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Chapter 1

Introduction

Information media, such as communication systems and storage devices of
data, are not 100 percent reliable in practice because of moise or other forms
of introduced interference. The art-of error correcting codes is a branch of
Mathematics that has been introduced to deal'with this problem since 1960s.

Linear codes with Euclidean complementary dual have been studied in [7].
The characterization-and properties of ‘such codes were given. These codes
are interesting since they reach the maximum decoding capability of adder
channel [7]. Moreover;-in some cases, such codes can be decoded faster than
other linear codes using nearest meighbor' decoding. In [11], necessary and
sufficient conditions for cyclic.codes to-be Euclidean complementary dual have
been determined. Hermitian complementary dual cyclic codes over finite fields
have been characterized.in [9]. Subfield linear codes and their duals under the
trace Hermitian inner product have been studied in [1] and [8]. Such codes have
an application in constructing quantum codes in [1] and references therein.

To the best of our knowledge, Hermitian complementary dual linear codes
and trace Hermitian complementary dual subfield linear codes have not been
well studied. Therefore, it is of natural interest to studied complementary dual
codes with respect to the Hermitian and trace Hermitian inner products.

In this thesis, we focus on Hermitian complementary dual linear codes and

trace Hermitian complementary dual subfield linear codes. Characterizations,



properties, and constructions of such codes are studied.

The thesis is organized as follows: Some basic concepts and preliminary
results on complementary dual codes are recalled in Chapter 2. In Chapter
3, characterization of complementary dual codes with respect to the two in-
ner products are given. Some constructions and illustrative examples of such

complementary dual codes are established in Chapter 4.



Chapter 2

Preliminaries

In this chapter, we recall some basic properties of codes-over finite fields and

introduce the dual of a code with respect to the inner product.

2.1 Codes and Duals

Let 7 and.q-= r? be prime power integers and let. F.. C F, be finite fields.
Let Tr : F, — F, denote the trace map given by Tr() = 6+ 7. Some
properties of the-trace map can-be found.in [4; Theorem 2.23]. For u =
(U1, ug, o uy) € FR, 1t w = (U, U, . o , Up), where @ =.a” for all a € F,. For
each matrix A=[a;;]'€ M, »(F,); let A = [a;;}-and Tr(A) = [Tr(a;)].

Given u,v-€ Fy, let wt(v) denote the Hamming weight of v and d(u,v)
denote the Hamming distance between w and v. A code of length n over I,
is defined to be a nonempty subset C' of F. The minimum distance d(C) is
given by

d(C) = min{d(u,v) | u,v € C,u # v}.

An [n, k], linear code C'is a k-dimensional F-subspace of Fy and an [n, k],
code is called an [n, k,d], linear code if its minimum distance is d. A k x n
matrix G over F, is called a generator matriz for an [n, k, d], linear code C' if

the rows of G form a basis of C.



For a general, not necessarily linear, code C' C Fy, the notation (n, M =
|C],d), is commonly used. A code C' is said to be an F,-linear code over F,, if
C is a subspace of the F,-vector space Fy. When r is clear from the context,
C' is called a subfield linear code over F,. It is not difficult to see that if C' is
an F,-linear code of length n over F,, then |C| = r! for some 0 < ¢ < 2n and
dimp, (C) = ¢. An ¢ x n matrix G over F, is called a generator matriz for an
(n,r* d), F,-linear code C' if the rows of G form a basis of C' as an F,-vector

space.

Lemma 2.1.1. If ¢ = r*is an oddprime power, then there exists o € F, such

that @ = —qv.

Proof. Assume that ¢ = r%is an odd prime power. Since the trace function
¢ : Fy = I, defined by @+ a + a” is a surjective F,-linear map, there exists

a € ker()\{0} such that ¢(a) =0. Hence, @ = o" = —« as desired. O

For w = (uy;ug, .y, ) and v = (vi,07,. .. ,0) in Fp; the inner products

between u and-v are defined as-follows:
L (u,v)g =Y uv; is the Buclidean innerproduct of u and v.

2. (w, V)= 1 uivy = (u, Oyg-is the Hermitian inner product of w and

v.

3. The trace Hermitian inner product are defined into two cases depending

on the field characteristie:

(a) For even ¢, (u,v)1n := Tr({(u, v)u).

(b) For odd ¢, (u,v)r := Tr(a(u,v)y), where a € F, \ {0} is such

that @ = —a.

The Euclidean dual (resp., Hermitian dual and trace Hermitian dual) of a



code C' is defined to be the set

Cei={ueclF!|(u,c)p=0forall ceC}
(resp., C = {u € F | (u,c)y = 0 for all ¢ € C}

Crm = {uy € Fy | {(w,c)rn = 0 for all ¢ € C}).

A code C of length n over F, is said to be Euclidean (resp., Hermitian and
trace Hermitian) complementary dualif C NC+® = {0} (resp., CNC*1 = {0}
and C'N CLr = {0}).

