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Chapter 1

Introduction

Let M = (M; F) be a finite -algebra:” An n-ary relation r on M is said to
be algebraic over M if-» forms a-subalgebra of M"; or-equivalently, the smallest
clone (F') containing Fis a subclone of the clone of all operations preserving r. An
algebraic relation is concerned not-only in the concepts of algebra, but also in clone
theory. However for a large n-or cardinality of M, the set. M" is very large; so, it
is complicated to study and see-some properties of n-ary algebraic relation over an
algebra M. So, it is interesting to find a supportive tool to investigate an algebraic
relation.

A graph Mis a structure consisting of a set M-of wertices and a set © ¢ M x M
of edges. 1f ©.is tolerance, reflexive and symmetric, then Mis called a reflexive graph.
A graph was extensively studied since-it-can be represented by a picture. A graph
is generalized as a relational set-(or briefly, reset), a-structure consisting of a set M
and a set of finitary relations on M. Some problems about reset M were solved via
an M-colored reset (H,h), a pair of reset H of the same type of M and a partial
function h from H to M.

A Galois connection is a special connection between two sets of objects (usu-
ally) of different kinds. It is a useful tool to study properties of one kind of objects
via the properties of the other (normally simpler) kind of objects. In [6], Davey,
Haviar and Priestley gave a characterization of algebraic relations over M in terms of
morphisms between two resets. We will formulate a Galois connection between the

set of M-colored resets and the set of algebraic relations from their characterization



and then apply the Galois connection to solve some problems in both algebra and
clone theory.

In chapter 2, we summarize some basic concepts about clone theory, Galois
connection, duality and relational set which are used in the sequel.

In chapter 3, we show that if M = (M; F) is constantive; that is, (F') contains
all constants, and dualisable of finite type, then there exists an algebraic relation r
such that (M;r,.7) yields an optimal duality on o/ = ISP(M).

In chapter 4, we apply the Galois connection together with NU-duality The-
orem [5] to show a duality for a majority tolerance-primal algebra M = (M; F); that
is, (F') contains a majority operation and-all operations in (F') preserve a tolerance

relation; and then we characterize all maximal clones containing (F').



Chapter 2

Preliminaries

In this thesis, we study a Galois cennection between algebraic relations and
colored resets and then we apply it to solve some problemsinduality and clone theory.
According to unfamiliar concepts which-are used in the sequel, we will introduce and

review them in this chapter.

2.1 Clone Theory

Let M be afinite-set-and N be the set-of all natural numbers. For each n € N,
a function f: M™ — M is called an m-ary operation.on M and is said to have arity

m. Denote O™ (M) theset of all m-ary operations on M and let O(M) := | JO™(M).
neN

For each m,i € Nowith @ <m, thefunction e+ M™ — M defined by
e(ay, ... ay) =a;

for all ay,...,a,, € M is called a projection function. A subset C' of O(M) is called a
clone (on M) if C' contains all projection functions and is closed under composition;

that is, if f1,..., f, are k-ary functions in C' and g is an n-ary function in C' for some

k,neN, then g(fi,..., fn) € C where g(f1,..., fn): M* - M is defined by

g(f1, - fa)(ar, . sap) = g(fila, ... ar), - o fola, ..o ag))

for all ay,...,a, € M. A clone on a 2-elements set is called the Boolean clone. For
clones C7 and Cy on M, (Y is called a subclone of Cy if Cy € Cy. Note that O(M) is
the greatest clone and is called the full clone (on M).

3



For each h € N, a subset p of M" is called an h-ary relation on M. Denote

RM(M) the set of all h-ary relations on M and let R(M) := | JR"(M). For each n-ary
neN
operation f and h-ary relation p on M, we say that f preserves p or p is invariant

under f if
(f(xi,,x?),,f(x,ll,,x};)) €p

whenever (z1,...,2}),...,(27,...,2}) € p.
Example 2.1 Let M = {ag,a1,a9,a3) and

p = {(ao,a1)s(ar,a2); (az; as),(as, ao)}
U {(a1, ap), (az; ar)s(assaz); (ao, az)y U{(ao, ao), (az,az)} .

Then M and p can be shown as a picture such that-elements in M are represented

as vertices and each element.(x,y) i p is represented by a-line joining x to y.

as a

ag ai

Figure 1.-A picture representing the sets M and p.
Define functions fy and fy from. N to M- by

ay if & =.ap;
fi(z)= a1 if x =aq or as,
as if x =as

and

ay if x=ag oray,

fo(x) = 1

as if x=as oras.



ag = fi1(az)

as a

f1

ao = fi(ao) a1 =fi(a1) = fi(as3)

ag al

Figure 2. A picture representing the function f;.

az = fa(az2) = fa(a3z)

f2

ag ay ap = f2(ao) = f2(a1)

Figure 3. A picture representing the function fs.

Then (fi(ao), fi(ao)) = (ao;a0); (fi(az); fi(az)) = (a2, az), (fi(ao), fi(ar)) = (ao,a1),
(f1(ar), fi(a2)) = (a1, a2). (f1(a0)+fi(az)) = (a0, av)-and (fi(az), fi(as)) = (az,a1),
(f1(a1), fi(a0)) = (a1, a0), (f1(a2).f1(a1)) = (a2;ar); (f1(@s), f1(ao)) = (a1, a0) and
(fi(as), fi(a2))=Aa1,az); and-all-belong to p; so, fi preserves p. However, fy does
not preserve p since (aq,'az)€p but'(fa(ar), falaz))= (ag;az) ¢ p.

Nevertheless, if pl-=pu{(ao; as); (az,a0) }0{(as,as), (assar)},

ag a1
Figure 4. A picture representing the sets M and p'.
then fo preserves p'; but, fi does not preserve p' since (a1, a3) € p' and (f1(a1), fi(asz)) =
(a1,a1) ¢ p'.

For each R ¢ R(M) and F < O(M), we denote the set of all operations
preserving all elements in R and the set of all relations which are invariant under all

elements in F' by Pol (R) and Inv (F'), respectively; that is,

Pol(R) ={f € O(M)| f preserves p for all p € R}



and

Inv (F) ={pe R(M)|p is invariant under f for all f € F'}.

One can prove that Pol(R) is a clone and it was proved (e.g. see R. Poschel and
L. A. Kaluznin in [15]) that C' = Pol (Inv (C')) for all clones C. Dually, a set D of
relations is called relational clone if D = Inv (Pol(D)). It is a well-known fact that
the set of all clones on a finite set is an ordered set with respect to inclusion; in
fact, it is a complete lattice which is dually isomorphic to the complete lattice of all
relational clones.

