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Chapter 1

Introduction

The celebrated Riemann Mapping Theorem states that the open unit disk
B in the complex plane C can be mapped conformally onto any simply connected
domain D in C with non-degenerate boundary. A comprehensive treatment of the
boundary behavior of conformal mappings is presented in Pommerenke’s mono-
graph [11], which also contains an extensive list of references.

In [10] Pommerenke characterized the domains D onto which the Riemann
mapping of B admits a continuous boundary extension as follows: a conformal
mapping of the open unit disk B onto D can be extended continuously to B if and
only if the complement of D is locally connected. In this thesis we show that this
result also holds for quasiconfomal mappings. Additional characterizations, valid
not only for quasiconformal mappings in the plane but also for higher dimensional
quasiconformal mappings as well, can be found in [7] and [13]. The main tools
employed in establishing the quasiconformal analogue of Pommerenke’s result are
the modulus of a path family introduced by Ahlfors and Beurling in their land-
mark paper [2] and a quasiconformal version of Wolff’s lemma which is introduced
by Becker, see [3], in companion with some topological considerations.

We also investigate the uniform convergence of a sequence ofK-quasiconformal
mappings. Let (fn) is a sequence of K-quasiconformal mappings of the open unit
disk B into bounded domains which converges in B to a homeomorphism f . We
show that the following statements hold:

(1) If the collection E = {En = Ĉ \ fn(B)} is uniformly locally connected, then
the mappings fn can be extended to continuous mappings fn of B and the
sequence (fn) converges uniformly in B.

(2) If the convergence fn → f is uniform and if each fn extends continuously to
B, then E is uniformly locally connected.
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Chapter 2

Modulus of a Path Family

In this chapter we study the main geometric tools used in studying qua-
siconformal mappings. We associate a number, called the modulus, to each path
family to describe, albeit in an abstract way, how long or short or how plentiful
the paths in the family are. The idea of doing so is due to Beurling and was first
published in the seminal paper [2] by Ahlfors and Beurling in 1950. Most of the
results follows Väisälä [13].

2.1 The modulus

Before defining the modulus, we need to introduce some pertinent terminology.
Let I be an interval in R. A mapping γ from I into R2 = R2∪{∞} is called

a path if it is continuous. We call a restriction of the path γ to a subinterval of
I a subpath of γ. The path γ is called open or closed if the interval I is open
or closed, respectively.

To define the length of a path, let γ : [a, b]→ R2 be a closed path. We call
a subset P = {t0, t1, . . . , tn} of the interval [a, b] a partition of [a, b] if

a = t0 < t1 < . . . < tn = b.

Define the length of γ by the supremum of the sums

n∑
k=1

|γ(tk)− γ(tk−1)|

over all partitions of [a, b] and denote by `(γ). If γ is a nonconstant path in R2

that contains ∞, then we define `(γ) = ∞. For the constant path γ(t) ≡ ∞, we
define `(γ) = 0.

Clearly, 0 ≤ `(γ) ≤ ∞ for any path γ. A path γ is called rectifiable if it
has a finite length, otherwise non-rectifiable. A path γ is locally rectifiable
if every closed subpath of γ is rectifiable. Hence any path γ that contains ∞ is

2



3

non-rectifiable, except only when it is a constant path.

Next, we will present a definition of a line integral. Let γ : [a, b] → R2 be
a rectifiable path. The path γ0 : [0, `(γ)] → R2 is called the normal represen-
tation of γ if it satisfies the following properties:

1. there exists an increasing continuous mapping h from [a, b] onto [0, `(γ)] such
that γ = γ0 ◦ h.

2. `(γ0|[0,t]) = t for all 0 ≤ t ≤ `(γ).

The function γ0 is unique, see [13, Theorem 2.4, p. 5].

Let ρ be a Borel function from a Borel set A in R2 into the interval [0,∞].
For any rectifiable path γ : [a, b]→ A, we define the line integral of ρ over γ by∫

γ

ρds =

∫ `(γ)

0

ρ
(
γ0(t)

)
dt.

We sometimes use the notation
∫
γ
ρ(z)|dz| instead of

∫
γ
ρds. For an open or half-

open locally rectifiable path γ the line integral of ρ is defined as the supremum of
the line integrals of ρ over all closed subpaths of γ.

Now, we are ready to give the definition of the modulus of a path family.
Let Γ be a family of paths in R2. A Borel function ρ : R2 → [0,∞] is called
admissible for Γ if ∫

γ

ρds ≥ 1

for every locally rectifiable path γ in Γ. Let F (Γ) denote the collection of all
admissible functions for Γ. Define the the modulus of Γ as

M(Γ) = inf
ρ∈F (Γ)

∫
R2

ρ2dm,

where m stands for the Lebesgue measure in R2. If F (Γ) = ∅, we define M(Γ) =
∞. Obviously, 0 ≤M(Γ) ≤ ∞.

The following theorem establishes some basic properties about the modulus
of path families.

Theorem 2.1.1. [13, Theorem 6.2, p. 16] M is an outer measure in the collection
of all path families:

(1) M(∅) = 0,

(2) Γ1 ⊂ Γ2 implies M(Γ1) ≤M(Γ2),

(3) M

(
∞⋃
k=1

Γk

)
≤
∞∑
k=1

M(Γk).
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Let Γ1 and Γ2 be two families of paths. We say that Γ1 minorizes Γ2,
denoted by Γ1 < Γ2, if every path γ ∈ Γ2 has a subpath in Γ1.

Theorem 2.1.2. [13, Theorem 6.4, p. 17] If Γ1 < Γ2, then M(Γ1) ≥M(Γ2).

Proof. Suppose first that Γ1 < Γ2. We will show that F (Γ1) ⊂ F (Γ2). Let
ρ ∈ F (Γ1) and let γ be an arbitrary locally rectifiable path in Γ2. Then γ has a
subpath γ′ ∈ Γ1 and then ∫

γ′
ρ|dz| ≥ 1.

Hence ∫
γ

ρ|dz| ≥
∫
γ′
ρ|dz| ≥ 1

and hence ρ ∈ F (Γ2). Since ∫
R2

ρ2dm ≥M(Γ2),

we obtain by taking the infimum over all such ρ ∈ F (Γ1) that

M(Γ1) = inf
ρ∈F (Γ1)

∫
R2

ρ2dm.

Therefore M(Γ1) ≥M(Γ2).

The result of this theorem is called the minorizing principle. It is one of
the most useful tools for finding an upper bound or a lower bound for the modulus
of path families. We will use this principle several times latter.

Next, we introduce the notation and terminology that will be used for the
rest of this thesis. All sets considered here are assumed to lie in the plane R2.
We use B(z, r) to denote the open disk of radius r centered at z, we let S(z, r)
denote the boundary of B(z, r). For convenience, we abbreviate B(r) = B(0, r),
S(r) = S(0, r), B = B(0, 1) and S = S(0, 1). The topology used for sets in R2 is
the relative topology induced by the Euclidean metric. For a given path family Γ,
it is very difficult (in general impossible) to compute M(Γ). There are only very
few such families Γ for which the modulus M(Γ) can be computed precisely. We
next compute the modulus M(Γ) for some specific families Γ.

Example 2.1.3. Let A be a spherical annulus B(b) rB(a) where 0 < a < b. Let
Γ be the family of all radial segments in A. Then

M(Γ) =
2π

log b
a

.

Proof. We will first show that M(Γ) ≥ 2π
log b

a

. For each θ ∈ [0, 2π], let γθ : [a, b]→ A

be the line segment in Γ defined by

γθ(r) = reiθ.
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Let ρ ∈ F (Γ). Then ∫
γθ

ρ|dz| =
∫ b

a

ρ(reiθ)dr ≥ 1.

By the Cauchy-Schwarz inequality, we obtain

1 ≤
(∫ b

a

ρdr

)2

=

(∫ b

a

ρr1/2 · r−1/2dr

)2

≤
∫ b

a

(ρr1/2)2dr

∫ b

a

(r−1/2)2dr

=

∫ b

a

ρ2rdr

∫ b

a

1

r
dr

= log
b

a

∫ b

a

ρ2rdr.

Thus we have
1

log b
a

≤
∫ b

a

ρ2rdr.

Integrating over all θ ∈ [0, 2π], we get∫ 2π

0

1

log b
a

dθ ≤
∫ 2π

0

(∫ b

a

ρ2rdr

)
dθ =

∫
A

ρ2dm ≤
∫
R2

ρ2dm.