Next proposition is straight forward from the definitions.

Proposition 2.1.2. Let O e a-code-of length-n over F, = F... Then the

following statements-hold.

i) If C is a linear code, then C' is Euclidean complementary dual if and only
if
Fr = CCri.

it) If C is a linear code, then C is Hermitian complementary dual if and only
if
FIRCOE K
iii) If C is.an/F,=linear_code; then C istrace Hermitian complementary dual

if and only-if
Fi O Comi

The following properties of codes and their duals are discussed in [8, Chap-

ter 3.

Proposition 2.1.3. Let C' be a code of length n over F, = F,.. Then the

following statements hold.
i) If C is a linear code, then (CLE)LE =C and (C’LH)lH =C.

it) If C is an F,.-linear code, then (CLTYH)LTYH =C.



Note that the properties (C’lH)LH = (C and (C*®)1e = C do not need to
be true if C' is not a linear code.

The following properties are a direct consequence of Proposition 2.1.3.

Corollary 2.1.4. Let C' be a code of length n over Fy, = F,2. Then the

following statements hold.

i) IfC is a linear code, thenn = dimg, (C)+dimg, (C*=) and n = dimg, (C)+
diqu (CJ'H)

ii) If C is an F,.-linéar code, then 2n-= dimg,(C) + dimp, (C+).

From Corollary 2.1.4, to study complementary duality of codes, we focus
on the Euclidean and Hermitian inner product if codes are linear, and the
trace Hermitian inner product if codes are Fi-linear over IF,.

For an [n, k], code C, a parity check matrix for C' is defined to be an
(n — k) x n matrix where rows form a basis of €=~ The following results are

well known [5].

Theorem 2.1.5. [f G =[I;|A] is'a generator matriz for an [n, k|, code C in
standard form, then H =[+A"|I,,_p]-is a parity check matriz for C.

Remark 2.1.6. If H is-a_parity check-matriz for an [ny k|, linear code C

then H is a generator matriz. for C+4.



Chapter 3

Characterization of
Complementary Dual Subfield

Linear Codes

The characterization ‘and properties of Linear codes with Euclidean comple-
mentary dual have been established in [7]. Tn this chapter; characterizations of
Hermitian complementary dual linear codesand-trace Hermitian complemen-

tary dual.subfield linear-codes are given in terms of orthogonal projections.

Definition 3.0.7. Let V' be-an inner-product space over a field F. An TF-
linear map T.: V:— Vs called an F-orthogonal projection with respect to the

prescribed inner product (s, ) if
i) T?> =T, and

it) (u,v) =0 for all w € Im(T) and v € ker(T).



3.1 Characterization of Hermitian Complemen-
tary Dual Linear Codes

The following property of F,-orthogonal projection plays vital role in charac-

terizing Hermitian complementary dual linear codes over [,

Lemma 3.1.1. Let C' be a linear code of length n over F, = F,> and let
T :Fy — Fy be an Fy-linear map. Then T' is an Fy-orthogonal projection with
respect to the Hermitian inner product onto C if and only if

) c
o) 2 v ifwe O

0 ifveCHn,
Proof. Suppose that 7" F) — C'is an[F,-orthogonal projection with respect
to the Hermitian inner product onto . Let v € C and u € C*+# . Since T is
onto €, C' = Im(T).-Then there exists € F} such that T'(z) = v. and v =
T(x) = T*(x) = T(T(x)) =T(v). Since {u,v)g =0 for all v € C = Im(T),
u € ker(T). So T'(u) =10.
Conversely, assume that

v ifw e,
T(wv) =

0 “ifve O,
Sicne T is a function, C'M ¢ =40}. For each v-€ F, it can be written
uniquely as v = u + w, wherew-€-Cand w € C*4. Then T(u) = w
and T'(w) = 0. Hence, T%(u) = T(T(u)) = T(u) and T*(w) = T(T(w)) =
T(0) =0 = T(w). It follows that T%(v) = T'(v) for all v € F}. Let u € Im(T)
and v € ker(T). Then w € C and T(v) = 0. It follows that v € C*# and
(u,v)g = 0. Hence, Im(T) and ker(T) are orthogonal with respect to the

Hermitian inner product. [

Corollary 3.1.2. Let C' be a linear code of length n over F, = F,2 and let

T:Fy — Fy be an Fy-linear map. Then T' is an Fy-orthogonal projection with



respect to the Hermitian inner product onto C*+1 if and only if

v ifv e O,
T(v) =

0 ifveC.

Proof. Using arguments similar to those in Lemma 3.1.1. 0

The characterization of Hermitian complementary dual linear codes is given

as follows.

Lemma 3.1.3. Let C be a linear code of length.n over Fy = F,2. Then C
is Hermitian complementary dual if and only if there exists an F -orthogonal

projection with respect to)the-Hermitian inner product from ¥y onto C'.