For each F' ¢ O(M), the clone generated by F'is the smallest clone containing
F and is denoted by (F'). It is interesting whether a subset F' of O(M) generates
O(M); this question is known as the functional completeness-problem. The functional
completeness problem can be studied via the mazimal clones, the co-atoms of the
lattice of all clones. E. L.-Post [16] proved that O(M) is finitely generated which
implies by [13] that every proper subelone of the.full clone contains in a maximal
one and there are only-finitely many maximal clones. ' Hence, for each F' ¢ O(M),
(F) = O(M) if and only-if F"is not contained in-one of the maximal clones. Efforts
to determine all maximal clones-began more than 50 years. 1.G. Rosenberg [20, 21]
was the first one who succeeded in describing all maximal clones; they are just the
clones Pol (p) where p is.a relation in one of six classes of relations defined as follow:
Class(1): The set of all.bounded orders.These are reflexive, transitive and anti-
symmetric binary relations p.¢ M x M with (0,z)-€p and (@,1) € p for all x € M and
for some 0,1 € M.
Class(2): The set of all prime permutations. These are permutations on M which
all of whose cycles have the same prime length.
Class(3): The class of all prime affine relations. A 4-ary relation p ¢ M* is affine if
we can define an abelian group operation, +, on M so that (a,b,c,d) € p if and only
if a+b=c+d. An affine relation p is prime if (M;+) is an abelian group of prime
power order. This class is empty unless |M| is a prime power.
Class(4): The class of all non-trivial equivalence relations. These are reflexive,
symmetric and transitive binary relations p ¢ M x M which are neither the diagonal

relation Ay := {(a,a)|a € M} nor the universal relation Vs := M x M.



Class(5): The class of all relations which are k-regularly generated for some 3 < k <
IM|. For 3 <k <|M|, aset T ={01,0,,...,0,}(m > 1) of equivalence relations
on M is k-regular if each ©;, (1 <i < m) has exactly k equivalence classes and the
intersection N e; of arbitrary equivalence classes ¢; of ©; is nonempty. A k-ary
relation p = {(ay,...,ax)|a; € A for all i = 1,...,k} is k-reqularly generated by T if for
each i € {1,...,m}, at least two of the elements a1, ...,a; are equivalent modulo ©;.
Class(6): The class of all central relations. A k-ary relation p ¢ M* for some
k > 1 is totally reflexive if {(a1,../ax)|a; = a; for some i # j} € p; and is totally
symmetric if for any permutation o on{1...,k} we have (ai,...,a;) € p if and
only if (aa(1), Ga(2)-- - Gagky) € p- The center C, of p is the set of all a € M such
that (a,as,...,ax) € p for all as;... ap€ M. We say that p is central if it is totally
reflexive, totally symmetric and @ # C, ¢ M.

Describing the lattice of all clones is still well known open problems. Up to
now, it is only possible to describe all clones on a finite set is only the set of cardinality
2. The work was first described by E-L. Post [16]-in.1941. The lattice of all Boolean
clones is also called: Post’s lattice.~1t-is countably infinite and all Boolean clones are

finitely generated. The Post’s lattice is shown in Figure 5.



Figure 5. Post’s lattice.

However in 1959;.Ju. 1./ Janov and A. A. Muchnik [14] proved that lattice of
all clones over a finite set whose cardinality more than 2 is an uncountably infinite;
much of the lattice are unknown. Describing of some parts of these lattices is still
interesting for studying clone theory; for instance, the clone Pol(<) on a set P is
the set of all finitary order-preservings with respect to an order < on P; and we call
Pol(<) the monotone clone of P = (P;<). The monotone clone of a finite ordered set
is maximal if and only if the order is bounded. Davey et al. proved in [9] that if a
finite ordered set P is disconnected, then the nontrivial equivalence relation © whose
blocks are connected components of P will give a maximal clone Pol(©) containing

the monotone clone of the ordered set P. C. Ratanaprasert [18] has shown that



the monotone clone of a finite unbounded connected ordered set is a subclone of a
maximal clone preserving only either a k-regularly generated relation or a central
relation with arity more than 1 and also proved that if the monotone clone of the
ordered set contains in a maximal clone preserving a k-regularly generated relation,
then the monotone clone contains no near-unanimity functions, a function f : P* - P

(n > 3) satisfying

flryx, ... xy) = f(x,x,.. se,y,x)=...= f(y,z,x,...,0) =z

for all z,y € P. If n = 3, a near-unanimity function is called a majority function.
Such function was discovered by K. Baker-and A. Pixley [1] in 1975 and then it is

extensively studied in many fields of mathematics.

2.2 Galois Connection

In 1811-1832, Evariste Galois tentioned a connection between subgroups of
the Galois group of an-extension E/F and intermediate fields-between E and F (see
e.g. in [12]). By this connection, properties-of permutation groups are applied to
study in field theory; so, some problems in field theory can be reduced to simpler
problems in group theory. Such connection is generalized to a‘connection, a so-called
Galois connection, between two_sets of objects (usually) of different kinds. Galois
connection can-provide a-useful tool for studying properties of one kind of objects
via the properties of the other (normally simpler) kind of objects.

A Galois connection between the sets-A and B is a pair (o,7) of functions

between the power sets P(A) and P(B),
o:P(A) > P(B) and 7: P(B) > P(A),
such that for all X, X’ c A and all Y)Y’ ¢ B the following conditions are satisfied:
. XcX'=0(X)20(X'), and Y Y/ = 7(Y)27(Y");
2. Xcro(X), and Y cor(Y).

One of well-known Galois connections is the connection between clones and relational

clones.
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C =Pol (Inv (C)) Inv (C)
- " e
Pol (D) D =Inv (Pol (D))
L(O(M)) L(R(M))

Figure 6. A Galois connection between L(O())) and L(R(M)).

In [4], V. G. Bodnarchuk, L. A:-Kaluznin, V.-N. Kotov and B. A. Romov proved
that the function Pol from the lattice L(R(M)) of all relational clones to the lattice
L(O(M)) of all elones which.maps a relational clone D to the clone Pol (D) and the
function Inv from L(O(M)) to L(R(M )) which maps a clone C' to the relational

clone Inv (C') are bijective reserving the order Cyie.,
1. for each clones C" and C',; €' < C"= Tnv (C') 2 Inv (C");
2. for each relational clones D and D', D ¢ D’ = Pol (D) 2 Pol (D’).

This is an important tool to understand any clone and so is any algebra M =
(M; F), a structure consists of a set M and a set F' of operations on M, since M
corresponds to the clone (F'), the set all term operations of M. A Galois connection
is useful in not only algebras but also many fields of Mathematics; for instance, a
Galois connection between subgroups of fundamental groups and covering spaces in
field of algebraic topologies. By this connection, algebraic properties about finding

all subgroups are used to solve topological problems.
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2.3 Duality

An algebra is a structure M consisting of a nonempty set M, is called the
universe of M and a set { fM},c; of operations defined on the universe, are called the
set of fundamental operations of M. The sequence (n;);; of all arities is called the
type of the algebra M. Some algebraic properties which are commonly studied in
general algebras (groups, rings, lattices, etc.) are subalgebras, homomorphisms and
direct products.

Let M = (M; {fM}icr) and N =(N;{f" }ier) be algebras of the same type. N

is called a subalgebra of M if the following conditions are satisfied:
1. Nc M,

2. fN is the restriction-of the operation fM to the set N, denoted by fM |y, for
all 7€ 1.

A function h from M to N is called a homomorphism, written by h: M — N if

h(fiM(ala N 7am)) = fiN(h(a1)7 \ Y h(anz))

for all i € I. If a“homomorphism #A-is bijective (injective and surjective), then h is
called an isomorphism from M onto N.
For each class {MJ} . of algebras of the same type, the direct product 11, J%

of {MJ} p is defined as an algebra-consisting of the universe
e
P=11; ,M; = {a:]—> LJM;la(y) € M; for all j € J}
geJ

and each fundamental operation f7 defined by

(fip(ala”'aani))( ) f (al(.]) am( ))7

for all ay,...,a,, € P, jeJandiel. If Mj =M for all j € J, then we usually write
M7 instead of II M;.

jeJ 7

For each class M of algebras of the same type, we define:

1. S(M) is the set of all subalgebras of algebras in M,
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2. H(M) is the set of all homomorphic images of algebras in M,
3. I(M) is the set of all isomorphic copies of algebras in M,
4. P(M) is the set of all direct products of algebras in M.

