one-to-one, and hence a
homeomorphism: Furthermeore, one can show that fis; infact, K-quasiconformal,
see [13, Corollary 37.3; p.125). O

Note that Theorem 3.3.1 is a refinement of Theorem 21.1.in [13].

Corollary 3.3.2. [13, Corollary 21.3, p. 71}-If f,,: D= D, is a sequence of K -
quastconformal that converges c-uniformly.to a-mapping f i D, then f is either
a homeomorphism_onto a domain D' or a constant.

Next we present the theorem that if f is a homeomorphism, then the inverse
mappings f, ! converge to f L.

Theorem 3.3.3. [13, Theorem 21.10, p.74] Suppose that f, : D — D, is a
sequence of K-quasiconformal mappings that converges to a homeomorphism f :
D — D'. Then for every compact set F' C D’ there is a integer ng such that
F C D, forn > ng. Moreover, the mappings f, ' converge uniformly to f~' in F.



Chapter 4

Boundary Behavior of
Quasiconformal Mappings

4.1 Boundary Behavior

We say that a sequence (Fy) of sets-in ¢ converges to a point ¢ € C if for each
e > 0 there exists N € N'such that E,, C B(c,¢) for all n.> N.

Lemma 4.1.1. Let (E,) bera sequence of sets in C that converges to a point c
and let A be a compact set not containing c. Then,

M(A(AE, - ) =0
as n — oQ.

Proof. Assume first that-c %00 and that A # {oe}. Let R = dist({c}, A) where
distance is the Euclidean distance between {c} and A. Fix ¢ > 0 with 0 < e < R.
Since (E,,) converges to c, there exists' N &€ N-such that

E, C B(c,e)

for all n > N. For eachon > N, let 1y, = sup{lc —@| : z € E,}. Let I, be
the family of all paths in B(c, R)\"B(e,#y)-joining the boundary components of
B(e,R) \ B(c,ry,). Then, by Example 2.1.4

2m

M(Fn) = @

We see that every path in A(A, E, : C) has a subpath in T, that is, T',, minorizes
A(A, E, : C). Hence

P 2T

:log%'

Since r,, — 0 as n — oo, we have M(I',) — 0 as n — oco. Therefore M(A(A, E, :

~

C)) — 0 asn — oo.

19
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If ¢ = oo, then E, — co. Hence M(A(A, E, : C)) — 0.
If A= {00}, let B be a compact set such that A C B and ¢ ¢ B. By the precious
case, we already hence M(A(B, E, : C)) — 0 as n — oo. By the minorizing
principle,

M(A(A,E, : C)) < M(A(B, E, : C))

which gives M(A(A, E, : C)) — 0 as n — oc. O

Lemma 4.1.2. Let f be a quasiconformal mapping of a domain D into the open
unit disk B and let v be an arc in the domain D terminating at point b on the
boundary of D. Then f has a limit at b along 7.

Proof. Assume that f does not have alimit along v at b. Then there are sequences
(x,) and (y,) in v such that

Tp = b, yn — b f(zp) = and f(y,) =" where b’ # b’

Represent v as a contimuous mapping v : {0,1] ‘== D U{b}. Denote E, =
v([1-1,1)), A= B(0;3)and I\, = A(A, f(£,): B). Then

FAD,) = A(fS1(4), ByoD).

Now by Lemma 4.1.1; M(f7(I,)) = 0.as n — oo. But M(T,) > 5 log2, a
contradiction with the quasiconformality of f. Therefore f has a limit at b along
. [

Let D be a simply connected domain in C.-A cross-cut C of D is an open
Jordan arc in D such that C"\ €' consists of one or two peints on 9D.

Corollary 4.1.3. Let f be a quasiconformal mapping of the disk B onto a domain
D. If C is a cross-cut in-D-then f~(C)-is a cross-cut in B.

Proof. Since f B =+ D is.quasiconformal, f ! is a-quasiconformal mapping of
the domain D onte the unit. disk B.Let-C-be a cross-cut in-D and let a be an
endpoint of C. Then by virtue of Lemma 4.1.2, f ! has a'limit at a along C. In
addition, the limit of f~! at @-along (' must be in B because f is homeomorphic.
Thus f~1(C) is a cross-cut in B. O

Theorem 4.1.4. Suppose that ¥ is a compact and equicontinuous family of K -
quasiconformal mappings of the unit disk B into C. Then for each € > 0 there
exists 6 > 0 such that

dia [f7(C)] <e

whenever f € % and C is a cross-cut in f(B) with dia(C) <.