Proof. Assume that Ilgds an F,-orthogonal projection with respect to the

Hermitian inner product from Fy onto C. By Lemma 3.1.1, we have

v ifved,
le(v) =

0 ifweChm
Suppose that C'is not Hermitian complementary-dual.-Then the exists u # 0
such that-w-€ CNC ¥ ie., u € O and u € CHH. Tt follows that 0 # u =
[Io(u) = 0, a contradiction. Therefore, C"is"Hermitian complementary dual.
Conversely, suppose. C' is-Hermitian-complementary dual. Let v € F.
Then there exists a unique pair v € C' and w € C+ such that v = u + w.

Defined a map Il : Fj =y by
HC (’U) =u.
It is not difficult to verify that Il is a linear map such that

z ifzeC,
lle(z) =

0 ifzeCtn,

Hence, by Lemma 3.1.1, Il an F,-orthogonal projection with respect to the

Hermitian inner product from Fy onto C'. [
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Corollary 3.1.4. Let C be a linear code of length n over F, = F,2. Then C
is Hermitian complementary dual if and only if there exists an F-orthogonal

projection with respect to the Hermitian inner product from Fy onto Ctn,
Proof. Using arguments similar to those in Lemma 3.1.3. ]

Theorem 3.1.5. Let C be a linear code of length n over F, = F,» with
generator matrix G. Then C is Hermitian complementary dual if and only if
GG" is invertible.

In this case, [, = ET(GET)*IG is an Fg4-orthogonal projection with

respect to the Hermitian inner product from Fi-onto C.

Proof. Suppose that GG is a non-invertible matrix.Since GG is a k x k

matrix, we have rank(GaT) < k. It follows that
=T LT —T
k =nul(GG ) +rank(GG ) < null(GG ) + k.

Then null(GaT) > k= k=0, 1e., {0} C ker(GaT). Then there exists
u € ker(G@T) \{0} € F; " Hence, uGG = 0and uGeC \ {0}.

Each v € €' ¢an be written as v = u/G for some u’ € IF’; . Hence,
(G, Yy = (WG = (uG) WG =uGG (@) = 0(w)" = 0.

Therefore, uG # 0 is-also a-vector in-C+m.Tt follows that ¢'N C+n #£ {0},

i.e., C is not Hermitian complementary dual.
Conversely, assume-that GG is invertible, Tt v € Fy. If v € C, then

there exists u € IF’; such that v = uG, and hence,
vG (GG )G =uGG (GGG
= ’U,[kG

=uG =wv.
If v € C11, then vG = 0, and hence,

vG (GG )'G=0(GG )G = 0.
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Therefore, @T(G@T)_lG is an F -orthogonal projection with respect to the
Hermitian inner product from Fy onto C'. Therefore, C' is Hermitian comple-

mentary dual. [

Example 3.1.6. Let C be a linear code of length 4 over Fy = {0,1,a, 0 =

1 0 a O
a + 1} with generator matriz G = . Since

01 1 «

1 0
_r 1 0 a0 0/ 1 1+ « 0 «
GG - — = s
01 1 a A o 2+a8 o?

(0 a?

we have det(G@T) =1 Then'@@ s invertible, and hence, C is Hermitian

complementary dual by Theorem 3.1:5.

The characterization of Hermitian complementary-dual linear codes can be

given in terms of the parity check matrix of the codes as well.

Corollary 3.1.7. Let C-be a linear code of length n' over F, = F,2 and let H
be a parity-check matriz-for C. Then C is Hermitian complementary dual if
and only if HH™ is invertible.

In this case, [lgry = HY(HHT) " H “is an F,-orthogonal projection with

respect to the Hermitian inner product from-I7 onto CHH,

Proof. First, we note that H is a generator matrix for C*#. Then the first
statement follows from Theorem 3.1.5 since C' is Hermitian complementary
dual if and only if C*# is Hermitian complementary dual. Consequently,
HT(HHT)™'H is an F -orthogonal projection with respect to the Hermitian

inner product from F} onto C-1. O

Example 3.1.8. Let C be a linear code of length 4 over Fy = {0,1,a, 0 =
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o1 10
a + 1} with parity-check matric H = . Since

0 o 0 1
_a20_
FHT:allo 1oz2:10z27
0 o 01 1 0 o}
0 1

we have det(HH™) = 1. Then HH" ‘is invertible, and hence, C is Hermitian

complementary dual by Corollary 3.1.7.

3.2 Characterization of Complementary Dual

Subfield Linear Codes

Now, we focus on the characterization of trace Hermitian complementary dual

subfield linear codes.