One of well-known studying classes of algebras is variety, a class of algebras
of the same type which is closed under all homomorphic images, subalgebras and
products. A. Tarski proved in [24] that every variety is the class HSP(M) for some
class M of algebras. G. Birkhoff [3] showed a classical result that every variety can
be determined by its subdirectly irreducible algebras. For some algebras having the
large universes, they are complicated to study their algebraic properties. In 1970,
H.A. Priestley [17] represented bounded distributive lattices by ordered Stone spaces.
It is a new branch to use atopology to study an algebra. Moreover, this concept was
used to describe homemorphism, congruences and subdirectly irreducible Ockham
algebras by A. Urguhart [25]. In 1983, Davey and Werner [10] developed the method
to represent every. algebra as an-algebra of continuous functions. This concept is
known as natural duality.

Let M be a finite algebra. An m-ary relation-on M-is'said to be algebraic over
M if it forms a-subalgebra-of M™. Let B = UsyS(M™) be the set of all algebraic
relations over M. A topological structure-M = (M; R,.7 ) is called an alter ego of
M if R ¢ B and 7 is the discrete topology on M.~ This definition of alter ego is
defined in [7, 8]. ‘But in some _works, the set of relations R is separated to a set
of relations, set of operations and set of partial operations. Let &/ = ISP(M) be
the category consisting of all isomorphic copies of subalgebras of direct powers of M
and let 2" = IS.P*(M) be the category consisting of all isomorphic copies of closed
substructures of non-empty direct powers of M. For each A € & and X € 2", we
denote

D(A)={f:A—- M| f is a homomorphism from A to M}

and

E()Ag):{f:X—>M|fisamorphismfrom}gto M};

and call them the dual of A and the dual of X, respectively. It was shown in [10]
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that D(A) € Z" and E(X) € «/. For a homomorphism u : A — B, define a morphism
D(u): D(B) > D(A) by D(u)(z) =z ou
for all x € D(B). Similarly, for a morphism ¢ : X - Y, define
E(¢): E(Y) ~ E(X) by E(p)(0) =a o
for all a € E(Y). For each A € o/ and X € 2", we define the evaluation functions
eai A~ ED(A) by.ea(a)(x) = z(a)
for all a € A and x € D(A) and
ex X SDEX) by 2xd() (@):£ ()

for all z € X and a € F(X). “We say that M (or'R) yields a duality on o/ or M
dualise M if e, is an isomorphism for all A € /.. We say that M is dualisable if
there is a structure M which dualise M. These mean that every algebra in o/ can
be represented as-a concrete algebra of morphisms from the structure D(A) to the
structure M. For further details, see in [5] or [10].-If-R is finite; M is said to be finite
type. One of well-known dualisable algebras. is-an algebra M= (M; F') admitting
an m-ary near-unanimity function f: that-is, f € (F)." Moreover, S(M™ ') yields a
duality on o7

We say that-M (or R) yields an-optimal duality on” </ if R yields a duality
on & but there are no proper subsets of R whichyields a duality on .«7. Optimal
dualities are developed by B.A. Davey and H.A. Priestley [7, 8] using the following
concepts of entailment.

For each m-ary relation 7™ on a set M and index set A and Z ¢ M4, let rM*
be defined componentwise; that is,

(z1,...,2m) er™" < (21(a), ..., 2m(a)) €™

for all a € A and r% = rM* 0 Zm. A function o : Z — M is said to preserve rM if

(21,...,2m) €77 = (a(z1),...,a(zy)) e r™.
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For each A € o/ and s € B, we say that R entails s on D(A) if
a preserves all elements in R = « also preserves s

for all continuous functions « from D(A) to M. We say that R entails s, briefly
R+ s, if
R entails s on D(A) for all A € .o.

For each R’ ¢ B, we say that R entails'R’, briefly R+ R', if
R entails s for all s € R'.

Note by Soundness Theorem [5] that a set {r} of an m-ary algebraic relation entails

{ro|o € S,,} where

7 =1y, - do(my) | (d1:50, am) €7}

for all o in the set S, of-all permutations on {1,...;m}. One can refine an alter ego
via M-Shift Duality Lemma [5}-which is stated that if R entails R’ and R’ yields a
duality on o7, then R yields-a duality on ..

2.4 Relational Set

A binary relation <'on a set M is an order if it'satisfies the following conditions

for all x,y,2 € M,

1. z<ux, (reflexivity)
2. x<yand y <z imply x =y, (anti-symmetry)
3. x<yand y<zimply z < z. (transitivity)

A set M equipped with an order relation < is said to be an ordered set (or partially
ordered set) and denoted by (M;<). Some authors use the shorthand poset. A poset
permeates mathematics. One of the most attraction of posets is that they are pictural
structures. The picture representing a poset is known as a Hasse diagram; or shortly

diagram.
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Another well-known pictural structure is a graph. An (undirected) graph
M = (M;0) is a structure consisting of a finite set M and a symmetric binary
relation © on M. An element in M and in © is called a vertex and an edge of M,
respectively. A graph M = (M;0) can be shown as a picture such that elements
in M are represented as vertices and elements (z,y) in © are represented as lines
from z to y. An example of representing a graph as a picture was shown in Example
2.1. If © is tolerance; that is, © is reflexive and symmetric, then (M;©) is called
a reflexive (undirected) graph. A reflexive graph M = (M;©) is called a majority
reflexive graph if Pol (©) contains a majority operation. H. Bandelt [2] characterized
a majority reflexive graph by considering bipartite graphs.

Both ordered sets and graphs are structures consisting of a set and a relation
on the carrier set. These structures can be-generalized to arbitrary relational sets.
A relational set M is astrueture consisting of a'set’ M and a set {r},.; of finitary
relations on M for brevity, a relational set is called reset. The sequence (n;);; of all
arities is called the type of the reset M In fact, if all relations in {rM },.; are functions
on M, then a reset is an algebra. - The concepts in algebras can be investigated in a
class of resets.

In 1981, Duffus and-Rival [11] defined the notions of ‘an order variety, a rep-
resentation of a poset and an irreducible poset. In 1992, L. Zadori [26] studied order
varieties and in-the recent years; he [27] generalized this concept to arbitrary rela-
tional set. Let H = (H; {r/},)-and M = (M;{r}M},.,) be resets of the same type.

H is called a subreset of M if the following condition are satisfied:
1. Hc M,
2. 1 is the restriction of relation M to H (denoted by rM | ) for all i € I.

A function f from H to M is called a morphism, written by f: H - M if f

preserves all relations of H; that is,

(a/17"'7a/ni) ETZH = (f(a1)7"'7f(am)) ergw

forall7el.
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For a set {M|j € J} of resets of the same type, the product 11, ;M; is a reset
with the base set
I, M; = {a: J = JM;la(j) e M; for all j ¢ J}
jeJ

and the relations defined componentwise; that is,

HjeJMj

(al,...,am)em <:>(al(j)w"7ani(j))Erz?‘/[j

for all j € J and i € I. For each class of resets K, denote the set of all products of
resets in K by P(KC).

