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Chapter 1

Introduction

Throughout this thesis, let p be a prime, a and b relatively prime integers,

k, m, and n positive integers. The exact divisibility denoted by mk∥n means mk|n

and mk+1 ∤ n, and for n ∈ N, the p-adic valuation of n, denoted by vp(n) is the

power of p in the prime factorization of n. The sequence Fn of the Fibonacci

numbers is defined by the recurrence relation: Fn = Fn−1 + Fn−2 for n ≥ 2 and

F0 = 0, F1 = 1. The sequence Ln of the Lucas numbers is defined by the recurrence

relation: Ln = Ln−1 +Ln−2 for n ≥ 2 and L0 = 2, L1 = 1. The sequences (Un)n≥0

and (Vn)n≥0 are the Lucas sequences of the first and second kinds which are defined

by the recurrence relations

U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for n ≥ 2,

V0 = 2, V1 = a, and Vn = aVn−1 + bVn−2 for n ≥ 2.

To avoid triviality, we always assume that b ̸= 0 and α/β is not a root of unity

where α and β are the roots of the characteristic polynomial x2 − ax − b. In

particular, this implies that α ̸= β, α ̸= −β, the discriminant D = a2 + 4b ̸= 0,

Un ̸= 0, and Vn ̸= 0 for all n ≥ 1. If a = b = 1, then (Un)n≥0 reduces to the

sequence of Fibonacci numbers Fn and (Vn)n≥0 reduces to the sequence of Lucas

numbers Ln; if a = 6 and b = −1, then (Un)n≥0 becomes the sequence of balancing

numbers; if a = 2 and b = 1, then (Un)n≥0 is the sequence of Pell numbers. Many

other famous integer sequences are just special cases of the Lucas sequences of the

first and second kinds.

The divisibility by powers of the Fibonacci numbers has attracted some

attentions because it is applied in Matijasevich’s solution to Hilbert’s 10th problem

[7, 8, 9]. More precisely, Matijasevich showed that

F 2
n | Fnm if and only if Fn | m. (1.1)
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In 1977, Hoggatt and Bicknell-Johnson [3] gave another proof of (1.1) and extended

it to higher powers. Hoggatt and Bicknell-Johnson [3] proved that

if F k
n | m, then F k+1

n | Fnm (1.2)

which is a generalization of the converse statement of (1.1). Some of the different

proofs of (1.2) can also be founded in Benjamin and Rouse [1], and Seibert and

Trojovský [29]. In 2012, Tangboonduangjit and Wiboonton [31] investigated some

properties of the following sequence,

Fn, FnFn , FnFnFn
, FnFnFnFn

, . . . .

Let Gk(n) be the kth term of this sequence. They proved that F k
n | Gk(n) for ev-

ery positive integers k and n. Furthermore, Panraksa, Tangboonduangjit and Wi-

boonton [14] proved that F k
n ∥ Gk(n) for all positive integers k and n with n > 3 in

2013. In 2014, Onphaeng and Pongsriiam [12] defined a sequence (G(k, n,m))k≥1

by G(1, n,m) = Fm
n and G(k+1, n,m) = FnG(k,n,m) for all k ≥ 1. We showed that

F k+m−1
n ∥ G(k, n,m) for all k,m, n ∈ N. Based on the work studied by Pongsri-

iam [20] in 2014, a number of general results in this direction are provided in the

following three theorems, especially, the property given in (1.2) that is extended

to include the divisibility and exact divisibility for both the Fibonacci and Lucas

numbers.

Theorem 1.1. [20, Theorem 2] For n ≥ 3, we have

(i) if F k
n ∥ m and n ̸≡ 3 (mod 6), then F k+1

n ∥ Fnm;

(ii) if F k
n ∥ m, n ≡ 3 (mod 6), and Fk+1

n

2
∤ m, then F k+1

n ∥ Fnm;

(iii) if F k
n ∥ m, n ≡ 3 (mod 6), and Fk+1

n

2
| m, then F k+2

n ∥ Fnm.

Theorem 1.2. [20, Theorem 3] Let m be an odd integer. Then

(i) if Lk
n | m, then Lk+1

n | Lnm;

(ii) if n ≥ 2 and Lk
n ∥ m, then Lk+1

n ∥ Lnm.
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Theorem 1.3. [20, Theorem 4] Let m be even and n ≥ 2. Then the following

statements hold.