Lemma 3.2.1. Let C-be an F,-linear code of length-n over F, = F,2 and let
T :Fy — Fy bean F.-linear map.. Then T' is an F,-orthogonal projection with

respect to the trace Hermitian inner-product. onto C if and only if

Ty L v ifved,

0 ifv € CrrH,
Proof. Using arguments-similar to those in Lemma 3.1.1 and applying the
trace Hermitian inner product instead of the Hermitian inner product, the

statement is proved. [

Corollary 3.2.2. Let C be an F,-linear code of length n over F, = F,2 and
let T : Fy — Fy be an F.-linear map. Then T is an F,-orthogonal projection

with respect to the trace Hermitian inner product onto C*+m4 if and only if

v ifve Qi
T(v) =

0 fvecd.
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Proof. Using arguments similar to those in Corollary 3.1.2 and applying the
trace Hermitian inner product instead of the Hermitian inner product, the

statement is proved. O

Lemma 3.2.3. Let C be an F,-linear code of length n over F, = F,2. Then
C' is trace Hermitian complementary dual if and only if there exists an F,-

orthogonal projection with respect to the trace Hermitian inner product from

IFZ onto C'.

Proof. Assume that Ag is an F.-orthogonal projection with respect to the
trace Hermitian inner product from F¢ onto €. By Lemma 3.2.1, it follows

that

v -ifve d,
Agto)=

0 - if v eCimm
Suppose that C'is not trace Hermitian complementary dual. Then there exists
u # 0 such that u-€ € N.CLmu 1t follows that 0 # u = Ilg(u) = 0, a
contradiction. Henee, C' is-trace Hermitian complementary. dual.
Conversely, suppose €'is trace Hermitian ecomplementary dual. Let v € Fy.
Then there exists a unique pair w.€ C and w € O+ such that v = u + w.

Defined a map Ac : Fy = F} by
Ac<’v) =u.
It is not difficult to see that A¢ is-an IF,-linear map such that

z.ifze€ C,
Ac(z) =

0 ifzeCtmm,

Hence, by Lemma 3.1.1, A¢ an F,-orthogonal projection with respect to the

trace Hermitian inner product from Fy onto C. ]

Corollary 3.2.4. Let C be an F,-linear code of length n over F, = F,2. Then
C' is trace Hermitian complementary dual if and only if there exists an IF,-

orthogonal projection with respect to the trace Hermitian inner product from

F;‘ onto C+rH
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Proof. Using arguments similar to those in Lemma 3.2.3. [

Theorem 3.2.5. Let C' be an F,-linear code of length n over F, = [F,2 with
generator matriz G. Then C' is trace Hermitian complementary dual if and
only if GG —GGT is invertible.
In this case, Ac : Ty — C defined by
s AN, | .
Tr(vG (GG — GG")™'G if q is even,
Ac(’l)) = o N\ _

a ' Tr(avG N (GG — GGT)™'G  if q is odd

is an IF,.-orthogonal projection with-respect to the trace Hermitian inner product

from Ty onto C, where o € ¥y \ {0} is such that @ = —a.

Proof. Assume that GG’ ~GGT is not invertible. We separate the proof into
two cases.

Case 1 ¢ is even. Then Tr(G@T) - GG+ GGT is invertible. Since Tr(G@T)
is a k X k matrix, we have rank(Tr(G@T)) <k. Tt follows that

k= null(Tr(G@T)) * rank(Tr(G@T)) S null(Tr(GaT)) + k.

Hence, null(Tr(G@T)) >+ BY=0yiee 0} & ker(Tr(GaT)). Then there
exists u € ker(Tr(GaT)) \ {0} C F* such that u(Tr(G@T)) =0 and uG €
C'\ {0}. Hence,

Tr(uGG') = (uG)G = uGGT = u(TH (GG )) = 0.

Case 2 ¢ is odd. Then Tr(aGG' ) = a(GG' — GGT) is not invertible for all
a € F, \ {0} such that @ = —a. Since Tr(aGaT) is a k x k matrix, we have
rank(Tr(aG@T)) < k and

k= null(Tr(aG@T)) + rank(Tr(aGaT))
< null(Tr(aGéT)) + k.

It follows that null(Tr(aG@T)) > k—k = 0, and hence, {0} C ker(Tr(aG@T)).
Then there exists u € ker(Tr(aGaT))\{O} C F* such that u(Tr(aG@T)) =0
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and uG € C'\ {0}. We have
Tr(cuGG ) = a((uG)G' — uGGT) = u(Tr(aGG')) = 0.

From both cases, uG is also a vector in C*+71. Tt follows that CNC+r# =£ {0}
Therefore, C'is not is trace Hermitian complementary dual.