For resets P and R of the'same type, we say that R is a retract of P if there
are morphisms r : P - R and e : R — P such that r o e =idg. The functions r» and
e are called retraction and coretraction; respectively. For-a-class of resets IC, denote
the set of all retracts of resets in IC by R(L).

A class of resets of the same type is called a relation variety if it is closed
under product and retract; or equivalently, a relation variety is the class RP(KC) for
some class I of resets. Some important properties. of relation varieties are studied
via a colored reset.

A pair (H, k) is called an M-colored reset if h is-a-partially defined function
from H to M. The domain.of his denoted by C(H; &) and-an element in C(H, h) is
called a colored element.. Denote C(M) be the-set of-all M-colored resets. If h can
be extended to a fully defined morphism -+ H — M on H_then (H, ) is called an
M-extendable reset; otherwise, (H,h) is called an M-noneztendable reset. A finite
M-nonextendable reset is called an M-obstruction if it is minimal under an order

defined by (Hy, h1) € (Ha, ko) if and only if the following conditions hold:
1. Hy € Hy and hq € ho;

2. rfh grlH? lp, for all el

Example 2.2 Suppose that M and H are graphs as shown in Figure 7 and Figure

8, respectively.
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as az

ao al

Figure 7. The graph M.

o ————0

Vo v1 v2

Figure 8.-The graph H.

Define functions hy : {vg,vi} = M- and hy: {vg,ve} — M by-hi(vo) = ag, hi(v1) = as,
ha(vg) = ag and ha(vs) =as. The colored-resets (H, hy) and (H, hs) can be represented

as shown in Figure 9 and Figure 10.

®&—@—o

Vo vl v2

Figure 9. The M-colored reset (H, hy).

& ——eo——@

vo U1 v2

Figure 10.-The M-colored reset (H; hy).

Then (H, hy) is an M-estendable reset since we can define a morphism hy : H - M by
ho(vs) = a; for alli=1,2,3. In contrast, (H,hy) is an M-nonextendable reset since it
has no lines from ag to as. However, (H, hy) is not minimal since there is a subgraph
H; = ({vo,v1},{(vo,v1), (v1,v0)}) of H such that (Hy,hy) is an M-noneztendable
reset and (Hy,hy) € (H, hy). In fact, (Hy, hy) is an M-obstruction.

®&—=®

V0 V1

Figure 11. The M-obstruction (Hy,hy).
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If both M and H are ordered sets, an M-obstruction (H,h) is called a zigzag. The
concept of zigzag is used to solve many problems about ordered set; for instance,
G. Tardos showed a remark in [23] that a finite poset (M;<) admits an n-ary near
unanimity function f (that is, f: M" — M is a morphism) if and only if the number
of colored elements of every M-zigzag is at most n—1. L. Zadori [27] generalized G.
Tardos’s remark by proving that M admits an n-ary near unanimity function f if
and only if the number of colored elements in every M-obstruction is at most n — 1

for all n > 3 and all finite resets M.



Chapter 3

Algebraic Relations and Colored
Resets

Let M be a finite algebra. An m-ary relation on M is said to be algebraic over
M if it forms a subalgebra of M™. Let' B = U;>;:S(M") be the set of all algebraic
relations over M. For each reset M, an M-colored reset (H,h) is a reset H of the
same type equipped with-a partial operation h from H to M. Let C(M) be the set
of all M-colored resets: (In_this-chapter, we show a connection between the set of

algebraic relations over-M-and the set-IM-colored resets.

3.1 A Galois Connection

One can see that B.= Inv(Clo (M)). It is well known that Clo (M) = Pol ({rZM}M)
for some sets {r}}..; of relations on M. Hence, r is algebraic over M if and only if
r e Inv (Pol ({’I“Z]W Fie I)) Recall for a non-empty set r that A" is the set of all func-
tions from r to M. If |[r| = m, we substitute M" by M™. We denote the i-projection
from M™ to M by e for all 1 <i <m. The following lemma was proved in [6] by B.
A. Davey, M. Haviar and H. A. Priestley.

Lemma 3.1 [6] An m-ary relation r is algebraic over M if and only if
r= {(ﬁ(al), o h(aw)) | M7 > M preserves rM for all i € [}

where aj = e |, for all 1< j <m.

19
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R. Srithus and U. Chotwattakawanit [22] defined m-ary relations over M which
were used to construct an alter ego dualising an algebra admitted a near-unanimity

operation as follows: for a reset M = (M; {TZM}M),

AL o= {(har).. .. h(an)) b H > Mis a morphism}  (+)

,,,,,

for all M-color resets (H, h) with C(H,h) = {ai,...,a,}. We are now showing that
those relations in () are algebraic over M; and then by Lemma 3.1, all algebraic

relations can be represented by these relations as we state in the following theorem.

Theorem 3.2 An m-ary relation r-is-algebraic over M if and only if r = pé‘gl )
for some (H,h) € C(M) with C(H,h)-= {a1,«..,an}. Moreover, H=M" for some

natural number n.

Proof. If r is algebraic over M, Lemma 3.1 implies that r = pé‘gl where

----- am )

77777

C(M) with C(H, h)'= {ais:..,ap} and M = (M; {fj}iej)' Let j e J and hy, .. s P,
be morphisms from H to M. Since f; € Clo(M). = Pol({rM}, ), we have that
fj :M" — M is a morphism. To show that fj(iNzl, —, fznj) :H — M is a morphism,

ai,...,an} = C(M7,h). CGonversely, suppose that r.= pM for some (H,h) €
(a1,e-,am)

let i € I and (zy,..., %) €rl. Then
(hi(21); v vy (2,,)) erMfor/all 1. <k <nj.

Hence,
(i (=g Y21, s filgs i, ) (0,)) €7
which implies that fj(izl, ey iNzn]) :H — M is a morphism. Therefore,

(fj(ibl,. . .,ﬁnj)(al),. . .7fj(l~11,. .. ,ﬁnj)(am)) €T

which implies that r is algebraic over M. [ |

Example 3.3 Suppose that M is a graph as in Figure 12 and (H, h) is an M-colored

reset as in Figure 13, respectively.
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as a

ao al

Figure 12. The graph M.

<

vo U1 v2

Figure 13./The M-colored reset (H,h).

Since there is a loop at s, every. morphism h:H=>M maps vy to as. Theerefore,

P?fo,vz) = {(ao, a2), (a1,a3), (az, az),(as, az) } =M x {as} and pé‘fQ’vO) ={as} x M.

m

Observe that the algebraic relations pé‘gh'_qa ) and pé‘ﬁmmal) may be different
for all M-colored resets (H, h) with C(H,h) = {ay,...,a,}. In fact, if we rearrange
the m-tuple, then there are many-algebraic relations corresponding to (H,h). We
will combine these algebraic relations into-a class of an equivalence relation on B.

For each r € B and.¢ in the set S,; of all permutations on{1,...,m}, let define
P N7 - folagn) 0L JS=0,4) 7},
Proposition 3.4 Let ~ -be a-binary relation on B-defined by
r1 ~ry if and only if ro =17
for some o € S,, for all r1,ro € B. Then ~ is an equivalence relation on B.