(i) if Lk
n | m, then Lk+1

n | Fnm;

(ii) if Lk
n ∥ m and n ̸≡ 0 (mod 3), then Lk+1

n ∥ Fnm;

(iii) if Lk
n ∥ m, n ≡ 0 (mod 6), and Lk+1

n

2
∤ m, then Lk+1

n ∥ Fnm;

(iv) if Lk
n ∥ m, n ≡ 0 (mod 6), and Lk+1

n

2
| m, then Lk+2

n | Fnm;

(v) if Lk
n ∥ m, n ≡ 3 (mod 6), and Lk+1

n

4
∤ m, then Lk+1

n ∥ Fnm;

(vi) if Lk
n ∥ m, n ≡ 3 (mod 6), and Lk+1

n

4
| m, then Lk+2

n | 4Fnm.

Recently, Onphaeng and Pongsriiam [13] gave the converse of Theorems

1.1, 1.2, and 1.3 as follows.

Theorem 1.4. [13, Theorem 3.2] Let k,m, n be positive integers and n ≥ 3. Then

the following statements hold.

(i) if F k+1
n ∥ Fnm and n ̸≡ 3 (mod 6), then F k

n ∥ m;

(ii) if F k+1
n ∥ Fnm, n ≡ 3 (mod 6), and 2k | m, then F k

n ∥ m;

(iii) if F k+1
n ∥ Fnm, n ≡ 3 (mod 6), and 2k ∤ m, then F k−1

n ∥ m.

Theorem 1.5. [13, Theorem 3.3] Let k,m, n be positive integers and n ≥ 2. Then

the following statements hold.

(i) if Lk+1
n | Lnm, then n ̸≡ 0 (mod 3), m is odd, and Lk

n | m;

(ii) if Lk+1
n ∥ Lnm, then Lk

n ∥ m.

Theorem 1.6. [13, Theorem 3.4] Let k,m, n be positive integers and n ≥ 2. If

Lk+1
n | Fnm, then m is even. Moreover, the following statements hold.

(i) if Lk+1
n | Fnm and n ̸≡ 0 (mod 6), then Lk

n | m;

(ii) if Lk+1
n ∥ Fnm and n ̸≡ 0 (mod 6), then Lk

n ∥ m;
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(iii) if Lk+1
n | Fnm and n ≡ 0 (mod 6), then L

min{v2(m),k}
n | m;

(iv) if Lk+1
n ∥ Fnm and n ≡ 0 (mod 6), then L

min{v2(m),k}
n ∥ m.

By applying the results proposed in the articles [13, 20], Onphaeng and

Pongsriiam obtained complete answers to this kind of questions for the Fibonacci

and Lucas numbers. Then Panraksa and Tangboonduangjit [15] initiated the in-

vestigation on a special subsequence of (Un)n≥0. Patra, Panda, and Khemaratcha-

takumthorn [16] also obtained the analogue of those results for the balancing and

Lucas-balancing numbers. For other related and recent results on Fibonacci, Lu-

cas, balancing, and Lucas-balancing numbers, see, for example, [2, 4, 5, 6, 17, 18,

19, 21, 22, 23, 24, 25, 26, 27, 30] and references there in.

In this thesis, we extend Theorems 1.1 and 1.4 to the case of Un, Theorems

1.2 and 1.5 to the case of Vn, and Theorems 1.3 and 1.6 to the case of Un and Vn

mixed in together.



 

Chapter 2

Preliminaries and Lemmas

In this section, we recall some definitions and well known results, and

give some useful lemmas for the reader’s convenience. The order (or the rank)

of appearance of n ∈ N in the Lucas sequence (Un)n≥0 is defined as the smallest

positive integer m such that n | Um and is denoted by τ(n). We sometimes write

the expression such as a | b | c = d to mean that a | b, b | c, and c = d. For

each x ∈ R, we write ⌊x⌋ to denote the largest integer less than or equal to x. So

⌊x⌋ ≤ x < ⌊x⌋ + 1. We let D = a2 + 4b be the discriminant and let α and β be

the roots of the characteristic polynomial x2 − ax− b. Then it is well known that

if D ̸= 0, then the Binet formula

Un =
αn − βn

α− β
and Vn = αn + βn holds for all n ≥ 0.

Next, we recall Sanna’s result [28] on the p-adic valuation of the Lucas sequence

of the first kind.