Conversely, assume that GG' — GGT is invertible. Let Ae : Fp — C
defined by

To(wG ) (GG —GGT) G if q is even,
Ac<'v) = o ) -
aT Tr(avG WGEG =~ GGT) ™G if ¢ is odd.
Let v € Fy. It v € C, then there exists u € F* such that v = uG, and

hence,
( AN A MV
Tr(vG ) (GG = GG )-'G if ¢ is even,
Ac(’U) = _X -/ _
koflTr(oz’vG' GG — GGTYy7 G if ¢is odd,
( ety s | |\ T
Tr(uGG (GG — GGY) 'Gif g is even,
\a‘lTr(auGéT)(GﬁT ~ GGG if ¢1is odd,

(
(WGG —wGET) (GG — GGT=1G if ¢is even,

\a‘la(uGGT L uGGTHGEGE = GGT)-1G i ¢'is odd,
= UGG —HGET) (GG~ GGG

= ul,G

=u@G

= .
Assume that v € C+mH. Then

Tr('vaT) if ¢ is even,
0=

Tr(av@T) if ¢ is odd
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and
( o NP, SV P

Tr(vG )(GG — GG")™'G if ¢ is even,
\oflTr(cwaT)(GaT — GGT)71@ if ¢ is odd,

O(G@T — GGG if ¢ is even,

a~10(GG' — GGT)"'G if ¢ is odd,

\

=0.

Hence, A¢ is an F,-orthogonal projection with respect to the trace Hermitian
inner product from Fy onto C'. Therefore, €'is trace Hermitian complementary

dual. O]

Example 3.2.6. Let Cbe an Fs-linear code of length 4 over Fg = F3(w) where
1 0 w 0
0 1 2w* 2

w is a root of x* +2x + 2 with gemerator matriz G. =
w 0wt 0

Since

1)) = = Q Y W' o=

A 2N U\ -0 / wb 0wt 0
0w 0w w2, 0 Wi
1 s 1 w
0-.w? 0 0
w6 Wb 0

w2 0 Wt ’

0 0 w?

GG — GGT is invertible, Hence, by Theorem 3.2.8, C is trace Hermitian

complementary dual.

Example 3.2.7. Let C be an Fy-linear code of length 4 over Fy = {0, 1, w,w? =
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w + 1} with generator matrizc G = . Since

0O w 0 1 0 w2 0 1
cad_aar - w1l w W? | w w? w

0 w2 0 w 0 w w?

1 /v 32 \1 1 w? w

00100

-0 1-1

0100 1./

01 10

GG — GGT is invertible, Therefore, by Theorem-3.2.5, C is trace Hermitian

complementary dual.

Since C' is trace Hermitian complementary dual if and only if C+™ is trace

Hermitian complementary dual; we have the following corollary.

Corollary 3.2.8. Let. C be an IF,-linear-code of length n over F, = F,2 and let
H be a generator of C+. ThenC is trace Hermitian complementary dual if
and only if HE HH s invertible.
In this case, Ngigy +Fy — O+t defined by
=T\ 55T FF T\ -1 o
Tr(vH )(HH — HH")'H if q is even,
ACJ-TrH ('U) — T T .
a 'Tr(avH Y(HH — HHT)™'H ifq is odd
s an IF,.-orthogonal projection with respect to the trace Hermitian inner product

from T onto C+m1 where ov € Fy \ {0} is such that @ = —a.

Example 3.2.9. Let C be an Fy-linear code of length 4 over Fy = {0, 1, w,w? =
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w+ 1} such that H = is a generator matriz for C+r,

Since

1 w w w? 1 w? Ww? w
HFT—ﬁHT: w2 0 A1NO v 0 1
WY YYAN\D w 1 1 ?
W AP w2 0w 0
-0111-
< 1 QAN =0
oo o
1010

HH —HTHT isinvertible. Therefore, by Corollary 3:2.8,-Cis trace Hermitian

complementary dual.



Chapter 4

Constructions’ of
Complementary Dual Subfield

Linear Codes

In this chapter, some constructions of complementary dual codes with respect

to the Hermitian and trace Hermitian inner product-are given.

4.1 Constructions of Hermitian Complemen-
tary Dual Linear Codes

It is well known that, for a given«[n,k,d], code, there exists an equivalent
code with the same parameters-such-that-its generator matrix is of the form
G = [I; A] for some k x (n — k) matrix over F,. The generator matrix of
a linear code of this form plays an important role in constructing Hermitian

complementary dual codes.

Lemma 4.1.1 ([10, p. 13]). Let p be a positive integer. Then —1 is a quadratic
modulo p if p =1 mod 4.

Theorem 4.1.2. Let C be an [n, k,d] linear code of length n over F, = F,2

with generator matriz G = [Iy, P]. Then the following statement holds.

19
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i) If char(F,) = 2, then a linear code C" with generator matriz G' = [I, P P]
is Hermitian complementary dual with parameters 2n — k, k,d'],, where

d >d.

ii) If char(F,) = 1 mod 4, then there exists A\ € F, such that \* = —1
and a linear code C" with generator matriz G' = I, P A\P] is Hermitian

complementary dual with parameters 2n — k, k,d'],, where d' > d.