Proof. Clearly, by Corollary 4.1.3, f~'(C) is a cross-cut in B for each cross-cut
C in f(B) where f € .#. Suppose the assertion is false. Then there exists ¢ > 0
such that for all § > 0 there are f € .# and a cross-cut C' in f(B) such that

dia(C) < 6 and dia[f*(C)] > e.
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We see that for each n € N there are f,, € .%# and a cross-cut C, in f,(B) such
that

dia(C,,) <% and dia[f, '(C,)] > e.

Obviously, dia(C,) — 0 as n — oco. Since .# is compact and equicontinuous, by
Ascoli’s theorem, .# is a normal family. So every sequence in .% has a subsequence
which converges pointwise in all subsets of B. Passing to a subsequence, we may
assume that the sequence (f,,) converges pointwise in all subsets of B. Since % is
a compact family of K-quasiconformal mappings, the limit mapping f of (f,) lies
in .%. Hence f is a K-quasiconformal mapping, and hence f,, — f uniformly on
every compact subset of B.

Next, we show that f,1(C,,) tends to'dB. Suppose that there exists 6 > 0 such
that

ENVEECH\AD

for infinitely many n, where 2 = B(0, 1 — §). Passing to a subsequence, we may

assume that £ N f,1(C,) #for all n. Let z,€ EN f71(Cn). Then (f(z,)) is a

sequence in f(F). Since f(#) is compact, the sequence (f(x,)) has a convergent

subsequence. We denote this subsequence again by (f(z,)). Let f(z,) — y. Fix

go > 0. Since f,, — f uniformly on the compact E, there exists Ny € N such that
€0

alfal) f(2)) < <

for all n > Ny and all @ €& E. Since f(x,) —y, there exists Ny € N such that

itFan)iy) < 2

for all n > Nj. Let- Ny = max{ Ny, N1}. Then for-all n > N,
q(fa(zn), ) < q(falrn), f(2n)) Fa(f(zn)y)

3 a
Mol jo

2 2
=..%0.

Therefore f,(z,) € y.~Since! fu(z,) € C,, dia(C,) —-0 and f,(x,) — y, for
any neighborhood U of y, there.is a positive integer N such that C,, C U, for all
n > N. That is

UNofa(B) # 0, (4.1.1)
for all n > N. On the other hand, y € f(E) C f(B), which means that there
is a neighborhood U’ of y such that U’ C f,(B) for sufficiently large n. This
contradicts (4.1.1). Therefore f,'(C,,) lies close to 0B,

Finally, let A = B(0, %) and consider the path family

I, =A(A f,'(Cy): B).
Since f,,!(C,,) tends to OB and dia(f,*(C,)) > ¢, for all sufficiently large n, by
the minorizing principle,

3
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where I's is the path family defined in Example 2.1.4. Since f is a homeomorphism,
f(A) is a compact subset of the domain f(B). Choose a neighborhood V' of f(A)
such that V C f(B). Then

fn(A) CV,

for all sufficiently large n. Since V is compact, by virtue of Theorem 3.3.3, V C
fn(B) for all large n. We know already that dia(C,,) — 0. For large n, C, must
lie outside V. Passing to a subsequence if necessary, we may assume that (C,)
converges to a point P, where P ¢ f(B). Note that if P € f(B) then P € f,(B)
for all large n which is impossible. Since f,(A) C V for all large n,

A(V,Cp: €) < Afa(4), Co + fu(B))
for all large n. It follows by L.emma 4.1.1 and minorizing principle that

1i_>m M(f.(T))) = li_>m M(A(filA)sCrifu(B))-< ILm M(V,C, : (f:) = 0.
This contradicts the fact that the quasiconformality of the mapping f,, and M(T",,) >
3 O

2log2”

4.2 Local connectedness

Let E be a set in C and-let 2z be a point in £. The set F is said to be
locally connected at z if every neighborhood U of 2z in"E contains a connected
neighborhood of z/in ' E. This condition is often expressed. by saying that z has
arbitrarily small connected neighborhoods in-E. The set E-islocally connected if
it is locally connected at. each point.