Lemma 2.1. [28, Theorem 1.5] Let p be a prime number such that p ∤ b. Then,

for each positive integer n,

vp(Un) =



vp(n) + vp(Up)− 1 if p | D and p | n,

0 if p | D and p ∤ n,

vp(n) + vp(Upτ(p))− 1 if p ∤ D, τ(p) | n, and p | n,

vp(Uτ(p)) if p ∤ D, τ(p) | n, and p ∤ n,

0 if p ∤ D and τ(p) ∤ n.
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In particular, if p is an odd prime such that p ∤ b, then, for each positive integer n,

vp(Un) =



vp(n) + vp(Up)− 1 if p | D and p | n,

0 if p | D and p ∤ n,

vp(n) + vp(Uτ(p)) if p ∤ D and τ(p) | n,

0 if p ∤ D and τ(p) ∤ n.

We also recall a result by Panraksa and Tangboonduangjit [15] in their

calculation concerning a special subsequence of (Un)n≥0.

Lemma 2.2. [15, Lemma 2.3] Let m,n ≥ 1 and p a prime factor of Un such that

p ∤ b. Then, if (i) p is odd, or (ii) p = 2 and n is even, or (iii) p = 2 and m is

odd, we have

vp(Unm) = vp(m) + vp(Un).

From Lemma 2.1, and the fact that Vn = U2n/Un, we easily obtain the

following result.

Lemma 2.3. [11, Lemma 4] If p is an odd prime and p ∤ b. Then, for each positive

integer n,

vp(Vn) =

vp(n) + vp(Uτ(p)) if p ∤ D, τ(p) ∤ n and τ(p) | 2n,

0 otherwise.

The next two lemmas are also important tools in proving exact divisibility

by Uk
n for all n, k ∈ N.

Lemma 2.4. [12, Lemma 2.3] Let k, ℓ, m be positive integers, s nonzero integer,

and sk | m. Then sk+ℓ |
(
m
j

)
sj for all 1 ≤ j ≤ m satisfying 2j−ℓ+1 > j. In

particular, sk+1 |
(
m
j

)
sj for all 1 ≤ j ≤ m, and sk+2 |

(
m
j

)
sj for all 3 ≤ j ≤ m.

Proof. The statement in [12, Lemma 2.3] is given for s ≥ 1 but it is easy to see

that if s ≤ −1, then we can replace s by −s and every divisibility relation still

holds. Therefore this is true for all s ̸= 0.

Lemma 2.5. [10, Lemma 5] Let m,n ≥ 1 and r ≥ 0 be integers. Then
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(i) Umn+r =
∑m

j=0

(
m
j

)
U j
n(bUn−1)

m−jUj+r,

(ii) Umn =
∑m

j=1

(
m
j

)
U j
n(bUn−1)

m−jUj.

Proof. By Binet’s formula, we obtain αn = αUn + bUn−1, βn = βUn + bUn−1, and

Umn+r =
αmn+r − βmn+r

α− β

=
1

α− β
((αUn + bUn−1)

m αr − (βUn + bUn−1)
mβr)

=
1

α− β

(
m∑
j=0

(
m

j

)
(αUn)

j(bUn−1)
m−jαr −

m∑
j=0

(
m

j

)
(βUn)

j(bUn−1)
m−jβr

)

=
1

α− β

m∑
j=0

((
m

j

)
U j
n(bUn−1)

m−j
(
αj+r − βj+r

))

=
m∑
j=0

(
m

j

)
U j
n(bUn−1)

m−jUj+r.

This proves (i). Since U0 = 0, (ii) follows immediately from (i) by substituting

r = 0.

Recall that we assume throughout this article that (a, b) = 1. This is

necessary for the proof of the following lemmas.

Lemma 2.6. [10, Lemma 6] Suppose (a, b) = 1. Then (Um, Un) = U(m,n) and in

particular (Un, Un+1) = 1 for each m,n ∈ N.

Proof. This is well known.

Lemma 2.7. [11, Lemma 5] Let n ≥ 1 and (a, b) = 1. If p | Un or p | Vn, then

p ∤ b. Consequently, (Un, b) = (Vn, b) = 1 for all n ≥ 1.

Proof. The case for Un is already given in [10, Lemma 7]. So suppose by way of

contradiction that p | Vn and p | b. Since Vn = aVn−1 + bVn−2 and (a, b) = 1, we

obtain p | Vn−1. Repeating this argument, we see that p | Vm for 1 ≤ m ≤ n. In

particular, p | V1 = a contradicting (a, b) = 1. So if p | Vn, then p ∤ b, and the

proof is complete.