Proof.  Observe that ri = r for all r € B where id denote the identity function on
{1,...,m}. Hence, ~ is reflexive. We will first show that (r7)s = r<° for all r € B and

0,5 €Sy, Let ay,...,a,, € M. Then

(a1,...,0,) €(r9) = (ai,...,am) = (be1)s s be(m))
for some (by,...,b,) €1
=g (CLl, Ce ,am) = (Cg(a(l))a Ce ,Cg(g(m)))

for some (¢1,...,¢p) €.
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If r1,79 € B with 7y ~ ry, then ry = r{ for some o € S,,; hence,
-1 -1 -1 .
ot _ oo _ ,.0 ‘o0 _ ,id _
rs = (r7)? =1{ =Ty =N
which implies that ry ~ ry. If 71,179,735 € B with 1 ~ 75 and ry ~ r3, then o = 7 and

ry = rg for some 0,G€ Sm; hence7 r3 = 7‘3 = (Ti‘)g = TEOU which implies that r{ ~r3. =

For each (H,h) e C(M) with C(H,h) = {a4,...,an}, let pé\I{Lh) be the equiv-
alence class [pé‘gl am)]N of algebraic relations containing pé‘gl )’ Let pM be the
function from C(M) to the set BJ. of all equivalence classes under ~ which maps

(H,h) to p?f{,h).
Proposition 3.5 The function pM -:C(M) = BJ.. \is surjective.

Proof.  Let r € B. By Theorem 3.2, r = pé‘gl iy for some (H,h) € C(M) with
C(H,h) ={ay,...,am}. Hence, [Fl=[pf5—, 1= 0 n

.....

Example 3.6 Suppose that M ‘is.a-graph_as'in Figure 14-and assume that (H,h)
and (H',h') are M-colored resets as/in Figure 15 and Figure 16, respectively.

as a

agQ al

Figure 14. The graph M.

V0 V1 v2

Figure 15. The M-colored reset (H,h).

1o

wo w1 w2

Figure 16. The M-colored reset (H’, h').
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We knew from Example 3.3 that p%o ) = M x{ay}. By the same argrument, we have
pé\fvo,’wg) = M X {UJQ} = p%O’UZ). SO; pé‘{_:[’h) = p?{ll7h/)~

Therefore, p™ is not injective. We are now showing a condition of all M-
colored resets corresponding to the same equivalence class in B/.. Note for each
function f : A - B that the relation ker f = {(x1,22) € A?| f(x1) = f(x2)} is an
equivalence relation. Let [H, ] denote the equivalence class in C(M) /i, contain-

ing (H,h). We will identify each equivalence class in the following theorem.

Theorem 3.7 For each (Hyh), (Gyg) e C(M), [H h] =[G, g] if and only if there is
a bijection € : C(H, h) - C(G,g) such-that the diagrams in the following Figure 17
and Figure 18 commute for all morphisms h H—>M and g: G — M.

C(H b+ H

C(Gyg)——G

Figure 17. o'oY can be extended to a morphism a.

(G —=G_ -
N
€ (=) M
e
C(H,h)—H

Figure 18. goe can be extended to a morphism /.

Proof. Let C(H,h) = {a},...,al,,} and C(G,g) = {a?,...,a2, }. If [H,h] =

) mi1 ) mo

[G, g], then m; = my :=m. Let 01,09 €S, with

1 1 =P/ 2 2 .
(a5, 1y, (m)) (a5, 1y (m))
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So, a function ¢ : a}n( = a2 ., is a bijection from C(H,h) to C(G,g). To show

k) (%)

that the diagram in Figure 17 commutes, let i : H - M be a morphism. Then

1 :p 2 2 .
""" ormy) (g, 1y, ()

So, there is a morphism « : G - M such that

a(aiz(k)) = il(ai'l(k)) = B(g‘l(a§2(k))

for all 1 < k < m. Similarly, the diagram in Figure 18 commutes for all morphisms
g: G — H. Conversely, if € is a bijection, then my = my := m. Define ¢1 : {1,...,m} —
C(H,h) and ¢o:{1,...,m} ~ C(G,qg) by ¢(k) =al for all 1 <k <m and i€ {1,2}.

We will show that p?{{ h T pé\é 0 Let 0y €S, and

T3=y' 9F 9hy 0Ty

2

os(k) for-all 1 < k<m. By the assumption,

Then 5(@}71(]6)) =a
(9(:1,...,xm)epé‘a/[2 ba < (there is'¢:'G - M with for each 1 <k <m,
og(1)

g0 £(a5,49) 7 8(03) = 7

<= thereisﬁ:HeMWithforeach1£k§m,

ag, @290l dg) < o

M
£ L, Pl 7) €
( Ly ) m) p(ail(l) 77777 a(l]l(m))
coh il M A M _ M . :
which implies that p(a§2(1) ..... 00 et/ T Hence, Pean) = P(Gg) that is,
[H7h] = [Gag] |

Naturally, we.can map an M-colored reset (H,h) to the equivalence class
[H,h] in C(M)/er,m via the matural map 7.-One can see by the following theorem
that [C(M) x| = B/
Theorem 3.8 Let ¢ : C(M) /e pir = BJ. be defined by ¢([H,h]) = pé‘ﬁh) for all
(H,h) e C(M). Then ¢ is the unique bijection with pon=pM.
Proof.  Since pM is surjective, so is p. One can see for each (H, h), (G, g) € C(M)
that if pé‘{{ . pé‘é 4 then [H, 1] =[G, ¢g] which implies that p™ is injective. Suppose
that ¢ : C(M)/ker prr = B/ with ¢’ on=pM. Then pon=¢"on. Hence,

e([H,h]) = pon((H,h)) = ¢"on((H,h)) = ¢'([H, h])

for all [H, ] € C(IM) /e pou- u
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One can see that ¢ is a Galois connection of the equivalence classes of M-
colored resets and the equivalence classes of algebraic relations over M under the
equivalence relations ker pMand ~, respectively. We may apply this result to solve
some problems about algebraic relations over M via M-colored resets; for instance,
a problem of refining an alter ego of some algebras or a problem about clone theory.

We will define an order on C(M)/ye,n analogously to the definition of the
retract of resets. Recall that for resets P and R of the same type, we say that R is
a retract of P if there are morphisms r : P - R and e: R — P such that r o e = idp.
The functions r and e are called retraction and coretraction, respectively.

Let define a binary relation <-on C(M) [y, pir as follows:

[Hl,hl] < [Hz, hg] <~ either 1. [Hl, hl] = [Hz, h2] or
2. there are morphisms : Hy — H; and e: Hy - Hs
such that both r and e preserve colored elements

and roe LC’(Hl,hl): idC(Hth). (**)

For each i e {1,2}, we may write C(Hj h;) = {a}, ./, a%, Fwith e(a;) = af and

r(a2) = a;, for all 1 <k <mi. We have the following theorem.

Theorem 3.9-The relation < defined in-(x*) is.an order on C(M)/ye . Further-
more, Zf [Hl,hl] < [Hz,hg] and |C(H1,h1)| . |C(H2,h2)|, then [Hl,hl] = [Hz,hg].