It shows that
2π

log b
a

≤
∫
R2

ρ2dm

for all ρ ∈ F (Γ), and hence

M(Γ) = inf
ρ∈F (Γ)

∫
R2

ρ2dm ≥ 2π

log b
a

.

Next, we will show that M(Γ) ≤ 2π
log b

a

. Let

ρ0(z) =

{
1

|z| log b
a

if z ∈ A,
0 if z /∈ A.

For γ ∈ Γ, we have∫
γ

ρ0|dz| =
∫
γ

1

|z| log b
a

|dz| =
∫ b

a

1

r log b
a

dr = 1,

that is, ρ is admissible for Γ. Hence
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M(Γ0) ≤
∫
R2

ρ2
0dm

=

∫
A

ρ2
0dm

=

∫
A

1

|z|2(log b
a
)2
dm

=

∫ 2π

0

∫ b

a

1

r2(log b
a
)2
rdrdθ

=
2π

log b
a

.

It follows that M(Γ) = 2π
log b

a

as desired.

Example 2.1.4. Let A be a spherical annulus B(b) rB(a) where 0 < a < b, and
let Γ be the family of all paths in A joining the boundary components of A. Then

M(Γ) =
2π

log b
a

.

Proof. We will show first that M(Γ) ≥ 2π
log b

a

. Let Γ0 be the family of all radial

segments in A. Clearly, Γ0 ⊂ Γ. By Theorem 2.1.1 and Example 2.1.3, we obtain

M(Γ) ≥ 2π

log b
a

.

Next, we will show that M(Γ) ≤ 2π
log b

a

. Let

ρ0(z) =

{
1

|z| log b
a

if z ∈ A,
0 if z /∈ A.

Given a locally rectifiable path γ in Γ, we have∫
γ

ρ0|dz| ≥
∫ b

a

ρ0dr = 1.

So ρ0 is admissible for Γ. Hence, by Example 2.1.3 we obtain,

M(Γ) ≤
∫
A

ρ2
0dm =

2π

log b
a

.

It follows that M(Γ) = 2π
log b

a

as desired.
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By using the similar argument, we can modify the previous computation
to get the modulus for some subfamilies of the path family Γ in Example 2.1.4.
More precisely, let Aα be a sector of central angle α and let Γα be the family of
all paths in Aα joining the boundary components of A. Then we can show that

M(Γα) =
α

log b
a

.

Example 2.1.5. Let A be the spherical annulus B(b) r {0} where b > 0, and let
Γ be the family of all paths in A joining the boundary components of A. Then

M(Γ) = 0.

Proof. Fix a number a with 0 < a < b. Let Γ′ be a family of all paths in the
spherical annulus B(b) r B(a) joining the boundary components of the annulus.
Clearly, Γ′ < Γ. By Theorem 2.1.2, we obtain

M(Γ′) ≥M(Γ).

Note that M(Γ′) = 2π
log b

a

by Example 2.1.4. Thus

M(Γ) ≤ 2π

log b
a

.

Since 2π
log b

a

→ 0 as a→ 0, we obtain that M(Γ) = 0 as desired.

We next give 2 more examples whose results will be used several times
later.

Example 2.1.6. Let ∆ be the family of all circles that separate the boundary
components of the spherical annulus A = B(b) rB(a) where 0 < a < b. Then

M(∆) =
1

2π
log

b

a
.

Proof. We will show first that M(∆) ≥ 1
2π

log b
a
. For each r ∈ (a, b), let γr :

[0, 2π]→ A be a circle in ∆ defined by

γr(θ) = reiθ.

Let ρ ∈ F (∆). Then ∫
γr

ρ|dz| =
∫ 2π

0

ρ(reiθ)rdθ ≥ 1.

By the Cauchy-Schwarz inequality, we obtain

1 ≤
(∫ 2π

0

ρrdθ

)2

=

(∫ 2π

0

ρr1/2 · r1/2dθ

)2

≤
(∫ 2π

0

ρ2rdθ

)(∫ 2π

0

rdθ

)
= 2πr

(∫ 2π

0

ρ2rdθ

)
.
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That is
1

2πr
≤
∫ 2π

0

ρ2rdθ.

Integrating over all r ∈ (a, b), we obtain

1

2π
log

b

a
=

∫ b

a

1

2πr
dr ≤

∫ b

a

(∫ 2π

0

ρ2rdθ

)
dr =

∫
A

ρ2dm ≤
∫
R2

ρ2dm,

for all ρ ∈ F (∆). Hence

M(∆) = inf
ρ∈F (∆)

∫
R2

ρ2dm ≥ 1

2π
log

b

a
.

Next we will show that M(∆0) ≤ 1
2π

log b
a
. Let

ρ0(z) =

{ 1
2π|z| if z ∈ A,
0 if z /∈ A.

For γ ∈ ∆, we get ∫
γ

ρ0|dz| =
∫
γ

1

2π|z|
|z|dθ =

∫ 2π

0

1

2π
dθ = 1.

Hence ρ0 is admissible for ∆. It follows that

M(∆0) ≤
∫
R2

ρ2
0dm

=

∫
A

ρ2
0dm

=

∫
A

1

|z|2(2π)2
dm

=

∫ 2π

0

∫ b

a

1

(2π)2r2
rdrdθ

=
1

(2π)2

(∫ 2π

0

dθ

)(∫ b

a

1

r
dr

)
=

1

2π
log

b

a
.

Therefore, M(∆) = 1
2π

log b
a
.

Example 2.1.7. Let ∆ be the collection of all closed paths that separate the bound-
ary components of the spherical annulus A = B(b)rB(a) where 0 < a < b. Then

M(∆) =
1

2π
log

b

a
.
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Proof. We will show first that M(∆) ≥ 1
2π

log b
a
. Let ∆0 be the collection of all

circles centered at the origin that separate the boundary components of A. Clearly,
∆0 ⊂ ∆. By Theorem 2.1.1 and Example 2.1.6, we have

M(∆) ≥M(∆0) =
1

2π
log

b

a
.

Next we will show that M(∆0) ≤ 1
2π

log b
a
. Let

ρ0(z) =

{ 1
2π|z| if z ∈ A,
0 if z /∈ A.

Given a locally rectifiable path γ in ∆, we obtain∫
γ

ρ0|dz| =
∫
γ

1

2π|z|
|z|dθ ≥

∫ 2π

0

1

2π
dθ = 1.

So ρ0 is admissible for ∆. Hence

M(∆) ≤
∫
R2

ρ2
0dm

=

∫
A

ρ2
0dm

=
1

2π
log

b

a
.

Therefore, M(∆) = 1
2π

log b
a
.

We can modify the argument in Example 2.1.7 to derive the modulus for
some subfamilies of the path family ∆. More precisely, let Aα be a sector of central
angle α and let ∆α be the family of the subpaths of all paths in ∆ that lie in Aα.
Then

M(∆α) =
1

α
log

b

a
.

2.2 Rings

Given sets E,F,G ⊂ R2. We denote ∆(E,F : G) the family of all closed
paths with initial points in E, terminal points in F and otherwise lying in G.

Next, we will introduce the modulus of path families in a domain, namely
a ring. A domain A in R2 is called a ring if its complement consists of exactly 2
components, say C0 and C1. We denote A by R(C0, C1). Then the boundary ∂A
of A has also two components, namely B0 = C0 ∩ A and B1 = C1 ∩ A, where A
is the closure of A. For each ring A = R(C0, C1), let ΓA = ∆(B0, B1 : A) be the
family of all closed paths that join B0 and B1 in A.

Observe that ΓA has the same modulus as Γ1 = ∆(B0, B1 : R2), Γ2 =
∆(C0, C1 : A) and Γ3 = ∆(C0, C1 : R2). For instance, M(ΓA) = M(Γ1) because
ΓA ⊂ Γ1 and ΓA minorizes Γ1.



10

Theorem 2.2.1. [13, Theorem 11.4, p. 34] If A = R(C0, C1) and A
′

= R(C
′
0, C

′
1)

are rings such that Ci ⊂ C
′
i , then M(ΓA) ≤M(ΓA′ ).

Theorem 2.2.2. [13, Theorem 11.5, p. 34] If A is a ring, then M(ΓA) is finite.

Given a ring A, to obtain a lower bound for M(ΓA), we introduce the κ-
function as follows. Given r > 0, let Φ(r) be the set of all rings A = R(C0, C1) in
R2 with the following properties: (1) C0 contains the origin and a point a such that
|a| = 1, (2) C1 contains∞ and a point b such that |b| = r. Define the κ-function
κ : (0,∞)→ R by

κ(r) = inf
A∈Φ(r)

M(ΓA).