Lemma 2.8. [10, Lemma 8] Let a and b be odd, (a, b) = 1, and v2(U6) ≥ v2(U3)+2.

Then v2(U3) = 1.
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Proof. Since U3 = a2+ b is even and U6 = a(a2+3b)U3, we obtain v2(U3) ≥ 1 and

v2(U6) = v2(U3) + v2(a
2 + 3b). (2.1)

If v2(U3) ≥ 2, then 4 | a2 + b, and so b ≡ 3 (mod 4) and (2.1) implies v2(U6) =

v2(U3) + 1 contradicting v2(U6) ≥ v2(U3) + 2. Thus v2(U3) = 1.

For convenience, we also calculate the 2-adic valuation of Un and Vn as

follows.

Lemma 2.9. [11, Lemma 7] Assume that a is odd, b is even, and n ≥ 1. Then

v2(Un) = v2(Vn) = 0.

Proof. Since U1 = 1 and U2 = a are odd, and Ur = aUr−1+bUr−2 ≡ Ur−1 (mod 2)

for r ≥ 3, it follows by induction that Un is odd. Since Vn = U2n

Un
, Vn is also odd.

This proves the lemma.

Lemma 2.10. [11, Lemma 8] Assume that a is even, b is odd, and n ≥ 1. Then

v2(Un) =

v2(n) + v2(a)− 1 if 2 | n,

0 if 2 ∤ n,

v2(Vn) =

1 if 2 | n,

v2(a) if 2 ∤ n,

Proof. Since 2 | D, we obtain by Lemma 2.1 that for each n ∈ N, v2(Un) =

v2(n) + v2(U2) − 1 if 2 | n and v2(Un) = 0 if 2 ∤ n. Since U2 = a, the formula for

v2(Un) is verified. Then v2(Vn) can be obtained from a straightforward calculation

and the fact that Vn = U2n

Un
. This completes the proof.
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Lemma 2.11. [11, Lemma 9] Assume that a and b are odd, and n ≥ 1. Then

v2(Un) =


v2(n) + v2(U6)− 1 if n ≡ 0 (mod 6),

v2(U3) if n ≡ 3 (mod 6),

0 if n ̸≡ 0 (mod 3),

v2(Vn) =


1 if n ≡ 0 (mod 6),

v2(U6)− v2(U3) if n ≡ 3 (mod 6),

0 if n ̸≡ 0 (mod 3),

Proof. Since U1 and U2 are odd, and U3 = a2 + b is even, we have τ(2) = 3. In

addition, 2 ∤ D. Furthermore, 3 | n and 2 | n if and only if n ≡ 0 (mod 6); 3 | n

and 2 ∤ n if and only if n ≡ 3 (mod 6). Then applying Lemma 2.1 and the fact

that Vn = U2n

Un
, we obtain the desired result.



 

Chapter 3

Main Results

In this chapter, we present results of exact divisibility by powers of the

integers in the Lucas sequences of the first and second kinds. We begin with the

Lucas sequence of the first kind and give some examples. After that we show the

result of the Lucas sequence of the second kind and example. Finally, we prove a

result of the Lucas sequence in the case of the mix of first and second kinds.

3.1 Exact divisibility by powers of the integers in the Lucas

sequence of the first kind

In this section, we extend Theorems 1.1 and 1.4 to the case of Un and

obtain some relevant results.

Theorem 3.1. [10, Theorem 9] Let k, m, and n be positive integers. If Uk
n | m,

then Uk+1
n | Unm.

Proof. If Uk
n | m, then we obtain by Lemma 2.4 that, Uk+1

n |
(
m
j

)
U j
n for all 1 ≤ j ≤

m, which implies Uk+1
n | Unm, by Lemma 2.5.

Next, we extend Theorem 3.1 to include exact divisibility. The proof of

Theorem 3.2 is much longer than that of Theorem 3.1 since we would like to cover

all possible cases. Although many cases can be combined, it is more convenient

to state them separately. Recall that for x ∈ R, the largest integer which is less

than or equal to x is denoted by ⌊x⌋.