If we want an ”epsilon-delta” type of connectedness property, we are likely
to end up with the following local property which is closely related to local connect-
edness and called connectedim kleinen (an odd mixture of English and German):
a set I/ in C is connected im kleinen at a point 2 € F provided that for each
e > 0 there is 0 > 0.such that each point-w€ E with |z —w| < ¢ can be joined to
z by a connected set in“E of diameter less than €.

Lemma 4.2.1. [5, Theorem 3.2, p.106] A set E is locally connected if and only
if the components of all open sets of E are open.

Proof. Suppose first that the components of all open sets of E are open. If z is
any point in F and U is any of its neighborhoods, the z-component of U can be
chosen for the connected neighborhood of z.

For the converse, let C' be a component of an open set U in E. Each point
z in C' has a connected neighborhood V, in F lying in U. Each such V, must lie
in C'. Thus C = U V.. As a union of open sets in E, the component C' is open

zeC
in F. ]

Lemma 4.2.2. [5, Theorem 3.11, p. 114] A set E is locally connected if and only
iof it is connected im kleinen at each point.
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Proof. Suppose first that F is locally connected. Fix z € E and € > 0. Then
E N B(z,5) contains a connected neighborhood V' of 2z in E. Choose § > 0 so
small that EN B(z,d) is contained in V. Then every point w in EN B(z,J) can be
joined to z by the connected set V' C E. Since dia(V') < ¢, the set F is connected
im kleinen at z.

To prove the converse, it suffices to show, in view of Lemma 4.2.1, that the
components of all open sets in E are open. Let U be such a set and let C' be a
component of U. Given a point z € C', there is an open set V, in E containing z
and lying in U such that each point w in V, can be joined to z by a connected set
V. in U. Since C' is the z-component of F, each V,,, must lie in C'. Thus V, lies
in C'and C' = U V.. As a union of open sets in F, the component C' is open in

zeC
FE. ]

Lemma 4.2.3. [8, Theorem 8.2, p.89} Under. a continuous mapping the image of
a compact and locally connected set 1s compact and locally connected.

Proof. Let E be compact and loeally eonnected and let f :-E'— C be continuous.
Compactness of f(E) is well-known. We-will show that f(E)-is locally connected.
For this, it suffices, in view of Lemma 4.2.1, to verify that the components of all
open sets in f(E) are open.

Write £/ = f(F). Let:U be an opensubset of £ and let C' be a component
of U. Since f is contimtous, f7*(U) is-open in E and'so are the components of
S7YU) by virtue of Lemma 4.2.1. The set._f7(C) is'a union of some components
of f~1(U), because if A-issuch a.component; then-A is connected and, by the
continuity of f, also f(A) is connected, which implies that either f(A) is disjoint
from C or lies entirely in €'--Hence f='(C) consists of entire.components of f~1(U).
Consequently, f~*(C) is-ope.

Now, f(f~%C)) =-C. Since a closed set in-a compact space is compact
and since compactness is preserved under continuous-mappings, wee see that f is
also a closed mapping; i.e:f preserves-closed sets. It follows that the image £\ C
of the closed set E \ f~}(C) is elosed. Thus C is-6pen. O

We say that a set.F in/C is uniformly connected im kleinen provided
that, given € > 0, there is 0 >0-such that any pair of points in E with distance
less than ¢ can be joined by a connected set in E with diameter less than e.

Lemma 4.2.4. [5, Theorem 3.13, p. 114] A locally connected compact set is uni-
formly connected 1vm kleinen.

Proof. Let E be a locally connected compact set in C. Fix ¢ > 0. Since E is locally
connected, each z € E lies in a connected open subset V, of E with dia(V}) < e.
Since F is compact, the covering {V,} of E has a Lebesgue number 6 > 0. Now if
z,w € F and |z —w| < §, then z and w lie in one of the sets V.. This set is the
desired connected set. O

A classical result in conformal mapping theory, often referred to as Wolft’s
lemma, will be proved next for quasiconformal mappings. See Becker [3]. For
conformal mappings see, for example, the book [4] of Collingwood and Lohwater.
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Lemma 4.2.5. (Wolff’s Lemma) Let f be a bounded K -quasiconformal map-
ping of the open unit disk B, let zg € OB and let 0 < h < 1. Then there exists
s with h? < s < h such that the image of the circular arc Cy = S(zy,s) N B has
finite length

)

K area(f(A)) 3
log % }

e < |

where A = BN B(zy,h)\ B(z,h?). In particular, there are numbers s, — 0 such
that ((f(Cs,)) — 0.