Proof. It is clear by the definition that <-is reflexive and transitive. Observe that
if [Hy, hi] < [Ha, ho] and |C(Hy, hy)| = |C(Hz, hy)|, thenc = e |cmy py): C(Hy, hy) =
C'(Hz, hs) is a bijection such that hsoéand hy or are morphisms extending hy o €
and hy o e~L, respectively for all morphisms hi:Hy > M and hy : Hy > M; so,
[Hi,h] = [Ha, he] follows from Theorem 3.7. Hence, if [Hy, k] < [Ha, he] and
[Ha, ho] < [Hy,hq], then |C(Hy, hy)| = |C(Hg,he)| which implies that < is anti-

IN

symmetric. [

Since the order < on C(M) /e, is defined analogously to the definition of
the retract of resets, we will show a relationship between the order and the retract

in the next theorem which can be proved directly.
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Theorem 3.10 Let Hy be a retract of Ha with a retraction r. If C(Hy,hy) =
T’(O(Hz,hg)), then [Hl,hl] < [Hz,hg].

Example 3.11 Suppose that M, (H,h) and (H',h") are defined in Example 3.6.
Then H is a retract of H' with the retraction r : H' — H defined by
v, if © =w; for someie€{0,1,2},
r(x) =
vy if T =ws.
Moreover, C(H,h) = r(C(H',h')). By Theorem 3.9 and Theorem 3.10, [H,h] =
[H', h'] which implies that pé‘ﬁh) 5 pé‘{{,ﬁ,).

3.2 One Type Duality for-a Constantive Algebra

For each m-ary relation r™ ona'set M and index set A and Z ¢ M4, let rM*
be defined componentwise-and 14 =M Zm: and for a set SM of finitary relation
on M, let denote S = {rZ|rM e SM} A function.«a: Z — M is said to preserve rM if
(a(z1),. .., a(xy,)) erM for all (a1, ..., z,) € rZ. Ttis easy to prove that the concept
of preserving is precisely a.morphism between two resets-which we will state in the

following proposition.

Proposition 3.12 For-each set.SM of relationson M and indez set A and Z ¢ M4,
a: Z — M preserves all elements in-SMif and only if o : (Z;5%) - (M;SM) is a

morphism.

For each A € o7 =ISP(M) and for a set R of algebraic relations and algebraic
relation s, we say that R entails s on D(A) if every continuous function a from
D(A) to M which preserves all elements in R also preserves s; and say that R entails
s, briefly R+ s, if R entails s on D(A) for all A € /. For each set R’ of algebraic
relations, we say that R entails R', briefly R+ R’, if R entails s for all s € R’.

Theorem 3.13 R entails R’ if and only if a : (D(A); RP@A)) —» (M;R'™M) is a
morphism whenever o : (D(A); RPA)) — (M; RM) is a continuous morphism for all

Aeyd.
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Proof.  Suppose that R entails R/, A € & and a: (D(A); RP(A)) - (M; RM) is
a continuous morphism. By Proposition 3.12, o preserves all elements in RM which
implies that « preserves all elements in R'™. So, a: (D(A); R'P®A) — (M; R'M) is a
morphism. Conversely, suppose that «: D(A) — M is a continuous which preserves
all elements in R. By Proposition 3.12, a: (D(A); RP@®)) » (M; RM) is a morphism
which implies by the assumption that o : (D(A); R’P(A)) - (M; R"M) is a morphism.

So, a preserves all elements in R'. ]

Let M = (M; R,7) be an alter ego of M. Then R ¢ B; so, M corresponds to
the subset By = {[r]. |r € R} of B/.. By the Galois connection, we can study M via

the subset ¢! (BM> of C(M) /kerpm . We are going to refine an alter ego via the order
on C(M)/kerpM-

.....

77777

C(H,h') e C(MA) such. that h'(a;)(a) = h(a;)for alla € A-and 1 < j <m. Moreover,

A

if Z<c MA, thenr4 = pé\gl SN ALS
Proof.
(x1,..., ) €M o foreach a € A, (z1(a),. . vam(a)) erM

< for each a€ A, there is a morphism h, : H > M such that
ha(a;)=2;(a) for all- 1< j <m
& there is i i H > MA (defined by h(z)(a) = he(z),z € H)

such that iz(aj) =z;forall1<j<m
A

<< (ZEh...,Im) Epé\a/ll ,,,,, am)

Theorem 3.15 If [Hy, hi] < [Ha, hy], then o([Ha, ha]) entails o([H1,h1]).

Proof.  Suppose that (Hy, hi),(Hz, hy) € C(M) with [Hy, hi] < [Ha, he] and
C(H;, h;) = {a,...,ai, } for all i € {1,2}. We may assume that there are morphisms
€. Hl g Hz and r: H2 - H1 such that T(C(Hg, hg)) = C(Hl, hl),

e(ar) =a; and r(a})=aj
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for all 1 <k <myq. It is left to show that

{Plaz, a3, cntails pigr o .

Let A€o/ and a: D(A) - M be a function which preserves pé‘a@ ) and
100 mo
(@1 Tm) € Pty y 0 (D(A))™.

Then there is a morphism g, : Hy > M4 with ¢1(a;) = 2, € D(A) for all 1 <k <m;.
From r(C(Ha, he)) = C(Hy, hy), we have