Theorem 3.2. [10, Theorem 10] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and

Uk
n ∥ m. Then

(i) if a is odd and b is even, then Uk+1
n ∥ Unm;
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(ii) if a is even and b is odd, then Uk+1
n ∥ Unm;

(iii) if a and b are odd and n ̸≡ 3 (mod 6), then Uk+1
n ∥ Unm;

(iv) if a and b are odd, n ≡ 3 (mod 6), and Uk+1
n

2
∤ m, then Uk+1

n ∥ Unm;

(v) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n

2
| m, and 2 ∥ a2 + 3b, then Uk+1

n ∥

Unm;

(vi) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n

2
| m, and 4 | a2 + 3b, then Uk+t+1

n ∥

Unm, where

t = min({v2(U6)− 2} ∪ {yp − k | p is an odd prime factor of Un})

and yp =
⌊

vp(m)

vp(Un)

⌋
for each odd prime p dividing Un.

Proof. By Theorem 3.1, we obtain Uk+1
n | Unm. So for (i) to (v), it is enough to

show that Uk+2
n ∤ Unm. We divide the calculation into several cases.

Case 1 a is odd and b is even. By Lemma 2.9, we obtain Un is odd. From

the assumption Uk
n ∥ m, we have Uk+1

n ∤ m, and so there exists a prime p dividing

Un such that vp(U
k+1
n ) > vp(m). Since Un is odd, p is also odd. In addition, p ∤ b

by Lemma 2.7. So we can apply Lemma 2.2(i) to obtain

vp(Unm) = vp(m) + vp(Un) < vp(U
k+1
n ) + vp(Un) = vp(U

k+2
n ),

which implies Uk+2
n ∤ Unm, as required. This proves (i).

Case 2 a is even and b is odd. Similar to Case 1, we have U1 is odd, U2

is even, Ur ≡ Ur−2 (mod 2) for r ≥ 3, and so Un is even if and only if n is even.

In addition, there exists a prime p such that p | Un, vp(Uk+1
n ) > vp(m), and p ∤ b.

So if 2 ∤ n, then Un is odd, p is odd, and we obtain by Lemma 2.2(i) that

vp(Unm) = vp(m) + vp(Un) < vp(U
k+1
n ) + vp(Un) = vp(U

k+2
n ), (3.1)

which implies Uk+2
n ∤ Unm. If 2 | n, then we can still use either Lemma 2.2(i) or

Lemma 2.2(ii) to obtain (3.1), which leads to the same conclusion Uk+2
n ∤ Unm.

This proves (ii).
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Case 3 a and b are odd. Similar to Case 1, there is a prime p such that

p | Un, vp(Uk+1
n ) > vp(m), and p ∤ b.

Case 3.1 n ̸≡ 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we obtain by

Lemmas 2.11 and 2.2, respectively that p is odd and

vp(Unm) = vp(Un) + vp(m) < vp(Un) + vp(U
k+1
n ) = vp(U

k+2
n ). (3.2)

If n ≡ 0 (mod 6), then n is even and Lemma 2.2(i) or Lemma 2.2(ii) can still be

used to obtain (3.2). In any case, Uk+2
n ∤ Unm. This proves (iii).

Case 3.2 n ≡ 3 (mod 6) and Uk+1
n

2
∤ m. Since Uk

n ∥ m, we can write

m = cUk
n where c ≥ 1 and Un ∤ c. By Lemma 2.4, Uk+2

n |
(
m
j

)
U j
n for 3 ≤ j ≤ m.

Then we obtain by Lemma 2.5 that

Unm = Umn ≡ mUn(bUn−1)
m−1 +

m(m− 1)

2
U2
n(bUn−1)

m−2a (mod Uk+2
n ).

By Lemma 2.11, we know that v2(Un) = v2(U3) ≥ 1. Since Uk+1
n

2
∤ m and m = cUk

n ,

we see that Un

2
does not c. Let d = bUn−1 +

Un

2
(m− 1)a. By Lemmas 2.6 and 2.7,

we obtain
(
Un

2
, d
)
=
(
Un

2
, bUn−1

)
= 1. Then

Unm ≡ mUnb
m−2Um−2

n−1

(
bUn−1 +

Un

2
(m− 1)a

)
≡ cUk+1

n bm−2Um−2
n−1 d (mod Uk+2

n ).