Proof. Let T' be the family of all open circular paths C; in A with h2 <t < h.

Then ) A . )
M(T ~log— = —log =.

Here the minorizing principle and example 2.1.7 do not yield the strict inequality
above, but an easy modification of the argument used in the proof of example
2.1.7 will do it. Since f is K-quasiconformal,

%bg% <'M(T} € KM(f()).

Then at least one path in the family f(I") must have finite length, because other-
wise M(f(T")) = 0. Set
a = _inf ((f(Cy)).

Ccrel

If @ = 0, the lemma is proved. Suppose o« > 0. Define a-Borel function p : C —

0, 00] by setting
=Lif 2e f(A),
V)i { 0. - otherwise.

Then
1 1 1
/ SED- / ~ldz| = U HCH =N D=

for each locally rectifiable path. f(C}) in f(I"). Thus p is an admissible function
for the path family f(T'),

M(f(T)) < /R2”2dm
= / %dm

f(a) @
= area(f(4))

and, therefore, since

1 1 K
% log E < M(P> < Earea(f(A))v
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we obtain

o2 < Kn area(lf(A))'
log 5

Consequently,

VI

() < {K” afj;‘(%f “‘”]

for at least one C in I'. Since the right hand side tends to zero as h — 0, there
exist numbers s; — 0 such that ¢(f(Cs,)) — 0. O

Theorem 4.2.6. Let f be a quasiconformal mapping of the open unit disk B onto
a bounded domain D. Then the following conditions are equivalent:

(1) f can be extended to a continuous mapping f : B — D.
(2) 0D is locally connected (uniformly connected im kleinen).

(3) C\ D is locally connected (uniformly connected im kleinen).

Proof. (1) = (2) : Since-the unit_circle is (compact-and locally connected, the
image 0D = f(0B) under the continuous mapping f is also-compact and locally
connected by virtue of Lemma 4.2.3, and Lemma 4.2.4 ensures that D is locally
connected.

(2) = (3) : Assume that 9.D:is locally connected. Fix ¢ > 0. Since 9D
is compact, 0D is uniformly connected im kleinen by ILemma 4.2.4. Choose 4,
0 <4 < g, such that' any pair of points in-d D with distance less than § can be
joined in 9D by a connected set with diameter-less-than 5. Now let a and b be
points in C\ D with.|a—b] <. If [a;0] N 0.D-= (,-then the line segment [a,b] is a
connected set in C.\ D of diameter less than €. Suppose next that {a,b] N 9D # (.
Let a’ be the first point and-¥’ the last-point-in-[a, b| N.dD when traversing from
a toward b aleng [a;b]. The points,a’ and b" can be joined by a‘connected set A
in 0D with dia(A4) < £.-Theset F' = [a,a’] U AU [bb] is connected, lies in C\ D,
contains a and b and satisfies

dia(F) <-.dia([a,a']) + dia(A) +dia([V), b])

€
S+ - +0
< Gtg+

< E.

Thus C\ D is uniformly connected im kleinen.

(3) = (1) : Assume that C\ D is locally connected. To show that f has
a continuous extension to B, fix 2y € dB. It suffices to verify that f has a limit
at zo. For this, fix , 0 < ¢ < dist (f(0),0D). The existence of the limit at zy will
follow if we can show that dia[f(U N B)] < e for some neighborhood U of z.

By Wolff’s lemma, there is a nested sequence of circular arcs Cy, = S(zp, sx)N
B, with 0 < s, < % and s — 0 as k — 0o, such that the length of f(Cy) is finite
and tends to 0 as & — oo. Thus

dia[f(Ck)] — 0
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as k — o0o. Fix k large enough so that

&ﬂﬂ@ﬂ<§

Let a; and by denote the endpoints of the arc f(Cy). Then ay, by € 0D C C\ D.
Suppose first that ay = by. Then f(C}), together with the endpoints ay
and by, is a simple closed curve or a Jordan curve J, a set homeomorphic to the
unit circle. The arc f(Cy) divides D into two subdomains, Dy and D;. Let Dy be
the f(0)-component of D\ f(Cx). Then f maps 0 into Dy and B N B(zo, sx) onto
D;. Since
dia(Dy) = dia(J) = dia(f(C)) < &,

the disk B(zp, si) can be chosen for the neighborhood U sought for.