Theorem 2.2.3. [13, Theorem 11.7, p. 34] The function κ : (0,∞) → R has the
following properties:

(1) κ is decreasing.

(2) lim
r→∞

κ(r) = 0.

(3) lim
r→0

κ(r) =∞.

(4) κ(r) > 0 for every r > 0.

The generalization of the modulus of the path family in Example 2.1.6 is
the following theorem.

Theorem 2.2.4. [13, Theorem 11.10, p. 36] Suppose that A = R(C0, C1) is a ring.
Then M(ΓA) = 0 if and only if C0 or C1 consists of a single point.

2.3 Modulus estimates in the spherical metric

Here we consider the plane R2 as a complex plane and denote the extended
complex plane C ∪ {∞} by Ĉ, that is Ĉ = R2. The chordal metric or the
spherical metric q in Ĉ is defined by

q(z1, z2) =
|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
, if z1, z2 ∈ C

q(z1,∞) =
1√

1 + |z1|2
, if z1 ∈ C, and

q(∞,∞) = 0.

Clearly, q(z1, z2) ≤ 1 for all z1, z2 ∈ Ĉ. Hence Ĉ is indeed a compact space under
the metric q.
Let E be a non-empty subset of R2. Define the diameter of E by

dia(E) = q(E) = sup {q(a, b)|a, b ∈ E}.

Clearly, q(E) ≤ 1 for any subset E of R2.
If E and F are non-empty subsets of R2, we define the distance from E to F by



11

q(E,F ) = inf {q(a, b)|a ∈ E, b ∈ F}.

Next we present some basic results of modulus estimates in the spherical
metric. Given 0 < r ≤ 1, let Ψ(r) be the collection of all rings A = R(C0, C1) in
R2 such that q(C0) ≥ r and q(C1) ≥ r. We denote

λ(r) = inf
A∈Ψ(r)

M(ΓA).

For 0 < t ≤ 1, let Ψ(r, t) = {R(C0, C1) ∈ Ψ(r) : q(C0, C1) ≤ t}. We denote

λ(r, t) = inf
A∈Ψ(r,t)

M(ΓA).

Observe that the number λ(r, 1) is equal to the number λ(r).

Theorem 2.3.1. [13, Theorem 12.5, p. 38] The function λ : (0, 1] → R has the
following properties:

(1) λ is increasing.

(2) lim
r→0

λ(r) = 0.

(3) λ(r) > 0 for every 0 < r ≤ 1.

Theorem 2.3.2. [13, Theorem 12.7, p. 39] The function λ : (0, 1] × (0, 1] → R
has the following properties:

(1) λ(r, t) is increasing in r.

(2) λ(r, t) is decreasing in t.

(3) λ(r, t) ≥ λ(r) > 0 for every r and t.

(4) lim
t→0

λ(r, t) =∞ for every r.



Chapter 3

Quasiconformal Mappings

In this chapter we present the definition of quasiconformal mappings and impor-
tant results on equicontinuity and convergence for quasiconformal mappings.

Let D and D′ be domains in R2 and let 1 ≤ K < ∞. A homeomorphism
f from D onto D′ is said to be K-quasiconformal if

1

K
M(Γ) ≤M(f(Γ)) ≤ KM(Γ)

for all path families Γ in D. The smallest K for which this double inequality holds
is called the dilatation of f . The mapping f is said to be quasiconformal if it
is K-quasiconformal for some K.

It is not difficult to show that a conformal mapping is 1-quasiconformal.
The converse is also true: a 1-quasiconformal mapping is always conformal. How-
ever, to prove this is a somewhat more challenging assignment. One may think
of the number K in the definition of quasiconformality to measure how much the
mapping differs from being conformal.

Standard texts on quasiconformal mappings are Ahlfors [1] and Lehto and
Virtanen [6] in two dimensions and Väisälä [13] in higher dimensions.

3.1 Equicontinuity of Quasiconformal Mappings

We consider sets in R2. As a metric in R2 we use the chordal metric q. We next
recall the definition of equicontinuity.

A family F of mappings of a set E into R2 is said to be equicontinuous
at a point x ∈ E if for each ε > 0 there is a δ > 0 such that

q(f(x), f(y)) < ε

whenever f ∈ F and y ∈ E with q(x, y) < δ. If F is equicontinuous at each
point in E, we say that F is equicontinuous in E. Clearly, all mappings in an
equicontinuous family are continuous and any finite family of continuous mappings
is equicontinuous. To define the uniform equicontinuity the same way as continuity

12
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is altered to uniform continuity, we can define as follows:
The family F is uniformly equicontinuous if for each ε > 0 there is a

δ > 0 such that
q(f(x), f(y)) < ε

whenever f ∈ F and x, y ∈ E with q(x, y) < δ.

In the topological space version for equicontinuity, we say that the family
F is equicontinuous at a point x ∈ E if for each ε > 0 there is a neighborhood U
of x such that

q(f(x), f(y)) < ε

whenever y ∈ U and f ∈ F . The following theorem is the main result on equicon-
tinuity:

Theorem 3.1.1. [13, Theorem 19.2, p. 65] Let F be a family of K-quasiconformal
mappings of a domain D into R2. If each f ∈ F omits 2 values af and bf with
chordal distance

q(af , bf ) ≥ r,

where r > 0 is fixed, then F is equicontinuous.

Proof. Let x0 ∈ D and 0 < ε < r. We can choose neighborhoods U and V of x0,
for example disks, so that U ⊂ V ⊂ D, that A = V r U is a ring domain, and
so that KM(ΓA) < λ(ε), where λ is the function introduced in Theorem 2.3.1.
Then f(A) = R(C0, C1), where C0 = f(U) and C1 = (f(V ))c, is a ring. Since C1

contains af and bf , we get

q(C1) ≥ q(af , bf ) ≥ r.

For each x ∈ U ,

q (f(x), f(x0)) ≤ q(C0).

From the definition of λ(t) and K-quasiconformality of f , we obtain

KM(ΓA) ≥M(Γf(A)) ≥ λ(t).

where t = min (r, q (f(x), f(x0))). Thus λ(t) < λ(ε). Since λ is increasing, we
have t < ε < r. Hence

q (f(x), f(x0)) < ε.

for all x ∈ U and f ∈ F . Therefore F is equicontinuous at x0.

This theorem leads us to get two corollaries that give the conditions for a
family of K-quasiconformal mappings to be equicontinuous.

Corollary 3.1.2. [13, Theorem 19.4, p. 66] Let F be a family of K-quasiconformal
mappings of a domain D. Then F is equicontinuous if one of the following con-
ditions is satisfied:
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(1) There are points x1, x2 ∈ D and a number r > 0 such that each f ∈ F omits
a point af and q (af , f(xi)) ≥ r for i = 1, 2.

(2) There are points x1, x2, x3 ∈ D and a number r > 0 such that each f ∈ F
satisfies the three inequalities q (f(xi), f(xj)) ≥ r, for i 6= j.

Corollary 3.1.3. [13, Corollary 19.5, p. 67] If F is a family of K-quasiconformal
mappings of a domain D such that each f ∈ F assume at three given points three
fixed values, then F is equicontinuous.

3.2 Normal Families

Before defining the normal families, we recall the convergence of a sequence of
mappings from a topological space T into a metric space M with metric d.

Suppose that (fn) is a sequence of mappings from T into M . The sequence (fn)
converges in T pointwise to a mapping f if for each z ∈ T

fn(z)→ f(z) as n→∞,

that is,
lim
n→∞

d(fn(z), f(z)) = 0.

We say that the sequence (fn) converges in T uniformly to a mapping f if

sup
z∈T

d(fn(z), f(z))→ 0 as n→∞.

If (fn) converges uniformly to a mapping f on every compact subset of T , then
(fn) is said to converges in T c-uniformly to the mapping f .

A family F of continuous mappings f from T into M is called a normal
family if every sequence in F has a subsequence that converges c-uniformly in
T . Obviously, if F is a normal family, then every sequence in F contains a sub-
sequence that converges pointwise in all of T .

Theorem 3.2.1. [13, Theorem 20.3, p. 68] Let (fn) be a sequence of continu-
ous mappings of a topological space T into a complete metric space (M,d) which
converges pointwise in a dense set E in T . If (fn) is equicontinuous, then (fn)
converges c-uniformly in T .