By Lemmas 2.6 and 2.7, we obtain Uk+2
n | Unm if and only if Un | cd. But if

Un | cd, then Un

2
| cd which implies Un

2
| c, a contradiction. So Un ∤ cd and therefore

Uk+2
n ∤ Unm. This proves (iv). To prove (v) and (vi), we first assume that a and

b are odd, n ≡ 3 (mod 6), and Uk+1
n

2
| m. (The other condition will be assumed

later). Then vp(U
k+1
n ) ≤ vp(m) for all odd primes p and v2(U

k+1
n )− 1 ≤ v2(m). If

v2(U
k+1
n ) − 1 < v2(m), then v2(U

k+1
n ) ≤ v2(m), and so vp(U

k+1
n ) ≤ vp(m) for all

primes p, which implies Uk+1
n | m contradicting the assumption Uk

n ∥ m. Hence

v2(U
k+1
n )− 1 = v2(m) and vp(U

k+1
n ) ≤ vp(m) for every odd prime p (3.3)

We now separate the consideration into two cases according to the additional

conditions in (v) and (vi). Observe that v2(a2+3b) = 1 is equivalent to 2 ∥ a2+3b.

Case 4 v2(a
2 + 3b) = 1. Since U6 = a(a2 + 3b)U3, we obtain v2(U6) =

v2(U3) + 1. Recall that n ≡ 3 (mod 6) and Uk
n | m. So n is odd, m is even, and



 13

nm ≡ 0 (mod 6). If Uk+2
n | Unm, then we obtain by Lemma 2.11 and (3.3) that

v2(U
k+1
n ) + v2(Un) = v2(U

k+2
n ) ≤ v2(Unm) = v2(n) + v2(m) + v2(U6)− 1

= v2(U
k+1
n )− 1 + v2(U3)

= v2(U
k+1
n ) + v2(Un)− 1,

which is a contradiction. Therefore Uk+2
n ∤ Unm. This proves (v).

Case 5 v2(a
2+3b) ≥ 2. Then v2(U6) = v2(U3)+ v2(a

2+3b) ≥ v2(U3)+2.

By Lemma 2.8, v2(U3) = 1 and so v2(U6) = x+ 2 where x = v2(a
2 + 3b)− 1 ∈ N.

For each odd prime p dividing Un, let yp =
⌊

vp(m)

vp(Un)

⌋
be the largest integer which is

less than or equal to vp(m)

vp(Un)
. Since Uk

n | m, we have yp ≥ k for all odd p | Un. Let

t = min({x} ∪ {yp − k | p is an odd prime factor of Un}).

Then t ≥ 0. By Lemma 2.11 and (3.3), v2(m) = (k + 1)v2(U3)− 1 = k and

v2(Unm) = v2(m) + v2(U6)− 1 = k + x+ 1 ≥ k + t+ 1 = v2(U
k+t+1
n ). (3.4)

By the definition of yp, we have vp(m) ≥ ypvp(Un). So by Lemma 2.2, if p is an

odd prime dividing Un, then

vp(Unm) = vp(m)+vp(Un) ≥ (yp+1)vp(Un) ≥ (k+t+1)vp(Un) = vp(U
k+t+1
n ). (3.5)

By (3.4) and (3.5), vp(Unm) ≥ vp(U
k+t+1
n ) for all primes p dividing Un. This show

that Uk+t+1
n | Unm. It remains to show that Uk+t+2

n ∤ Unm. If t = yp − k for some

odd prime p dividing Un, then we recall the definition of yp and apply Lemma 2.2

to obtain

vp(Unm) = vp(m) + vp(Un) < (yp + 2)vp(Un) = (k + t+ 2)vp(Un) = vp(U
k+t+2
n ).

If t = x = v2(U6)− 2, then we use Lemma 2.11 to get

v2(Unm) = v2(m) + v2(U6)− 1 = k + t+ 1 < v2(U
k+t+2
n ).

In any case, Uk+t+2
n ∤ Unm. This completes the proof.

Theorem 3.2 is the extension of Theorem 1.1 to the case of Un. The

next example shows that the integer t in Theorem 3.2(vi) can be any odd positive

integer.
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Example 3.3. Let M ∈ N be given. We show that there are positive integers

k, m, n, a, b satisfying the conditions in Theorem 3.2(vi) with t = M . Choose

a = 1 and b =
(
24M − 1

)
/3. Then a and b are odd integers, (a, b) = 1, and

v2(a
2 + 3b) = 4M > 2. Next choose any k, n ∈ N such that n ≡ 3 (mod 6). Since

v2(U6) = v2(U3) + v2(a
2 + 3b) ≥ v2(U3) + 2, we obtain by Lemmas 2.11 and 2.8

that v2(Un) = v2(U3) = 1 and v2(U6) = 4M + 1. Since Un ≥ U3 = a2 + b > 2

and v2(Un) = 1, we can write Un = 2pa11 pa22 · · · pass where s ≥ 1, p1, p2, . . . , ps