Proof. i) Assume that char(F,)= 2. Then
G'(G)T = [+ PP’ £PP = I+ 2PP =1,+0=1I.

Therefore, G'G"" is invertible.. The ¢ode € generated by G’ is Hermitian
complementary dual by Theorem 3.1.5.

Since C' is a linear code of length n, G 'has n columns. Note that P has
n—k columns. It follows that G"=[Iy PPl has k+(n—k)+(n—k) =2n—k
columns. Hence, (" generated by G’ is a linear code of length 2n — k and
dimension k.

Next, we show that-d(C’') > dpn. Let-v € €'\ {0} Then there exists
u € FF'\ {0} such-that v= G = [ul, wP. uP] Hence,

wt(v) = wi([uly wP wPy)

Y]

(

wt([uly uP))

wi(ull; PJ)
(u

t

G)
=d(uG) > d(C) =d.

Il
g

Therefore, d = d(C") > d
ii) Assume that char(F,) =1 mod 4. Then r = 4k + 1 for some integer k.
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By Lemma 4.1.1, there exists A € F, such that A\*> = —1. Then
G(G)" = I+ PP + X+ PP"

— I+ PP’ 4 W1 pPp"

— [, + PP’ 4+ )2+ ppT

= I,+ PP +(-1)PP"

=1

Therefore, G'G" is invertible, Hence, by Theorem 3.1.5, C" generated by G’
is Hermitian complementary dual.

Similar to i), we can prove that a.code C’ generated by G’ has length 2n—k
dimension k and d' = d'(C") > d. O

Example 4.1.3. Let C“be a linear code of length 4 -overF, = {0,1,w,w? =

1 0/00 0
w+ 1} with the generator matriz G = . Then C is an [4,2,2]4

001 1w

1 0 w0 w0
code. By theorem 4.1.2,a code generated by G"= s

01l w 1 w
Hermitian complementary dual with parameters |6, 2] 3]4.

Example 4.1.4. Let C' be a linear-code of length 4 over Fos = Fs(w) where
1 0 w?2 Wb
w is a root ‘of &% +4dx +2 with the generator matriz. G =
0 1 w19 w22
and 22 = —1~mod 5. +By Theorem 4.1.2; a-linear code C' generated by
1 0 w2 i 2w2) 2W°
G = 1s Hermitian complementary dual with
0 1 w19 w22 2(_4.)19 2w22

parameters (6,2, 5]os.

For i € {1,2}, let C; be an [n;, k;, d;]; code. Then their direct sum C; &
Cy = {(c1,¢2)|c1 € C1, o € Co} is an [ng + na, k1 + ko, min{d;, ds }], code (For
detail please see [5]).

If C; has generator matrix GG; and parity check matrix H;, then

Gl 0 Hl 0
Gl@GQ = and Hl@Hg =
0 G2 0 H2



22

are generator and parity check matrices for C @ Cs, respectively. The direct
sum construction can be applied to obtain Hermitian complement dual codes

as follows.

Proposition 4.1.5. If C) and Cy are Hermitian complementary dual with
parameters [ny, ki, di), and [na, ko, ds], with generator matriz Gy and Gy re-
spectively, then their direct sum Cy @ Cy is Hermitian complementary dual with

parameters [ny + ng, k1 + ko, min{dy, ds }|,.
Proof. Assume that C| and C5 are Hermitian complementary dual. Then
L AP o
(Gr B G)(G1@ Gs) = 7
0 G2G2

is invertible because-Cy and Cy are Hermitian complementary dual so that
GlG_lT and GQG_QT are invertible. 'Therefore, ( @ (5 is Hermitian comple-

mentary dual by Theorem 3.1.5. O

Example 4.1.6. Let Cy and Cy be Hermitian complementary dual over Fy =

{0, 1, w,w? = w/+ 1} with parameters [4,2,2];and [4,2,2]s and the generator

A\ 8y 1 0w 1
matrices G = and Gy = respectively. Then
0L L w 0. 1.1 0
lp UNg N=AN] M A
01 1w 0.0 00
GidGy = is.a-generator matriz for C1 & Cs. By
0 000 160 “w =1
00 0 0 0 110

Proposition 4.1.5, Cy @ Cy is Hermitian complementary dual with parameters

8,4, 2],.

Similar to the direct sum construction, two linear codes of the same length
can be combined to form a third code of double in length, namely, (u|u + v)
construction. Let C; be an [n,k;,d;], code for i € {1,2}. The (u|u + v)

construction [5] produces an [2n, ky + ko, min{2d;, ds}], code

C={(u,u+v)lu e C,v € Cs}.
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If C; has a generator matrix GG; and a parity check matrix H;, then generator

and parity check matrices H for C' are

G, Gy H, 0
G = and H = 7
0 Gg —HZ H2

respectively.
The (u|u + v) construction can be applied to obtain Hermitian comple-

mentary dual linear codes as follows.