Proof. Let F be a compact set in T , and let ε > 0. From the equicontinuity it
follows that every x ∈ F has a neighborhood U(x) such that

d(fk(x), fk(y)) <
ε

5
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whenever y ∈ U(x) and k ∈ N. We choose a finite covering {U(x1), ..., U(xj)} of
F . Since E is dense, we can find points ai ∈ U(xi) ∩ E, 1 ≤ i ≤ j.
Since (fn) is converges pointwise in E, there are integers ni such that

d(fm(ai), fn(ai)) <
ε

5

whenever m ≥ ni, n ≥ ni for each i ∈ {1, ..., j}. Set n0 = max{n1, ..., nj}.
If x ∈ F , m ≥ n0 and n ≥ n0, then x belongs to some U(xi), we obtain

d(fm(x), fn(x)) ≤ d(fm(x), fm(xi)) + d(fm(xi), fm(ai)) + d(fm(ai), fn(ai))

+ d(fn(ai), fn(xi)) + d(fn(xi), fn(x))

< ε.

Since M is complete, (fn(x)) converges in M . Furthermore, (fn) converges uni-
formly on F because the choice of n0 does not depend on x.

Theorem 3.2.2. [13, Theorem 20.4, p. 68] (Ascoli’s theorem) If T is a separa-
ble topological space and M is a compact metric space, then every equicontinuous
family F of mappings f : T →M is a normal family.

Proof. Let J = (f1, f2, ...) be a sequence of F . Since T is separable, it contains a
countable dense subset E = {a1, a2, ...}. Consider the sequence (fn(a1)). Since M
is a compact metric space, this sequence has a converging subsequence. Denote
the corresponding sequence of mappings as follows

J1 = (f11, f12, f13, ...).

Consider the sequence (f11(a2), f12(a2), f13(a2), ...). It has a converging subse-
quence. Denote the corresponding sequence of mappings as follows

J2 = (f21, f22, f23, ...).

Continuing this process inductively, we obtain a sequence Jk = (fk1, fk2, ...) such
that Jk is a subsequence of Jk−1 and such that Jk converges at ak. Draw a picture
of mappings obtained

J1 = (f11, f12, f13, ...)

J2 = (f21, f22, f23, ...)

J3 = (f31, f32, f33, ...)
...

Then the diagonal sequence J ′ = (f11, f22, ..., fkk, ...) converges at every point of E,
By Theorem 3.2.1, J ′ converges c-uniformly in T . Hence F is normal family.

Corollary 3.2.3. Let F be a family of quasiconformal mappings of a domain D
into R2. If F is equicontinuous, then F is normal.
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3.3 Convergence of quasiconformal mappings

In this section we present the possibilities of the limit mapping of a sequence of
quasiconformal mappings. We first explore few examples.

Let fn(z) = z + n. Then fn is a 1-quasiconformal mapping and then fn is
defined in R2 and the limit mapping is f ≡ ∞. In R2, the convergence is c-uniform
in R2. In R2 by taking a closed chordal ball centered at ∞. This ball is compact,
but the convergence to ∞ is not uniform on this ball.

Let (gn) be a sequence of mappings defined by

gn(z) =

{
∞ if z =∞,
nz otherwise.

Then gn : R2 → R2 is a 1-quasiconformal mapping and gn → g, where

g(z) =

{
0 if z = 0,
∞ otherwise.

Hence g assume 2 values. Furthermore, the mappings gn|R2r{0} converge c-uniformly
to the constant mapping g ≡ ∞.

Let h be a fixed K-quasiconformal mapping, and let hn ≡ h for each n ∈ N.
Trivially (hn) converges c-uniformly to the K-quasiconformal mapping h.

In summary, there are at least three different kinds of limit mappings. The
following theorem shows that no other possibilities exist:

Theorem 3.3.1. Suppose that fn : D → Dn is K-quasiconformal and fn → f
pointwise in D. Then one of the following three possibilities must occur:

(1) f is a constant. The convergence may be c-uniform or not.

(2) f assumes exactly 2 values, one of which is assumed only at exactly one point,
namely a1. The convergence is c-uniform in D \ {a1}, but not uniform on
all compact subsets of D.

(3) f is a homeomorphism which is K-quasiconformal. The convergence is c-
uniform in D.

Proof. By the above examples, the possibilities (1)− (3) can occur. We will show
that no other possibilities exist. Suppose first that f assumes exactly 2 values,
say b1 = f(a1) and b2 = f(a2). Since fn → f pointwise in D, we get

fn(a1)→ f(a1) = b1 and fn(a2)→ f(a2) = b2.

We see that there exists an r > 0 such that

q(fn(a1), fn(a2)) ≥ r
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for all n. In D\{a1, a2}, each fn omits 2 values whose distance is at least r. Hence,
by Theorem 3.1.1, the family {fn : n ∈ N} is equicontinuous in D \ {a1, a2}. By
Theorem 3.2.1, fn → f c-uniformly in D \ {a1, a2}. We conclude that f must be
continuous in D \ {a1, a2}. Since f(D) = {b1, b2}, the set D \ {a1, a2} must be
mapped to one of these points, say b2, because D \ {a1, a2} is a connected set and
f is continuous in D \ {a1, a2}. Hence, f(D \ {a1}) = {b2}, and so b1 is assumed
only at one point a1.

Next we will prove that fn → f c-uniformly inD\{a1}. Fix a compact set F
in D\{a1}. Choose 0 < s < dist(a1, F ), where the distance is the chordal distance
between the point a1 and the set F , so that the sphere S = S(a1, s) ⊂ D\{a1, a2}.
By what was proved above, the convergence on S is uniform, that is, fn(S)→ b2.

By topology, the set fn(S) as a Jordan curve divides R2 into 2 components.
Since a1 and F lie in different components of R2\S, it follows that b1 and fn(F ) lie
in different components of R2 \ fn(S). Therefore fn(F )→ b2 because fn(S)→ b2.
This means that fn → f uniformly on F .

It remains to show that the convergence is not c-uniform in D. For instance,
on the compact set B(a1, s) the convergence is not uniform, because if it was,
the limit mapping f |B(a1,s)

would be continuous. But f |B(a1,s)
assumes exactly 2

values, b1 and b2, and f would map a connected set B(a1, s) onto a disconnected
set {b1, b2}.

Finally, assume neither (1) nor (2) occurs. We must show that the situation
(3) happens. So now f assumes at least 3 values, say y1 = f(x1), y2 = f(x2) and
y3 = f(x3). We show first that f is continuous. Since fn(xj) → yj, j = 1, 2, 3,
there is an r > 0 such that

q(fn(xi), f(xj)) ≥ r, i 6= j

for all n. By Corollary 3.1.2, the mappings fn are equicontinuous in D. By
Theorem 3.2.1, fn → f c-uniformly in D. This forces f to be continuous.

By topology, it suffices to show that f is one-to-one. For this, we first show
that each x in D has a neighborhood U such that f is either one-to-one or constant
in U . Fix x ∈ D. Choose any neighborhood U of x with q(fn(U)) < 1

2
for all n

and U ⊂ D. This is possible because the mappings fn are equicontinuous.
Assume, contrary to the assertion, that there exist 3 points u, v, w in U such

that f(u) 6= f(v) = f(w). Join u and v by an arc J0 ⊂ U . Next join w to a point
on ∂U by an arc J1 so that J0 ∩ J1 = ∅. Then the domain U \ (J0 ∪ J1) is a ring,
say A. Denote its image under fn by An = R(Cn

0 , C
n
1 ), where Cn

0 = fn(J0) and
Cn

1 = fn(U \J)c. For each n ∈ N, let rn = q(fn(u), fn(v)) and tn = q(fn(v), fn(w)).
Notice that rn > 0 and tn > 0 for all n, and q(Cn

0 ) ≥ rn, q(Cn
1 ) ≥ q(fn(U))c = 1,

and q(Cn
0 , C

n
1 ) ≤ tn. Hence M(ΓAn) ≤ λ(rn, tn), where λ(r, t) is the function in

Theorem 2.3.2.
Since rn → q(f(u), f(v)) > 0 and tn → q(f(v), f(w)) = 0, M(ΓAn) → ∞

by a property of the function λ(r, t). But M(ΓA) > 0 is a fixed number. This
contradicts the fact that the mappings fn are K-quasiconformal, which implies
M(ΓAn) ≤ KM(ΓA) for all n ∈ N.