are distinct odd primes, and a1, a2, . . . , as are positive integers. Next, choose

m = 2kp
a1(k+M)
1 p

a2(k+M)
2 · · · pas(k+M)

s . Then Uk
n ∥ m and Uk+1

n

2
| m. Therefore k, m,

n, a, b satisfy all the conditions in Theorem 3.2(vi). Finally, we have

v2(U6)− 2 = v2(a
2 + 3b)− 1 = 4M − 1

and yp−k = M for all p ∈ {p1, p2, . . . , ps}, and therefore t = min{4M−1,M} = M ,

as desired.

Next, we prove the converse of Theorem 3.2.

Theorem 3.4. [10, Theorem 12] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and

Uk+1
n ∥ Unm. Then

(i) if a is odd and b is even, then Uk
n ∥ m;

(ii) if a is even and b is odd, then Uk
n ∥ m;

(iii) if a and b are odd and n ̸≡ 3 (mod 6), then Uk
n ∥ m;

(iv) if a and b are odd, n ≡ 3 (mod 6), and 2 ∥ a2 + 3b, then Uk
n ∥ m;

(v) if a and b are odd, n ≡ 3 (mod 6), 4 | a2+3b, and v2(m) ≥ k, then Uk
n ∥ m;

(vi) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k, then

m is even, v2(m) ≥ k + 1− v2(a
2 + 3b), and U v2(m)

n ∥ m.

Proof. Some parts of the proof are similar to those of Theorem 3.2, so we skip

some details.
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Case 1 a is odd and b is even. Similar to Case 1 of Theorem 3.2, we have

Un is odd. For any prime p | Un, we obtain by Lemma 2.2 that

vp(U
k
n) + vp(Un) = vp(U

k+1
n ) ≤ vp(Unm) = vp(Un) + vp(m), (3.6)

which implies Uk
n | m. If Uk+1

n | m, then by Theorem 3.1, we have Uk+2
n | Unm

which contradicts Uk+1
n ∥ Unm. Therefore Uk+1

n ∤ m, and thus Uk
n ∥ m.

Case 2 a is even and b is odd. Then Un is even if and only if n is even.

So if 2 ∤ n, then for any prime p | Un, we have p is odd, (3.6) holds, and so Uk
n | m.

If 2 | n, then we can still apply Lemma 2.2(i) or Lemma 2.2(ii) to obtain (3.6)

and conclude that Uk
n | m. If Uk+1

n | m, then by Theorem 3.1, we have Uk+2
n | Unm

which contradicts Uk+1
n ∥ Unm. So Uk+1

n ∤ m and therefore Uk
n ∥ m.

We now assume throughout that a and b are odd and divide the consid-

eration into four cases according to the additional conditions in (iii) to (vi).

Case 3 n ̸≡ 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we apply Lemma

2.11 to obtain v2(U
k
n) = 0 ≤ v2(m), and use Lemma 2.2 to show that for any odd

prime p | Un,

vp(Un) + vp(U
k
n) = vp(U

k+1
n ) ≤ vp(Unm) = vp(m) + vp(Un). (3.7)

If n ≡ 0 (mod 6), then n is even and we can apply Lemma 2.2(i) or Lemma 2.2(ii)

to obtain (3.7) for any prime p | Un. In any case, we have Uk
n | m. Again, by

Theorem 3.1, we have Uk+1
n ∤ m, and so Uk

n ∥ m. This proves (iii).

Case 4 n ≡ 3 (mod 6) and 2 ∥ a2 + 3b. Similar to Case 4 in the proof

of Theorem 3.2 we have v2(U6) = v2(U3) + 1. If m is odd, then nm ≡ 3 (mod 6)

and we obtain by Lemma 2.11 that v2(Unm) = v2(U3) < (k+1)v2(U3) = v2(U
k+1
n ),

which contradicts the assumption Uk+1
n | Unm. So m is even, and thus nm ≡ 0

(mod 6). By Lemma 2.11 and the fact that n ≡ 3 (mod 6) is odd, we obtain

v2(m) + v2(U6)− 1 = v2(Unm) ≥ v2(U
k+1
n ) = v2(U

k
n) + v2(Un) = v2(U

k
n) + v2(U3) =

v2(U
k
n) + v2(U6) − 1, which implies v2(m) ≥ v2(U

k
n). If p is odd and p | Un, then

we apply Lemma 2.2 to obtain (3.7) Therefore vp(U
k
n) ≤ vp(m) for every prime

p dividing Un. Thus Uk
n | m. By Theorem 3.1, Uk+1

n ∤ m. Hence Uk
n ∥ m. This

proves (iv).
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Case 5 n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k. Then U3 = a2 + b =