A

(gror(at)y . g1 9@, )€ gz sy N (D(A))™.

~~~~~ m

Since a preserves pé\zg we have
1 2

(algror(ai)), ... ;olg or(ag,))) € g

..... a2,,)"

Hence, there is a morphism’' g, : Ha = M such that

ga(ai) = aegro r(ai)

for all 1 <k < my. Therefore, go 0 et Hy - M is a morphism with

92(e(ar)) = oo gior(e(ay)) = a ogio (ay) = o(xy)

for all 1 <k <my . Thus, (a(xy),...,a(xm,)) € pMe 11 u

By applying Theorem-3.15, one can improve an alter ego of an algebra; es-
pecially for a constantive algebra. We are showing that if M is constantive and M
yields a duality of finite type on &7, then there exists an algebraic relation r such that
(M;r,7) yields a duality on 7. Let Clo(M) = Pol ({rM};cr) for some set {rM};cs of
relations on M. Then M is constantive if and only if (a,...,a) e rM for all a € M and
i el. Firstly, if M is constantive we will show that each finite subset of C(M)/ye; pm
has an upper bound where M = (M; {riM}iE]).

Example 3.16 Let M be a graph and let (Hy,hy), (Ha, hy) and (Hs, hs) be M-

colored resets as in Figure 19, Figure 20 and Figure 21, respectively.
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ao ay

Figure 19. The M-colored reset (Hy, hy).

0 b1

Figure 20 The M-colored reset (Ha; hy).

as a
j ;E Cj 2 @
ag a 0 bl
Figure 21. The M-colored reset (Hgs,h3).

Then [Hy,hi] £ [Hs, hg] and [Ha, hy] < [Hs, hs] via-the-morphisms r1 : Hg - Hj,
e;: Hy - Hs, 1o : Hg - Hs and es - Hy - Hy defined by

a; if x =a; for some1 €{0,1,2,3},

ri(z) =
ag if x=0b; for some i € {0,1,2},

e1(a;) =a; forallie{0,1,2,3},

by if x=a; for someie€{0,1,2, 3},
ra(z) =

b; if x=0b; for someie{0,1,2},
and

ea(b;) =b; for allie{0,1,2}.

In fact, Hz is the sum of the graphs Hy and Hy and hg = hy U hs.
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Recall that a disjoin union Hq\J Hs is the union of
Hi={(z,1)[ze H}

and

H={(x,2)|x e Hy}.

For each resets Hy = (Hl; {riHl}id) and Hy = (Hg; {riHQ}id) having the same type,

we define a sum H; + Hy of resets analogously to the sum of graphs by

(i {21} )

where for each ¢ € I and je{l,2},

. H] H)
Q2 e P U, 2

TZ 1

and
H

i = { @ T Y (P ) €}
For each j € {1,2} and (H;,h;) e C(M), let define H = (H;;{Tfj(},l) and R :
{(2,5) |= € C(Hj,hy)} =M by

hi(z,j) = hi(») forall x.e C(H;, h;).

So, (Hi,h}) € €(M). Therefore, Theorem 3.7 and the function ¢ : C(Hj, h;) —

377

C(H!,n") defined by

i
e(w) = (x,7) for all z e C(Hj,h;)
imply that [Hj, ;] = [Hj’,h;] Now, we define-a binary operation + on C(M)/ye; pir
by
[Hl7 hl] + [H2, hg] = [Hl + H2, hl L hg]
where
h1|_|h2=h/1Uh,,2.

We will show that [Hj, h;] < [Hy, hi] + [Ha, ho] for all j € {1,2} via the following

lemma.

Lemma 3.17 Let M be constantive. For each (H,h) e C(M), there exists (G, g) €
C(M) such that [H,h] =[G, g] and (a,...,a) er& for alla€Q@.
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Proof. Let (H,h) e C(M). The consequence of Theorem 3.2 implies that p?ﬁ By I8
a set of algebraic relations over M; it follows that pé‘f{ By = pé‘é 9 for some reset (G, g).

Therefore, G = M" for some natural number n which implies that (a,...,a) € r¢ for

all a e G. ]

Theorem 3.18 Let M be constantive and (Hy, hy), (Ha, ho) € C(M). Then [Hj, h;] <
[Hi, h1]+ [Ha, ho] for all j e {1,2}.

Proof.  Let {j,k} ={1,2}. By Lemma 3.17, we may assume that (a,...,a) € riHj
forall a € Hjand i€ I. Let b e C(Hj hy): Define e : H; - HiuH) and r: H{UH}, - H;
by

e(z) = (=, j) for all x € H;

and

r(x,j) =w and r(y,k) =0

for all z € H; and y € Hy,. Since (a,...ya) € riHj for-allaeH; and i € I, the both e and
r are morphisms which preserve all colored elements and roe o, ;)= Mo n,)-

Hence, [Hj, h;] < [Hq, hi]+[Ha, ho]. "

Corollary 3.19 If M is constantive, every finite subset of C(M)/ye ,m has an upper

bound.

We will apply these facts to solve a duality-problem. If M is a constantive
algebra and M = (M; R, 7)-yields a"duality of finite type on & = ISP(M), then by
the Galois connection of M-colored resets and algebraic relations over M implies that
there is a finite subset of C(M)/ke; pr corresponding to M; hence, it is bounded by a
class [H, h] of M-colored reset (H,h). It follows by Theorem 3.9 that pé‘ﬁh) entails
R. Letre pé‘ﬁh) be fixed. By Soundness Theorem [5], {r} entails pg[ py Which implies
by M-Shift Duality Lemma [5] that (M;r, ) yields a duality on o/. We conclude the

results into the following theorem.

Theorem 3.20 If M is constantive and dualisable of finite type, then there exists an
algebraic relation r such that (M;r,T) yields a duality on < .



Chapter 4

All Maximal Clones of a Majority
Reflexive Graph

Recall from Section 2.4 that a binary relation © on a finite set M is called
a tolerance relation if © is reflexive and symmetric; and the structure M = (M; ©)
is called a reflexive graph. If Pol(@) contains a majority-operation, M is called a
majority reflexive graph.

Let © be a tolerance relation on a finite set M and M = (M;0) be a ma-
jority reflexive graph. If-M = (M; F')-is-an algebra whose (F) = Pol (©), so-called
a tolerance primal-algebra;-then S(M?)-is precisely the set of all hinary relations p
such that Pol(p) 2 Pol(©); moreover, NU-duality Theorem [5] implies that S(M?)
yields a duality on ISP(M). In this chapter, we will begin with an application of
the Galois connection between the set of ‘algebraic relations over M and the set of
M-colored resets to describe all elements in S(MQ); and then we apply these results

to characterize all maximal clones of a majority reflexive graph.

4.1 A Duality for a Tolerance-primal Algebra Ad-
mitting a Majority Operation

For convenience through out this section, we assume that every graph is re-

flexive and we recall the basic definitions from graph theory. A (reflexive) walk from
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vo to v, is a graph (V, E) where

V={vg,...,un}

and

E={(v,v31)|0<i<n =1} J{(vir1,v:)|0<i <n =1 J{ (v, v:) |0 < i <n}

for some n € Nu {0}. If vy,...,v, are all distinct, a walk is called a (reflexive)
path from vy to v, with length n; usually, we denote a path with length n by P, or

VU1 - .. Up_1U,. An example of a path is.shown in Figure 22.

k) U1 v2 Un-1 Un
Figure 22. The path Pxy,.

We denote a graph ({vo; ves}5{(00: v0), (VossVes) }) by Po whose the diagram

is shown in Figure 23.

| S

V0 Voo

Figure 23. The graph P...

Let G = (G; V) be a graph. Recall that if H € G, then (H3;V')is a subgraph of G
whenever V' € V' |g; but, (H;V |y) is-called an“induced subgraph of G (by the set
H). A graph G is called a-connected graph if there is a subgraph which is a path
from a to b for all two vertices @ and b in G. A maximal connected subgraph of G
is called a component of G. The distant between two vertices a and b in G is the

length of the shortest path from a to b and is denoted by d(a,b). We denote
d(G) =max{d(a,b)|a,b e G and d(a,b) exists}.

Example 4.1 Suppose that G is a graph which is shown in Figure 24.
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as a

ao ay 0 by

Figure 24. The graph G.

Then {ag,ay,as,a3} and {by,by,bs} induce subgraphs of G which are components of
G. Observe that both agay and agazasay are paths from ag to ay; however, agay s the

shortest path. So, d(ag,ar) = 1. Moreover, d(G) =2 = d(ag,as).

C. Ratanaprasert and U.-Chotwattakawanit [19] described all elements in