Suppose next that ap .# by, By passing to subsequences and relabeling,
we may assume that the sequences (ay)-and (b;) converge towards one and the
same point, wy. We can thereby c¢hoose §-> 0 so that each pair of points in
B(wg, d) N (C\ D) can bejoined by a connécted set in C\ D of diameter less than
5. For large k, this can also be done for the points ax and by... We may assume that
our k above is such a k.-Join a; to by by a-connected set A;, with dia(Ax) < s
in C\ D. We divide the rest of the proof into two cases depending upon whether
Ay is a Jordan arc with endpoints a;, and b, or mot. A Jordan arc means a set
homeomorphic to the line segment [0.1]

Consider first the case where Ay is a Jordan arc with endpoints a; and by.
Then

J=f(Cr) WA

is a Jordan curve. By theJordan-Curve Theorem, .J divides C.into two domains
and is their commeon boundary. One of these domains; say D, is bounded, the
other is unbounded. The domain D, satisfies

&MDQ:&%DS&Mﬂ@»+&Mm)<g+§=a
Now 0 and B N B(z, s) are separated.in-B by the crosscut Cy. Thus f(0)
and f(B N B(zp, si)) are separated in-D- by the crosscut f(Cj). Since 0 <
e < dist (f(0),0D) and dia(D;) < &, the domain-D; cannot contain the f(0)-
component of D\ f(Cy). Hence Dy must contain the other component, which is
f(B N B(zo,sk)). It follows that

dia[f(B N B(zo, sx))] < dia(Dy) < e,

and we can again choose the disk B(zp, sx) for the desired neighborhood U of z.
Finally, consider the case where A;, is not a Jordan arc, just a connected set
in C\ D joining ay, to by. We will use Janiszewski’s separation theorem to complete
the proof. However, present an argument that is perhaps more transparent.
Since C \ D is closed, the closure A, of A, taken with respect to C lies in
C\ D. It has the same diameter as A; and it is connected, closed and bounded,
hence compact. In other words, Ay, is a continuum. Consider the set

F =AU f(Cy).
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It also is a continuum and has diameter less than €. The complementary com-
ponents of F' are domains, in fact simply connected domains, except for the
unbounded component. Since 0 < e < dist(f(0),0D), the f(0)-component
of D\ f(Cy) cannot lie in any of the bounded components of C \ F. Thus
f(B N B(zp, sr)) must be contained in one of the bounded components of C \ F,
call it GG. Since OG lies in F, we obtain

dia[f(B N B(zo, sx))] < dia(G) = dia(0G) < dia(F') < e.

Thus again we can choose the disk B(zo, si) for the desired neighborhood U of z.
The proof is complete. O



Chapter 5

Uniform Convergence of
Quasiconformal Mappings

In this chapter we prove the main result-about the uniform convergence of a
sequence of quasiconformal mappings:

5.1 Uniform Convergence of Quasiconformal Map-
pings

First we present the definition of uniformly local connectedness of compact
sets as follows. A family & of compact sets-in/C is called-uniformly locally
connected if for every g > 0, there exists ¢ > 0 such that for each £ € & if
z,w € F and |z = w|.<'J, we can find a connected set in £-of diameter less than
€ joining z and w.

Lemma 5.1.1. Let'D be a domain in'C._and let a,b be points in'C\ D. Then
la,b] N D consists of a countable union of disjoint-open line segments.

Proof. Without loss of generality, by rotation and translation, we may assume that
the line segment [a,b] lies in the real line. Then-{a,b] N D is a union of disjoint
open intervals. Since QQ is dense in R, for each open interval there is a rational
number that belongs to such open interval. Hence [a, )N D consists of a countable
union of disjoint open interval because Q is countable. O

We are now prepared to prove the main theorem.

Theorem 5.1.2. Let .% be a compact family of K-quasiconformal mappings de-
fined in the unit disk B into bounded domains. Then the following conditions are
equivalent:

(1) .Z is uniformly equicontinuous in B

(2) Each f € F can be extended to a continuous mapping f of B and the family
{f: feF} is uniformly equicontinuous in B.