Finally, we show that f is one-to-one in D. Suppose that f is not one-to-
one in D. Then there exist x, y ∈ D with x 6= y such that f(x) = f(y). We show
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first that x has a neighborhood in which f is constant. Let U be a neighborhood
of x, given earlier, where f is either one-to-one or constant. We may assume that
y /∈ U . We show that f is constant in U . For this, we look for a point z ∈ U such
that f(x) = f(z). Choose a sphere S ⊂ U separating x from y. The point z will
be picked from S. Since fn is a homeomorphism, there is zn ∈ S such that

q(fn(x), fn(zn)) ≤ q(fn(x), fn(y)).

Passing to a subsequence, if necessary, we may assume that zn → z ∈ S. Now

q(f(x), f(z)) ≤ q(f(x), fn(x)) + q(fn(x), fn(zn)) + q(fn(zn), f(z))

≤ q(f(x), fn(x)) + q(fn(x), fn(y)) + q(fn(zn), f(z)).

Obviously q(f(x), fn(x))→ 0 and q(fn(x), fn(y))→ q(f(x), f(y)) = 0 as n→∞,
because fn → f pointwise in D. Since {fn : n ∈ N} is equicontinuous at z,
q(fn(zn), f(z)) = 0 as n→∞. Hence, q(f(x), f(z)) = 0, that is f(x) = f(z).
To complete the proof, let

D1 = {x ∈ D : x has a neighborhood in which f is one-to-one} and

D2 = {x ∈ D : x has a neighborhood in which f is constant} .

Clearly, D1, D2 are disjoint open sets and their union is D. Since D is connected,
either D1 = ∅ or D2 = ∅. We just proved that x ∈ D2, hence D1 = ∅. This forces
f to be constant in D, a contradiction. Therefore f is one-to-one, and hence a
homeomorphism. Furthermore, one can show that f is, in fact, K-quasiconformal,
see [13, Corollary 37.3, p. 125].

Note that Theorem 3.3.1 is a refinement of Theorem 21.1 in [13].

Corollary 3.3.2. [13, Corollary 21.3, p. 71] If fn : D → Dn is a sequence of K-
quasiconformal that converges c-uniformly to a mapping f in D, then f is either
a homeomorphism onto a domain D′ or a constant.

Next we present the theorem that if f is a homeomorphism, then the inverse
mappings f−1

n converge to f−1.

Theorem 3.3.3. [13, Theorem 21.10, p. 74] Suppose that fn : D → Dn is a
sequence of K-quasiconformal mappings that converges to a homeomorphism f :
D → D′. Then for every compact set F ⊂ D′ there is a integer n0 such that
F ⊂ Dn for n ≥ n0. Moreover, the mappings f−1

n converge uniformly to f−1 in F .



Chapter 4

Boundary Behavior of
Quasiconformal Mappings

4.1 Boundary Behavior

We say that a sequence (En) of sets in Ĉ converges to a point c ∈ Ĉ if for each
ε > 0 there exists N ∈ N such that En ⊂ B(c, ε) for all n ≥ N .

Lemma 4.1.1. Let (En) be a sequence of sets in Ĉ that converges to a point c
and let A be a compact set not containing c. Then

M(∆(A,En : Ĉ))→ 0

as n→∞.

Proof. Assume first that c 6= ∞ and that A 6= {∞}. Let R = dist({c}, A) where
distance is the Euclidean distance between {c} and A. Fix ε > 0 with 0 < ε < R.
Since (En) converges to c, there exists N ∈ N such that

En ⊂ B(c, ε)

for all n ≥ N . For each n ≥ N , let rn = sup{|c − x| : x ∈ En}. Let Γn be
the family of all paths in B(c, R) \ B(c, rn) joining the boundary components of
B(c, R) \B(c, rn). Then, by Example 2.1.4

M(Γn) =
2π

log R
rn

.

We see that every path in ∆(A,En : Ĉ) has a subpath in Γn, that is, Γn minorizes
∆(A,En : Ĉ). Hence

M(∆(A,En : Ĉ)) ≤M(Γn) =
2π

log R
rn

.

Since rn → 0 as n→∞, we have M(Γn)→ 0 as n→∞. Therefore M(∆(A,En :
Ĉ))→ 0 as n→∞.

19
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If c =∞, then En →∞. Hence M(∆(A,En : Ĉ))→ 0.
If A = {∞}, let B be a compact set such that A ⊂ B and c /∈ B. By the precious
case, we already hence M(∆(B,En : Ĉ)) → 0 as n → ∞. By the minorizing
principle,

M(∆(A,En : Ĉ)) ≤M(∆(B,En : Ĉ))

which gives M(∆(A,En : Ĉ))→ 0 as n→∞.

Lemma 4.1.2. Let f be a quasiconformal mapping of a domain D into the open
unit disk B and let γ be an arc in the domain D terminating at point b on the
boundary of D. Then f has a limit at b along γ.

Proof. Assume that f does not have a limit along γ at b. Then there are sequences
(xn) and (yn) in γ such that

xn → b, yn → b, f(xn)→ b′ and f(yn)→ b′′ where b′ 6= b′′

Represent γ as a continuous mapping γ : [0, 1] → D ∪ {b}. Denote En =
γ
([

1− 1
n
, 1
))

, A = B(0, 1
2
) and Γn = ∆(A, f(En) : B). Then

f−1(Γn) = ∆(f−1(A), En : D).

Now by Lemma 4.1.1, M(f−1(Γn)) → 0 as n → ∞. But M(Γn) ≥ 1
2π

log 2, a
contradiction with the quasiconformality of f . Therefore f has a limit at b along
γ.

Let D be a simply connected domain in Ĉ. A cross-cut C of D is an open
Jordan arc in D such that C \ C consists of one or two points on ∂D.

Corollary 4.1.3. Let f be a quasiconformal mapping of the disk B onto a domain
D. If C is a cross-cut in D, then f−1(C) is a cross-cut in B.

Proof. Since f : B → D is quasiconformal, f−1 is a quasiconformal mapping of
the domain D onto the unit disk B. Let C be a cross-cut in D and let a be an
endpoint of C. Then by virtue of Lemma 4.1.2, f−1 has a limit at a along C. In
addition, the limit of f−1 at a along C must be in ∂B because f is homeomorphic.
Thus f−1(C) is a cross-cut in B.

Theorem 4.1.4. Suppose that F is a compact and equicontinuous family of K-
quasiconformal mappings of the unit disk B into Ĉ. Then for each ε > 0 there
exists δ > 0 such that

dia
[
f−1(C)

]
< ε

whenever f ∈ F and C is a cross-cut in f(B) with dia(C) < δ.

Proof. Clearly, by Corollary 4.1.3, f−1(C) is a cross-cut in B for each cross-cut
C in f(B) where f ∈ F . Suppose the assertion is false. Then there exists ε > 0
such that for all δ > 0 there are f ∈ F and a cross-cut C in f(B) such that

dia(C) < δ and dia[f−1(C)] ≥ ε.
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We see that for each n ∈ N there are fn ∈ F and a cross-cut Cn in fn(B) such
that

dia(Cn) <
1

n
and dia[f−1

n (Cn)] ≥ ε.

Obviously, dia(Cn) → 0 as n → ∞. Since F is compact and equicontinuous, by
Ascoli’s theorem, F is a normal family. So every sequence in F has a subsequence
which converges pointwise in all subsets of B. Passing to a subsequence, we may
assume that the sequence (fn) converges pointwise in all subsets of B. Since F is
a compact family of K-quasiconformal mappings, the limit mapping f of (fn) lies
in F . Hence f is a K-quasiconformal mapping, and hence fn → f uniformly on
every compact subset of B.
Next, we show that f−1

n (Cn) tends to ∂B. Suppose that there exists δ > 0 such
that

E ∩ f−1
n (Cn) 6= ∅

for infinitely many n, where E = B(0, 1 − δ). Passing to a subsequence, we may
assume that E ∩ f−1

n (Cn) 6= for all n. Let xn ∈ E ∩ f−1
n (Cn). Then (f(xn)) is a

sequence in f(E). Since f(E) is compact, the sequence (f(xn)) has a convergent
subsequence. We denote this subsequence again by (f(xn)). Let f(xn) → y. Fix
ε0 > 0. Since fn → f uniformly on the compact E, there exists N0 ∈ N such that

q(fn(x), f(x)) <
ε0

2
,

for all n ≥ N0 and all x ∈ E. Since f(xn)→ y, there exists N1 ∈ N such that

q(f(xn), y) <
ε0

2
,

for all n ≥ N1. Let N2 = max{N0, N1}. Then for all n ≥ N2,

q(fn(xn), y) ≤ q(fn(xn), f(xn)) + q(f(xn), y)

<
ε0

2
+
ε0

2
= ε0.