S(P?) using the concept’ of distant function in order-primal algebras P. We will
apply these concepts to describe all clements in S(M?). By the Galois connection,
the set S(M?) corresponds to the set of M=colored resets (H, h) with |C(H, h)| = 2.
For each 0 <n < oo, let (Py,p,)-be the M-colored reset, with C'(Py,p,) = {vo, vn}-

Theorem 4.2 For each (H;h) e C(M) with |C(H,h)| = 2, [H,h] = [Pn,pn] for

some 0 <n < d(M) or'n = oo.

Proof. Let H = (H;E) be a reflexive graph and (H, h) € C(M) with C(H,h) =
{a,b} and a #0.

Case 1: a and b are in the same component of H: Then there exists a shortest path
P, = vv1 ... v, from a to-b.for some ne N. To show that [Py, p,] < [H, 1], define
functions e: P, > H and r: H - P, by

e(x)=x forall zeP,

and

v; if z € H with ¢ =d(a,z) <n,
r(x) =

v, otherwise.

We will show that r is a morphism. Let (z,y) € E. Then x and y are in the same

component and d(z,y) < 1. If a is not in the same component of x and y, then

r(z) =v, =r(y).
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If a is in the same component of z and y, the triangle inequality property of
d implies that
d(a,x) < d(a,y) +d(y,z) <d(a,y) +1

and

d(a,y) <d(a,z) +d(x,y) <d(a,z) +1
which also implies that
d(a,z) -1<d(a,y) <d(a,z)+1.

If d(a,z) =i<n, then r(x) = v; andr(y) € {v;_1, v 0,1 }; and if d(a,x) =i > n, then
r(z) =v, and 7(y) € {v,_1,0n}.

In either cases, (r(x),r(y)) is an-edge of P,. So, P, is a retract of H.
Moreover, r(C(H,h)) = {a;b} =-C(Py,p,). By Theorem-3.10, [Py, p,] < [H,h]
which implies by Theorem'3:9 that [Py, p,] = [H, k.

Case 2: a € C and b ¢ C for some component . C of H. Let P, be an induced
subgraph of H by Py = {a ='vg,b = v }. To-show that [P, pe] < [H, k], define
functions e: P, > H and r: H - P, by

e(x)y=wz for all r € Py,

and

a “ifreC)
r(z) =

b__otherwise:
We will show that r is-a morphism. For each x,y eH, if (x,y) € E, then either
x,y € C or z,y ¢ C which implies 7(z) =7(y). By the reflexivity of E, (r(z),r(y))
is an edge of Po. So, P is a retract of H. By the same argument as in Case 1,
[Poo, pe] = [H, h].

It is left to show that [Pd(M),pd(M)] =[Py, p,] for all n > d(M). By applying
Theorem 3.7, let d(M) = m and let P, = {vy,..., v} and P, = {v{,...,v,}. Define
£: C(Pm,pm) = C(Pn,pn) by (o) = v}y and (v,,) = v),. Let h: Py, — M be a
morphism. Define o : P, - M by

h(v;) if1<i<m,
a(w) =1
h(vy) ifi>m.
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Then « is a morphism which extends h o et
Let g: P, — M be a morphism. Then g(P,,) is a connected subgraph of M.

Hence, there is a path P = v{v{ ... v} from g(v{) to §(v},) for some k < d(M) = m.
Define 5 : P, - M by

v if1<i<k,

B(vi) =

vy ifi>k.

It is easy to see that ( is a morphism which extends g oe. By Theorem 3.7,

[Paan), paan | = [Pa,py] for all n > d(M): L

Now, let ©0:= A and OF =@ o' .00 for all natural numbers k.
S———
k

Corollary 4.3 The set of- all binary relations whose clones containing Pol (©) is

precisely {00, ..., QMM x M} . Moreover, S(M?)=1{00,...,04M) A x M}.

Proof. By Theorem 3.2; a binary algebraic relation r is pé‘a/[h@) for some (H, h) €
M with C(H,h) = {ay,as} which implies by Theorem-4.2 that p?a/[h@) = p%oyvn) for
some (Py,p,) € M with-C(Py, pn) = {U0;0,} ‘andsome 0 << d(M) or n = co. If
0<n<d(M), then

(z,y) € pé‘foyvn) < thereis a-morphism i : P, — M such that
v =h(1)Oh(v1)O . Oh(v,) = y
< (z,y) O™
Therefore, p%oyvoo) = M x M ]

NU-duality Theorem [5] and Theorem 4.3 imply the following corollary.

Corollary 4.4 If M is a majority reflexive graph, M = (M;{0F|1 <k <d(M)},.7)
yields a duality on ISP(M).

4.2 All Maximal Clones of a Majority Reflexive
Graph

In Section 4.1, we described all binary relations whose clones contain the clone

preserving a tolerance relation. It is interesting whether some of them are maximal
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and the converse is also true. In this section, we study some conditions which prove
the questions.

We refer all definitions and notations from Section 4.1. For a set M and
© c M x M, Pol (0) is the full clone if and only if © € {2, M x M}. And also, the
lattice of all clones on a singleton set has exactly one element. In this section, we
will consider a set M with |[M|>2 and Ay, c © c M x M. Then Pol(0©) is a subclone
of a maximal clone preserving a relation from one of the six classes described by I.G.
Rosenberg [20, 21]. If © is a tolerance relation on M, the following theorem shows all

possible classes of relations'whose the clones are a maximal clone containing Pol (©).

Theorem 4.5 Let © be a tolerance relation on M. Then Pol(©) is a subclone of
a mazximal clone Pol (p) whose.p is-a non-trivial equivalence relation, a k-reqularly

generated relation or a central relation.

Proof. If pisin the classes (1) or (2), then p.is binary which implies by Theorem
4.3 that p = M xM or p = ©F for some 0< k < d(M). But, reflexivity and symmetricity
of ©F for all k£ > 0 imply that ©*is.an order or a permutation if and only if & = 0.
Hence, Pol (p) is the full clone; a contradiction.
Suppose that.p is an-affine relation corresponding to.a group (M;+,-,0). Let

(a,b) € © with a #b. We may assume that-a +0. Define f: M x M. — M by

a ifr=y=uaq;

flroy).=

b - otherwise
for all 2,y € M. Since Imf = {a,b}, we have f € Pol (©) c Pol(p); that is, f preserves
p. So, (a,0,a,0), (a,-a,0,0) € p implies that

(a,0,0,0) = (f(a,a), f(0,-a), f(a,0), f(0,0)) € p;

thus, a + b= b+ b which implies a = b, a contradiction. [ ]

Corollary 4.6 If © is a tolerance relation on M and Pol (©) contains a majority
operation, it is a subclone of a mazimal clone Pol(p) whose p is only either a non-
trivial equivalence relation or a central relation. Moreover, if p is a central relation,

then p is binary.
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Proof. By the result in [19], if p is a central relation, then p is at most binary.
Reflexivity of © implies that all constants are in Pol (©) ¢ Pol (p); so, p is not unary.

From now, we consider © is a tolerance relation on M whose Pol (©) contains
a majority operation. Theorem 4.3 and Corollary 4.6 imply that all relations p,
whose Pol (p) is a maximal clone containing Pol (©), are of the forms ©F for some
1 <k <d(M). For each a,b € M with d(a,b) =d(M) and 1 < k < d(M), if ©F is
transitive, then (a,b) € ©*ys0, d(M).=d(a,b) < k <d(M).

Remark 4.7 For each 1 < k £ d(M), ©% s an -equivalence relation if and only if
k=d(M).

Theorem 4.8 Suppose that Pol (p) is a maximal elone containing Pol (©).

1. If the graph M s connected, then p'is precisely-central relations of the form ©F
for some [d(M)/2] <k <d(M).

2. If the graph ML is disconnected, then p-is the non-trivial equivalence relation

OIM) = u, ., Gy x Crwhere Cy - ..., Cyy-are all components of M.

Proof. (1). Connectedness of (M;©) implies that ©4M) =\ x M. By Remark
4.7, p is not non-trivial equivalence relations. So, pis a eentral relation. One can see
that ©F is central if-and-only if{d(M)/2] <k < d(M).

(2). Tt is easily shown-that O™ = u, .. C; x C;. If p is central, the center
elements will be related to all elements of M; so, one can conclude by Corollary 2.3
that p = M x M which is impossible. Hence, p is a non-trivial equivalence relation

which implies that p = ©4M), n
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