28
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(3) The family & = {C\ f(B) : f € F} of the complements of the domains
f(B) is uniformly locally connected.

Proof. (1) = (2) : Since each f € .# is uniformly continuous in B, such an f can
be extended continuously to B. The extended family {f : f € .Z} is easily seen
to be equicontinuous at each point of B, because .# is uniformly equicontinuous
in B. By compactness of B, the extended family is uniformly equicontinuous in
B.

(2) = (3) : For each f € .Z, let E(f) be the complement C \ f(B) of f(B). B
virtue of Theorem 4.1.4, to each € > 0 there corresponds a § > 0 such that

dia [f71(0)] <,

where f € . and dia(C) < ¢ for each cross-cut C.of f(B). We will show that
& =A{E(f): [ € Z#} is uniformly loeally connected.  Fix ¢ > 0. By hypothesis,
there is n > 0 such that

dia [f(L)] < (5.1.1)

S
37
whenever f € .# and L'isaset in B with dia(L) < 1. Choose 0 < § < % so that

dia [ /(O] < m, (5.1.2)

whenever f € .# and C-is a cross-cut of f(B) with dia(C') < §. Now, for an
arbitrary f € %, fix points a,b € E(f) with g(a;b) < §. We may assume that
a,b # co. If the line segment [a;b]-lies in C\ f(B), we can choose [a,D] as a
connected set with

dia([ay0]).= q(a,b) <d-<e.

So assume that [a, b] T f(B)# 0. By Lemma 5.1.1,we have {a, b|0.f(B) = U, Cj,
a countable union of disjoint open line segments.C; which are cross-cuts of f ( ).
Then by virtue of (5.1.2), the preimages satisty

dia [f7(C))] <,

and they are cross-cuts of B by virtue of Theorem 4.1.4. The endpoints of each
cross-cut f~(C}) lie on the cirele. 9B, they are-distinct, and they determine a
closed circular L; on 0B with

dia(L;) <.

Hence dia [f(L;)] < & by virtue of (5.1.1). By replacing the line segment C; by
f(L;), we see that the set

= ([a,b]\ f(B Ojf )

is a connected set joining a and b in E(f). We will show that dia(F) < . Let
x,y € F. Clearly, if 2,y € [a,0] \ f(B), then

alw,y) < qla,b) <6 < -
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So dia(F') <

If z € [a,b] \ f(B) and y € |, f(L;), then there is an index j such that
y € f(L;). Let be ' the first point in [a, b]NOf(L;) when traversing from = toward
Jf(L;) along [a,b]. Then

q(x, ') +q(y',y)

q(a,b) + dia(f(L;))
5+§

q(z,y)

VARVAN

A

Hence dia(F) <6+ <+ %X =e.
If z,y € U; f(L;). Then there are indices i;j such that x € f(L;) and
y € f(L;). Obviously, if i = j, then

ey < dialf(LJ}S T

In the case i # j, let 2’ be thelast point-in [a,b] M0 f(L;) and-y/ the first point in
la,b] N Of(L;) when traversing from a toward b along {a,b]. Then

g2 )+ q(2'5y") + (v, y)
dia(f (L)) + q(a, b) +-dia(f(L;))
e i

3 3

2e

=7

q(z,y)

IAIA

N

0+

Thus dia(F) <+ 2 < $+% =¢.

(3) = (1) : By Theorem 4.2:6, the mappingsin .% can be extended continuously
to B. We retain the notation. f for the extended mapping: We will show that the
extended mappings.are equicontinuous-on-the boundary of B. Fix zy € 0B and
e > 0. It suffices to find.p >'0/'s0 that

q(f(), (")) <e.

whenever 2/, 2" € BN B(zy,n) for all f € #. Since f(0) ¢ 0f(B) and .¥ is
compact, there exists d > 0 such that

dist({f(0)}, E(f)) = d

for all f € #. We may assume that ¢ < 2d. By hypothesis, there is § with
0 < 0 < § such that any pair of points a,b € E(f) with g(a,b) < 0 can be joined
in £(f) by a connected set F' such that dia(F) < 5. Fix h, 0 < h < 1 so that