Therefore fn(xn) ∈ y. Since fn(xn) ∈ Cn, dia(Cn) → 0 and fn(xn) → y, for
any neighborhood U of y, there is a positive integer N such that Cn ⊂ U , for all
n ≥ N . That is

U ∩ ∂fn(B) 6= ∅, (4.1.1)

for all n ≥ N . On the other hand, y ∈ f(E) ⊂ f(B), which means that there
is a neighborhood U ′ of y such that U ′ ⊂ fn(B) for sufficiently large n. This
contradicts (4.1.1). Therefore f−1

n (Cn) lies close to ∂B.
Finally, let A = B(0, 1

2
) and consider the path family

Γn = ∆
(
A, f−1

n (Cn) : B
)
.

Since f−1
n (Cn) tends to ∂B and dia(f−1

n (Cn)) ≥ ε, for all sufficiently large n, by
the minorizing principle,

M(Γn) ≥M(Γ ε
2
) =

ε

2 log 2
,
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where Γ ε
2

is the path family defined in Example 2.1.4. Since f is a homeomorphism,
f(A) is a compact subset of the domain f(B). Choose a neighborhood V of f(A)
such that V ⊂ f(B). Then

fn(A) ⊂ V,

for all sufficiently large n. Since V is compact, by virtue of Theorem 3.3.3, V ⊂
fn(B) for all large n. We know already that dia(Cn) → 0. For large n, Cn must
lie outside V . Passing to a subsequence if necessary, we may assume that (Cn)
converges to a point P , where P /∈ f(B). Note that if P ∈ f(B) then P ∈ fn(B)
for all large n which is impossible. Since fn(A) ⊂ V for all large n,

∆(V ,Cn : Ĉ) < ∆(fn(A), Cn : fn(B))

for all large n. It follows by Lemma 4.1.1 and minorizing principle that

lim
n→∞

M(fn(Γn)) = lim
n→∞

M(∆(fn(A), Cn : fn(B)) ≤ lim
n→∞

M(V ,Cn : Ĉ) = 0.

This contradicts the fact that the quasiconformality of the mapping fn andM(Γn) ≥
ε

2 log 2
.

4.2 Local connectedness

Let E be a set in C and let z be a point in E. The set E is said to be
locally connected at z if every neighborhood U of z in E contains a connected
neighborhood of z in E. This condition is often expressed by saying that z has
arbitrarily small connected neighborhoods in E. The set E is locally connected if
it is locally connected at each point.

If we want an ”epsilon-delta” type of connectedness property, we are likely
to end up with the following local property which is closely related to local connect-
edness and called connected im kleinen (an odd mixture of English and German):
a set E in C is connected im kleinen at a point z ∈ E provided that for each
ε > 0 there is δ > 0 such that each point w ∈ E with |z−w| < δ can be joined to
z by a connected set in E of diameter less than ε.

Lemma 4.2.1. [5, Theorem 3.2, p. 106] A set E is locally connected if and only
if the components of all open sets of E are open.

Proof. Suppose first that the components of all open sets of E are open. If z is
any point in E and U is any of its neighborhoods, the z-component of U can be
chosen for the connected neighborhood of z.

For the converse, let C be a component of an open set U in E. Each point
z in C has a connected neighborhood Vz in E lying in U . Each such Vz must lie

in C. Thus C =
⋃
z∈C

Vz. As a union of open sets in E, the component C is open

in E.

Lemma 4.2.2. [5, Theorem 3.11, p. 114] A set E is locally connected if and only
if it is connected im kleinen at each point.
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Proof. Suppose first that E is locally connected. Fix z ∈ E and ε > 0. Then
E ∩ B(z, ε

3
) contains a connected neighborhood V of z in E. Choose δ > 0 so

small that E∩B(z, δ) is contained in V . Then every point w in E∩B(z, δ) can be
joined to z by the connected set V ⊂ E. Since dia(V ) < ε, the set E is connected
im kleinen at z.

To prove the converse, it suffices to show, in view of Lemma 4.2.1, that the
components of all open sets in E are open. Let U be such a set and let C be a
component of U . Given a point z ∈ C, there is an open set Vz in E containing z
and lying in U such that each point w in Vz can be joined to z by a connected set
Vzw in U . Since C is the z-component of E, each Vzw must lie in C. Thus Vz lies

in C and C =
⋃
z∈C

Vz. As a union of open sets in E, the component C is open in

E.

Lemma 4.2.3. [8, Theorem 8.2, p. 89] Under a continuous mapping the image of
a compact and locally connected set is compact and locally connected.

Proof. Let E be compact and locally connected and let f : E → C be continuous.
Compactness of f(E) is well-known. We will show that f(E) is locally connected.
For this, it suffices, in view of Lemma 4.2.1, to verify that the components of all
open sets in f(E) are open.

Write E ′ = f(E). Let U be an open subset of E ′ and let C be a component
of U . Since f is continuous, f−1(U) is open in E and so are the components of
f−1(U) by virtue of Lemma 4.2.1. The set f−1(C) is a union of some components
of f−1(U), because if A is such a component, then A is connected and, by the
continuity of f , also f(A) is connected, which implies that either f(A) is disjoint
from C or lies entirely in C. Hence f−1(C) consists of entire components of f−1(U).
Consequently, f−1(C) is open.

Now, f(f−1(C)) = C. Since a closed set in a compact space is compact
and since compactness is preserved under continuous mappings, wee see that f is
also a closed mapping, i.e. f preserves closed sets. It follows that the image E ′ \C
of the closed set E \ f−1(C) is closed. Thus C is open.

We say that a set E in C is uniformly connected im kleinen provided
that, given ε > 0, there is δ > 0 such that any pair of points in E with distance
less than δ can be joined by a connected set in E with diameter less than ε.

Lemma 4.2.4. [5, Theorem 3.13, p. 114] A locally connected compact set is uni-
formly connected im kleinen.

Proof. Let E be a locally connected compact set in C. Fix ε > 0. Since E is locally
connected, each z ∈ E lies in a connected open subset Vz of E with dia(Vz) < ε.
Since E is compact, the covering {Vz} of E has a Lebesgue number δ > 0. Now if
z, w ∈ E and |z − w| < δ, then z and w lie in one of the sets Vz. This set is the
desired connected set.

A classical result in conformal mapping theory, often referred to as Wolff’s
lemma, will be proved next for quasiconformal mappings. See Becker [3]. For
conformal mappings see, for example, the book [4] of Collingwood and Lohwater.
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Lemma 4.2.5. (Wolff’s Lemma) Let f be a bounded K-quasiconformal map-
ping of the open unit disk B, let z0 ∈ ∂B and let 0 < h < 1. Then there exists
s with h2 < s < h such that the image of the circular arc Cs = S(z0, s) ∩ B has
finite length

`(f(Cs)) <

[
Kπ area(f(A))

log 1
h

] 1
2

,

where A = B ∩B(z0, h) \B(z0, h
2). In particular, there are numbers sk → 0 such

that `(f(Csk))→ 0.

Proof. Let Γ be the family of all open circular paths Ct in A with h2 < t < h.
Then

M(Γ) >
1

π
log

h

h2
=

1

π
log

1

h
.

Here the minorizing principle and example 2.1.7 do not yield the strict inequality
above, but an easy modification of the argument used in the proof of example
2.1.7 will do it. Since f is K-quasiconformal,

1

π
log

1

h
< M(Γ) ≤ KM(f(Γ)).

Then at least one path in the family f(Γ) must have finite length, because other-
wise M(f(Γ)) = 0. Set

α = inf
Ct∈Γ

`(f(Ct)).

If α = 0, the lemma is proved. Suppose α > 0. Define a Borel function ρ : C →
[0,∞] by setting

ρ(z) =

{
1
α

if z ∈ f(A),
0 otherwise.

Then ∫
f(Ct)

ρ|dz| =
∫
f(Ct)

1

α
|dz| = 1

α
`(f(Ct)) ≥

1

α
· α = 1

for each locally rectifiable path f(Ct) in f(Γ). Thus ρ is an admissible function
for the path family f(Γ),

M(f(Γ)) ≤
∫
R2

ρ2dm

=

∫
f(A)

1

α2
dm

=
1

α2
area(f(A))

and, therefore, since

1

π
log

1

h
< M(Γ) ≤ K

α2
area(f(A)),
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we obtain

α2 <
Kπ area(f(A))

log 1
h

.