Proposition 4.1.7. Let Cy and Cy be linear codes over F, where char(F,) =
2 with parameters [nykqodi]y and [n, ke, ds),, respectively. If Cy N CfH s
Hermitian complementary 'dual and-Cy A-C3% = {0}, then C = {(u,u +
v)|lu € C,v € Cy} s Hermatian complementary dual with parameters [2n, ki +

]{ZQ, min{2d1, dg}]q.

Proof. Assume that CoNC;® is Hermitian complementary dual and C;NCy ™ =
{0}. Let C = {(u,u +v)|ueCi,v € Coland D = {(a,b)la+bec C{",bc
Cy"}. We show: that D =C*~Tet (a,b)'c D-and (w,u+v) € C. Then

((ayb), (u,u +v)yg = (a;u)y + (b,u +v)y
= (a,; u)g+ (b, u)y + (b, v)u
4 <a' + b7 U’>H + <b7 v>H

=0+0=0.

It follows that D C C*#-From the definition of 2, we have D = {(c—b, b)|c €
CiHbe CyY. Let ¢ : 7" @ Cy" — D be defined by ¢(a,b) = (a — b, b).
Then ¢ is a surjective linear map.

Next, we show that ¢ is injective. Let c1,co € C’fH and dy,dy € CQLH.
Assume that (¢; — dy,dy) = (e — ds,ds). Then dy = dy and ¢; — d; =
¢y — dy = ¢y — dy which implies that ¢; = ¢3. We have (¢1,d;) = (e2,dy), i.e.,
p is injective. Therefore, ¢ is a bijection. Thus, dim(D) =n —k; +n — ky =
2n — (k1 + ko). Since dim(C*1) = 2n — (ky + ko) and D C C*H, we have
D = Ctn,
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Next, we show that CNC*# = {0}. Let (a,b) € CNC*1. Since (a, b) € C,
we have a € C) and a+b=b—a € Cy. Since (a,b) € CH1, we have a +b €
Ci"and b e Cy". Then a+be Ci'NC, = (Cy+Cy") M. Since a € Cy and
bec Cy¥ wehave a+b e Cy+Cy". Thus a+b € (C1+Cy™)N(CL+Cy ),
Since Cy N C;™ = (Cy 4 C3 ™)1 is Hermitian complementary dual, it follows
that a4+ b=0and a = b € C; N C;" = {0}. Hence, @ = b = 0. Therefore,

C' is Hermitian complementary dual. [

Example 4.1.8. Let C; and Oy be linear codes over Fy = {0,1,w,w? =

w + 1} with parameters [4,1,2]4-and [4,2,3]4 and generator matrices G; =

o1 w L
[ 1 0 w 0| and Gy = .. respectively. Then Cy N CTH s
0- 1w/ w

Hermitian complementary dual-and €, NCy™ = {0} Therefore, C' = {(u, u+
v)|lu € C1,v € Cy} is Hermitian complementary dual with parameters [8, 3, 34,

by Proposition 4.1.7.

4.2 Constructions of Complementary Dual Sub-

field Linear Codes

Given an (n;7t, d), F,-linear code C over F 2, »="T,(w), a generator matrix
of C'is an ¢'x n'matrix over F,. In [1], using elementary row operations, there
exists an equivalent F,-linear code with the same parameters such that its

generator matrix is of the form

I, A
G=| wl, wA
0 B

for some nonnegative integer k < £, k x (n — k) matrix A over F,, and (¢ —
2k) x (n—k) matrix B over F,, where 0 denotes the (¢ — 2k) x k matrix whose
entries are 0. Construction of trace Hermitian complementary dual codes are

given via the generator matrix of this form.
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Theorem 4.2.1. Let C be an (n,r*,d), F,-linear code over F,_,» = F,(w)

with generator matrix

I, A
G = w]k wA
0 B

such that BB' — BBT is invertible, for some mon-negative integer k. Then

the following statements hold.

i) If char(F,) = 2, then an F,<linear code C" with generator matriz

A\ Ay O
G= ["wl wA\wA 0
0 B BB

is trace Hermitian complementary dual with parameters (3n — 2k, r*, d'),,

where d' > d.

it) If char(F,) = 2, then an ¥,-linear code C"with generator matriz

I, \ /A A
[ B st @A
RS L1

such that AAT==AR"._C' is trace Hermitian complementary dual with

parameters (2n.— kyrf, d' ), whered’ > d.

iit) If char(F,) = 1 mod 4, then there exists X € F, such that \* = —1 and

an F,.-linear code C" with generator matrix

I, A M 0
G'=|wl wA A 0
0 B MNB B

is trace Hermitian complementary dual with parameters (3n — 2k, r*,d'),,

where d > d.
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iv) If char(F,) = 1 mod 4, then there exists A\ € F, such that \* = —1 and

an F.-linear code C" with generator matriz

I, A A
G'=| wl, wA \ttA
0 B M7 'B

such that AAT = AA". C' is trace Hermitian complementary dual with

parameters (2n — k,rt,d'),, where d’ > d.