N

<0,

[1<ﬂ-area<f(fo)

log %
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where R = B N B(zy,h) \ B(z,h?) for any f € .F. Let f € .# be arbitrary.
By Wolff’s lemma, we can choose a circular cross-cut Qs = B N S(zp,s) with
h* < s < h so that

9
<0< =
2

1
Kr area(f(R))]?
14 s)) <
Q) < | T
The endpoints a and b of f(Q;) lie in E(f) and they satisfy g(a,b) < 6. Hence
they can be joined in E(f) by a connected set F' with dia(F') < 5. Therefore

€

FUf(Qs) § B(a7§)'

Now, let z be an arbitrary point in’B-with g(a, f(z)) > 5. Then the points f(z)
and f(0) are not separated by the set £(f). Neither are they separated by the
set F'U f(Qs). Since E(f) N (FUf(Qs)) =f(Qs) is connected, we conclude by

Janiszewski’s theorem that these points-are not separated by the union

B U(F Uf(Qs)) < B(f)UFHQs)-

Hence they can be joined in f(B) by a path which does not intersect the cross-cut
f(Qs). Since |0 — z| =1 > h > s, we have |2— 2| > s> h?. Consequently, if z
is a point in B with |z —z| < h? we must have ¢(a, f(2)) < 5. Set n = h?. Then
by the triangle inequality

q(fE@) f )<

<

(0t (e, (=)

(a,

7
L€
2

Mo |

whenever 2’ and 2" are points'in B N B(zy,1).-Since-f-is arbitrary, .# is equicon-
tinuous at zg. It holds for-any peint z¢in 9B. Hence .# is equicontinuous in 0B5.
Finally, since .# is a compact family of K-quasiconformal mappings in B, .% is
equicontinuous in B. Hence .Z is equicontinuous in-B. Since B is compact, .Z is
uniformly equicontinuous in.B3. This proves (1) as desired. O

We next give a condition for uniform convergence in terms of domains
containing oo as follows:

Corollary 5.1.3. Let (f,) be a sequence of K -quasiconformal mappings of the unit
disk B into bounded domains. Suppose that (f,) converges to a homeomorphism

f.
(1) If the collection & = {E, = C\ fu(B)} is uniformly locally connected, then

the mappings f, extend to continuous mappings f, of B and the sequence
(f,) converges uniformly in B.

(2) 1If the convergence f, — [ is uniform and if each f, extends continuously to
B, then & is uniformly locally connected.
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Proof. (1) Since each F, is locally connected, by Theorem 4.2.6 each mapping
fn can be extended to a continuous mapping f, of B. By using the assumption
that (f,) converges to a homeomorphism f, and that & = {E,, = C \ fu(B)} is
uniformly locally connected, and applying the similar arguments used in the proof
of part (3) = (1) of Theorem 5.1.2, we can prove that the family {f, : n € N} is
uniformly equicontinous in B.

Let € > 0. Since {f, : n € N} is uniformly equicontinous in B, there is a
positive number ¢ such that

£

4(fa(@), [a(®)) < 3

for all n € N, whenever z,y € B with | —y| < . Since B is compact, there are
points, say x1, T, ..., Ty, in B such that B-C U]szl B(xy, d). Since (f,) converges
to a homeomorphism f, there is an integer N such that

Q(fn(xk)a fm(xk)) <

WM™

for all k = 1,2,..., M whenever m;n > N. Let y. € B. Then y € B(xy,6) for
some k € {x1,zs,...,x)}. Forim,n > N, we have

ﬂﬁ@%ﬁ@D (fn
_l’_

(20)) +a(Fu (@), Frler)) + a(F (@), Fn(y))

IA
w|m»Q

() fn

gy 4

A

Therefore (f,) converges uniformly in B, as desired.

(2) Suppose that, the convergence f, — f is uniform and if each f, extends

continuously to B. It can be shown that f can be extended to a continuous

mapping f of B. By Theorem 3:3.1, fis. K-quasiconformal. Therefore the family
={fn:n € N}U{f} is a.compact family of K- quasiconformal mappings defined

in the unit disk B into bounded-domains. Indeed (f, )-converges uniformly in B,

which implies that {f : f € %#}.is uniformly-equicontinuousin B. Hence, by

Theorem 5.1.2, & is uniformly locally connected: m
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