Consequently,

`(f(Cs)) <

[
Kπ area(f(A))

log 1
h

] 1
2

for at least one Cs in Γ. Since the right hand side tends to zero as h → 0, there
exist numbers sk → 0 such that `(f(Csk))→ 0.

Theorem 4.2.6. Let f be a quasiconformal mapping of the open unit disk B onto
a bounded domain D. Then the following conditions are equivalent:

(1) f can be extended to a continuous mapping f : B → D.

(2) ∂D is locally connected (uniformly connected im kleinen).

(3) C \D is locally connected (uniformly connected im kleinen).

Proof. (1) ⇒ (2) : Since the unit circle is compact and locally connected, the
image ∂D = f(∂B) under the continuous mapping f is also compact and locally
connected by virtue of Lemma 4.2.3, and Lemma 4.2.4 ensures that ∂D is locally
connected.

(2) ⇒ (3) : Assume that ∂D is locally connected. Fix ε > 0. Since ∂D
is compact, ∂D is uniformly connected im kleinen by Lemma 4.2.4. Choose δ,
0 < δ < ε

3
, such that any pair of points in ∂D with distance less than δ can be

joined in ∂D by a connected set with diameter less than ε
3
. Now let a and b be

points in C \D with |a− b| < δ. If [a, b]∩ ∂D = ∅, then the line segment [a, b] is a
connected set in C \D of diameter less than ε. Suppose next that [a, b]∩ ∂D 6= ∅.
Let a′ be the first point and b′ the last point in [a, b] ∩ ∂D when traversing from
a toward b along [a, b]. The points a′ and b′ can be joined by a connected set A
in ∂D with dia(A) < ε

3
. The set F = [a, a′]∪A∪ [b′, b] is connected, lies in C \D,

contains a and b and satisfies

dia(F ) ≤ dia([a, a′]) + dia(A) + dia([b′, b])

< δ +
ε

3
+ δ

< ε.

Thus C \D is uniformly connected im kleinen.
(3) ⇒ (1) : Assume that C \ D is locally connected. To show that f has

a continuous extension to B, fix z0 ∈ ∂B. It suffices to verify that f has a limit
at z0. For this, fix ε, 0 < ε < dist (f(0), ∂D). The existence of the limit at z0 will
follow if we can show that dia [f(U ∩B)] < ε for some neighborhood U of z0.

By Wolff’s lemma, there is a nested sequence of circular arcs Ck = S(z0, sk)∩
B, with 0 < sk <

1
2

and sk → 0 as k →∞, such that the length of f(Ck) is finite
and tends to 0 as k →∞. Thus

dia [f(Ck)]→ 0
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as k →∞. Fix k large enough so that

dia [f(Ck)] <
ε

2
.

Let ak and bk denote the endpoints of the arc f(Ck). Then ak, bk ∈ ∂D ⊂ C \D.
Suppose first that ak = bk. Then f(Ck), together with the endpoints ak

and bk, is a simple closed curve or a Jordan curve J , a set homeomorphic to the
unit circle. The arc f(Ck) divides D into two subdomains, D0 and D1. Let D0 be
the f(0)-component of D \ f(Ck). Then f maps 0 into D0 and B ∩B(z0, sk) onto
D1. Since

dia(D1) = dia(J) = dia(f(Ck)) < ε,

the disk B(z0, sk) can be chosen for the neighborhood U sought for.
Suppose next that ak 6= bk. By passing to subsequences and relabeling,

we may assume that the sequences (ak) and (bk) converge towards one and the
same point, w0. We can thereby choose δ > 0 so that each pair of points in
B(w0, δ)∩ (C \D) can be joined by a connected set in C \D of diameter less than
ε
2
. For large k, this can also be done for the points ak and bk. We may assume that

our k above is such a k. Join ak to bk by a connected set Ak, with dia(Ak) <
ε
2
,

in C \D. We divide the rest of the proof into two cases depending upon whether
Ak is a Jordan arc with endpoints ak and bk or not. A Jordan arc means a set
homeomorphic to the line segment [0, 1].

Consider first the case where Ak is a Jordan arc with endpoints ak and bk.
Then

J = f(Ck) ∪ Ak
is a Jordan curve. By the Jordan Curve Theorem, J divides C into two domains
and is their common boundary. One of these domains, say D1, is bounded, the
other is unbounded. The domain D1 satisfies

dia(D1) = dia(J) ≤ dia(f(Ck)) + dia(Ak) <
ε

2
+
ε

2
= ε.

Now 0 and B ∩ B(z0, sk) are separated in B by the crosscut Ck. Thus f(0)
and f(B ∩ B(z0, sk)) are separated in D by the crosscut f(Ck). Since 0 <
ε < dist (f(0), ∂D) and dia(D1) < ε, the domain D1 cannot contain the f(0)-
component of D \ f(Ck). Hence D1 must contain the other component, which is
f(B ∩B(z0, sk)). It follows that

dia [f(B ∩B(z0, sk))] ≤ dia(D1) < ε,

and we can again choose the disk B(z0, sk) for the desired neighborhood U of z0.
Finally, consider the case where Ak is not a Jordan arc, just a connected set

in C\D joining ak to bk. We will use Janiszewski’s separation theorem to complete
the proof. However, present an argument that is perhaps more transparent.

Since C \D is closed, the closure Ak of Ak taken with respect to C lies in
C \D. It has the same diameter as Ak and it is connected, closed and bounded,
hence compact. In other words, Ak is a continuum. Consider the set

F = Ak ∪ f(Ck).
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It also is a continuum and has diameter less than ε. The complementary com-
ponents of F are domains, in fact simply connected domains, except for the
unbounded component. Since 0 < ε < dist (f(0), ∂D), the f(0)-component
of D \ f(Ck) cannot lie in any of the bounded components of C \ F . Thus
f(B ∩ B(z0, sk)) must be contained in one of the bounded components of C \ F ,
call it G. Since ∂G lies in F , we obtain

dia [f(B ∩B(z0, sk))] ≤ dia(G) = dia(∂G) ≤ dia(F ) < ε.

Thus again we can choose the disk B(z0, sk) for the desired neighborhood U of z0.
The proof is complete.



Chapter 5

Uniform Convergence of
Quasiconformal Mappings

In this chapter we prove the main result about the uniform convergence of a
sequence of quasiconformal mappings.

5.1 Uniform Convergence of Quasiconformal Map-

pings

First we present the definition of uniformly local connectedness of compact
sets as follows. A family E of compact sets in Ĉ is called uniformly locally
connected if for every ε > 0, there exists δ > 0 such that for each E ∈ E if
z, w ∈ E and |z − w| < δ, we can find a connected set in E of diameter less than
ε joining z and w.

Lemma 5.1.1. Let D be a domain in Ĉ and let a, b be points in C \ D. Then
[a, b] ∩D consists of a countable union of disjoint open line segments.

Proof. Without loss of generality, by rotation and translation, we may assume that
the line segment [a, b] lies in the real line. Then [a, b] ∩ D is a union of disjoint
open intervals. Since Q is dense in R, for each open interval there is a rational
number that belongs to such open interval. Hence [a, b]∩D consists of a countable
union of disjoint open interval because Q is countable.

We are now prepared to prove the main theorem.

Theorem 5.1.2. Let F be a compact family of K-quasiconformal mappings de-
fined in the unit disk B into bounded domains. Then the following conditions are
equivalent:

(1) F is uniformly equicontinuous in B

(2) Each f ∈ F can be extended to a continuous mapping f of B and the family
{f : f ∈ F} is uniformly equicontinuous in B.

28



29

(3) The family E = {Ĉ \ f(B) : f ∈ F} of the complements of the domains
f(B) is uniformly locally connected.