Proof. In cases i) —iv), the parameters can be verified using argument similar
to those in Theorem 4.1.2.

Next, we show that C’ is trace Hermitian complementary dual.

i) Assume that char(F,)= 2. Then

L. JYITLS)
ST LA AN

0 0~ BB"
It follows that
0 (wA+ w) I 0
GG TG = (vt @)L 0 0
0 0 BB' — BBT

Since BB’ —BBT is invertible, G’ GGG s nonsingular. By Theorem

3.2.5, C" generated by G’ is trace Hermitian complementary dual.

i1) Assume that char(F,)= 2. Then we have G'G" as in (4.1). Tt follows
that the matrix GG — G'G'T is of the form (4.2). Since BB' — BBT is
invertible, G’ G _GGT s nonsingular. By Theorem 3.2.5, C’ generated

by G’ is trace Hermitian complementary dual.



i)

iv)

27

Assume that char(F,) = 1 mod 4. Then r = 4k + 1 for some positive
integer k. By Lemma 4.1.1, there exists A € F, such that A> = —1. Then
A = A2k — 1 and hence, we get that G'G" is of the form (4.3).

Consequently, we have

0 (w+w)1 0
GG -GG = | (wrD 0 0
0 0 BB —BBT

which is invertible if and only if BB’ — BBT is invertible. Therefore,
the code C' generated by G’-is-trace Hermitian complementary dual by

Theorem 3.2.5.

Assume that char(F,) = T mod 4. Thenr = 4k-1 for some positive
integer k. By Lemma 4.1.1, there exists A € F, such that \* = —1.
Then N *! = \22k+1) — 1 and hence, we get that G'G" is of the form
(4.4). Tt follows that G'G"" — GIG7 /in (45) is Anvertible if and only if
BB’ — BB is invertible. Therefore, the code C’ generated by G’ is trace

Hermitian complementary-dual by Theorem 3.2.5.
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4gg o0 0 ga+ gv(iwX+1) LAV (1) LAV (X +T)
€r) | 0 U U7 = AV 1 (VXD o (PV X+ D) +)0 | = 95
0o o LAV 1) (vlX + D Do PV X+ 1)+
(@)
(194 — ) q+0-"+1 0 0
0 0 MV 2 =t )+ 1@ =) | = D - DO
0 &Nf?f\s — 0 — [k o)+ (0 —m) 0
rﬁmm.AH+&v|3 l_l rmmm O o
(17%) . 0 &Nv\?im\s + 1) + U, &NTANL?BQ +0)+1o | = 10

0 &N«\?im\s + o) + 1o &Nd\?ims +1)+91
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&mmfﬁivkﬁi& + .44
0
0

BN,T«AN.T.&\JH.T;\ + H+L3v + NIL

|44

rHl

(

T+ug 14+ + Bv + &NB

7 (s aX + ) + 1o
&NTAH.T\JHTR + 1)+

- rﬁb\g
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O]
Example 4.2.2. Let C be an Fy-linear code of length 4 over Fy = {0,1,w,w? =
[ 1 0 w 0 ]
01 0 w
w + 1} with the generator matric G = w 0w Then C' is a
0 w 0 w?
0 0 1 w
0 0 w?
(4,2°,2), Fy-linear code.
Since
1 w 1/ w 15w? 1) oyt @
w? 1 SIL OV : SNERC 0 w+w

is invertible, the Fy-linear code C' generated by

WY A 0 ki 772N
0.1 Y LT /N
TR 0?0 &2 0.0
0] | N\ w2 =R w80
P LNV IS e=rJ1)

i 0.0, (w1 w? A 2 \

is trace Hermitian complementary dual with parameters(8,2° d(C") > 2), by

Theorem 4.2.1. By direct. caleulation, we have d(C") = 3.

Example 4.2.3. Let C be an Fy-linear code of length 4 over Fy = {0, 1, w,w? =

1 0 w O
01 0 w
w 0 w?
w + 1} with the generator matric G = Then C is a
0 w 0 w?
0 0 1 w
0 0 w? 1

(4,2°,2), Fy-linear code.
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Since
1 w 1 w 1 w? 1 w? w+w 0
w? 1 w? 1 w 1 w 1 0 w+w

the Fy-linear code C' generated by

-1 Nt XY \ « 0 ]

0.1 0 w w
o’ ke P Ll

0 “w w? W

0 Nd ), (s

_0 0w 1 w cfl_

is trace Hermitian complementary dual with parameters (6,2°, d(C") > 2)4 by

Theorem 4.2.1.' By direct calculation, we have d(C") = 2.
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