Proof. (1) ⇒ (2) : Since each f ∈ F is uniformly continuous in B, such an f can
be extended continuously to B. The extended family {f : f ∈ F} is easily seen
to be equicontinuous at each point of ∂B, because F is uniformly equicontinuous
in B. By compactness of B, the extended family is uniformly equicontinuous in
B.
(2) ⇒ (3) : For each f ∈ F , let E(f) be the complement Ĉ \ f(B) of f(B). By
virtue of Theorem 4.1.4, to each ε > 0 there corresponds a δ > 0 such that

dia
[
f−1(C)

]
< ε,

where f ∈ F and dia(C) < δ for each cross-cut C of f(B). We will show that
E = {E(f) : f ∈ F} is uniformly locally connected. Fix ε > 0. By hypothesis,
there is η > 0 such that

dia [f(L)] <
ε

3
, (5.1.1)

whenever f ∈ F and L is a set in B with dia(L) < η. Choose 0 < δ < ε
3

so that

dia
[
f−1(C)

]
< η, (5.1.2)

whenever f ∈ F and C is a cross-cut of f(B) with dia(C) < δ. Now, for an
arbitrary f ∈ F , fix points a, b ∈ E(f) with q(a, b) < δ. We may assume that
a, b 6= ∞. If the line segment [a, b] lies in Ĉ \ f(B), we can choose [a, b] as a
connected set with

dia([a, b]) = q(a, b) < δ < ε.

So assume that [a, b]∩ f(B) 6= ∅. By Lemma 5.1.1, we have [a, b]∩ f(B) =
⋃
j Cj,

a countable union of disjoint open line segments Cj which are cross-cuts of f(B).
Then by virtue of (5.1.2), the preimages satisfy

dia
[
f−1(Cj)

]
< η,

and they are cross-cuts of B by virtue of Theorem 4.1.4. The endpoints of each
cross-cut f−1(Cj) lie on the circle ∂B, they are distinct, and they determine a
closed circular Lj on ∂B with

dia(Lj) < η.

Hence dia [f(Lj)] <
ε
3

by virtue of (5.1.1). By replacing the line segment Cj by
f(Lj), we see that the set

F = ([a, b] \ f(B)) ∪

(⋃
j

f(Lj)

)

is a connected set joining a and b in E(f). We will show that dia(F ) < ε. Let
x, y ∈ F . Clearly, if x, y ∈ [a, b] \ f(B), then

q(x, y) ≤ q(a, b) < δ <
ε

3
.
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So dia(F ) ≤ ε
3
< ε.

If x ∈ [a, b] \ f(B) and y ∈
⋃
j f(Lj), then there is an index j such that

y ∈ f(Lj). Let be y′ the first point in [a, b]∩∂f(Lj) when traversing from x toward
∂f(Lj) along [a, b]. Then

q(x, y) ≤ q(x, y′) + q(y′, y)

≤ q(a, b) + dia(f(Lj))

< δ +
ε

3
.

Hence dia(F ) ≤ δ + ε
3
< ε

3
+ 2ε

3
= ε.

If x, y ∈
⋃
j f(Lj). Then there are indices i, j such that x ∈ f(Li) and

y ∈ f(Lj). Obviously, if i = j, then

q(x, y) ≤ dia [f(Lj)] <
ε

3
.

In the case i 6= j, let x′ be the last point in [a, b]∩ ∂f(Li) and y′ the first point in
[a, b] ∩ ∂f(Lj) when traversing from a toward b along [a, b]. Then

q(x, y) ≤ q(x, x′) + q(x′, y′) + q(y′, y)

≤ dia(f(Li)) + q(a, b) + dia(f(Lj))

<
ε

3
+ δ +

ε

3

= δ +
2ε

3
.

Thus dia(F ) ≤ δ + 2ε
3
< ε

3
+ 2ε

3
= ε.

(3) ⇒ (1) : By Theorem 4.2.6, the mappings in F can be extended continuously
to B. We retain the notation f for the extended mapping. We will show that the
extended mappings are equicontinuous on the boundary of B. Fix z0 ∈ ∂B and
ε > 0. It suffices to find η > 0 so that

q (f(z′), f(z′′)) < ε,

whenever z′, z′′ ∈ B ∩ B(z0, η) for all f ∈ F . Since f(0) /∈ ∂f(B) and F is
compact, there exists d > 0 such that

dist({f(0)}, E(f)) ≥ d

for all f ∈ F . We may assume that ε < 2d. By hypothesis, there is δ with
0 < δ < ε

2
such that any pair of points a, b ∈ E(f) with q(a, b) < δ can be joined

in E(f) by a connected set F such that dia(F ) < ε
2
. Fix h, 0 < h < 1 so that[

Kπ area(f(R))

log 1
h

] 1
2

< δ,
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where R = B ∩ B(z0, h) \ B(z0, h
2) for any f ∈ F . Let f ∈ F be arbitrary.

By Wolff’s lemma, we can choose a circular cross-cut Qs = B ∩ S(z0, s) with
h2 < s < h so that

`(f(Qs)) <

[
Kπ area(f(R))

log 1
h

] 1
2

< δ <
ε

2
.

The endpoints a and b of f(Qs) lie in E(f) and they satisfy q(a, b) < δ. Hence
they can be joined in E(f) by a connected set F with dia(F ) < ε

2
. Therefore

F ∪ f(Qs) ⊂ B(a,
ε

2
).

Now, let z be an arbitrary point in B with q(a, f(z)) ≥ ε
2
. Then the points f(z)

and f(0) are not separated by the set E(f). Neither are they separated by the
set F ∪ f(Qs). Since E(f) ∩ (F ∪ f(Qs)) = f(Qs) is connected, we conclude by
Janiszewski’s theorem that these points are not separated by the union

E(f) ∪ (F ∪ f(Qs)) = E(f) ∪ f(Qs).

Hence they can be joined in f(B) by a path which does not intersect the cross-cut
f(Qs). Since |0 − z0| = 1 > h > s, we have |z − z0| > s > h2. Consequently, if z
is a point in B with |z− z0| ≤ h2, we must have q(a, f(z)) < ε

2
. Set η = h2. Then

by the triangle inequality

q (f(z′), f(z′′)) ≤ q (a, f(z′)) + q (a, f(z′′))

<
ε

2
+
ε

2
= ε.

whenever z′ and z′′ are points in B ∩B(z0, η). Since f is arbitrary, F is equicon-
tinuous at z0. It holds for any point z0 in ∂B. Hence F is equicontinuous in ∂B.
Finally, since F is a compact family of K-quasiconformal mappings in B, F is
equicontinuous in B. Hence F is equicontinuous in B. Since B is compact, F is
uniformly equicontinuous in B. This proves (1) as desired.

We next give a condition for uniform convergence in terms of domains
containing ∞ as follows:

Corollary 5.1.3. Let (fn) be a sequence of K-quasiconformal mappings of the unit
disk B into bounded domains. Suppose that (fn) converges to a homeomorphism
f .

(1) If the collection E = {En = Ĉ \ fn(B)} is uniformly locally connected, then
the mappings fn extend to continuous mappings fn of B and the sequence
(fn) converges uniformly in B.

(2) If the convergence fn → f is uniform and if each fn extends continuously to
B, then E is uniformly locally connected.
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Proof. (1) Since each En is locally connected, by Theorem 4.2.6 each mapping
fn can be extended to a continuous mapping fn of B. By using the assumption
that (fn) converges to a homeomorphism f , and that E = {En = Ĉ \ fn(B)} is
uniformly locally connected, and applying the similar arguments used in the proof
of part (3) ⇒ (1) of Theorem 5.1.2, we can prove that the family {fn : n ∈ N} is
uniformly equicontinous in B.

Let ε > 0. Since {fn : n ∈ N} is uniformly equicontinous in B, there is a
positive number δ such that

q(fn(x), fn(y)) <
ε

3

for all n ∈ N, whenever x, y ∈ B with |x− y| < δ. Since B is compact, there are
points, say x1, x2, . . . , xM , in B such that B ⊂

⋃M
k=1B(xk, δ). Since (fn) converges

to a homeomorphism f , there is an integer N such that

q(fn(xk), fm(xk)) <
ε

3

for all k = 1, 2, . . . ,M whenever m,n ≥ N . Let y ∈ B. Then y ∈ B(xk, δ) for
some k ∈ {x1, x2, . . . , xM}. For m,n ≥ N , we have

q(fn(y), fm(y)) ≤ q(fn(y), fn(xk)) + q(fn(xk), fm(xk)) + q(fm(xk), fm(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore (fn) converges uniformly in B, as desired.
(2) Suppose that the convergence fn → f is uniform and if each fn extends
continuously to B. It can be shown that f can be extended to a continuous
mapping f of B. By Theorem 3.3.1, f is K-quasiconformal. Therefore the family
F = {fn : n ∈ N}∪{f} is a compact family ofK-quasiconformal mappings defined
in the unit disk B into bounded domains. Indeed (fn) converges uniformly in B,
which implies that {f : f ∈ F} is uniformly equicontinuous in B. Hence, by
Theorem 5.1.2, E is uniformly locally connected.
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