(a2 + 3b) − 2b ≡ 2 (mod 4), and so v2(U3) = 1. By Lemma 2.11, we obtain

v2(m) ≥ kv2(U3) = kv2(Un) = v2(U
k
n). By Lemma 2.2, if p is an odd prime

dividing Un, then (3.6) holds, and so we conclude that vp(U
k
n) ≤ vp(m) for every

prime p dividing Un. Therefore Uk
n | m. By Theorem 3.1, Uk+1

n ∤ m and so Uk
n ∥ m.

This proves (v).

Case 6 n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k. For convenience, let

t = v2(m). Similar to Case 4, we have m is even. In addition, v2(U6) = v2(U3) +

v2(a
2+3b) = 1+v2(a

2+3b). So k > t ≥ 1 and v2(m) = tv2(U3) = tv2(Un) = v2(U
t
n).

By Lemma 2.2, if p is odd and p | Un, then

vp(Un) + vp(U
t
n) ≤ vp(Un) + vp(U

k
n) = vp(U

k+1
n ) ≤ vp(Unm) = vp(m) + vp(Un).

From the above inequalities, we obtain that vp(U
t
n) ≤ vp(m) for every prime p

dividing Un. Therefore U t
n | m. If U t+1

n | m, then we obtain by Lemma 2.11 that

t = v2(m) ≥ v2(U
t+1
n ) = t+1, which is false. So U t+1

n ∤ m. Therefore U t
n ∥ m. From

Uk+1
n ∥ Unm, we also obtain k + 1 = v2(U

k+1
n ) ≤ v2(Unm) = v2(m) + v2(U6)− 1 =

v2(m) + v2(a
2 + 3b), which implies v2(m) ≥ k + 1 − v2(a

2 + 3b). This completes

the proof.

Theorem 3.4 is the extension of Theorem 1.4 to the case of Un. The next

example shows that v2(m) in Theorem 3.4(vi) can be any positive integer in [1, k).

Example 3.5. Let k ≥ 1 and 1 ≤ M < k be integers. We show that there are

m,n, a, b satisfying the conditions in Theorem 3.4(vi) with v2(m) = M . Choose

n ∈ N and n ≡ 3 (mod 6).

Case 1 k−M is odd. Choose a = 1, b = 2k−M+1−1
3

, and m = Uk
n

2k−M . Then

a and b are odd integers, (a, b) = 1, and v2(a
2 + 3b) = k − M + 1 ≥ 2. Since

v2(U6) = v2(U3)+v2(a
2+3b) ≥ v2(U3)+2, we obtain by Lemma 2.11 and 2.8 that

v2(Un) = v2(U3) = 1 and v2(U6) = k−M +2. By Lemma 2.2, for p > 2 and p | Un

we obtain

vp(Unm) = vp(m) + vp(Un) = vp(U
k
n) + vp(Un) = vp(U

k+1
n ).
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By Lemma 2.11, we have

v2(m) = v2(U
k
n)− v2(2

k−M) = k − k +M = M

and

v2(Unm) = v2(m) + v2(U6)− 1 = M + k −M + 2− 1 = v2(U
k+1
n ).

From these, we obtain Uk+1
n ∥ Unm and UM

n ∥ m. Therefore k,m, n, a, b satisfy all

the conditions in Theorem 3.4(vi).

Case 2 k−M is even. Choose a = 1, b = 5·2k−M+1−1
3

, and m = Uk
n

2k−M . The

verification is the same as that in Case 1. So we leave the details to the reader.

3.2 Exact divisibility by powers of the integers in the Lucas

sequence of the second kind

In this section, we extend Theorems 1.2 and 1.5 to the case of Vn and give

an example.

Theorem 3.6. [11, Theorem 10] Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1,

and m is odd. Then

(i) if V k
n | m, then V k+1

n | Vnm;

(ii) if V k
n ∥ m, then V k+1

n ∥ Vnm;

(iii) if V k
n | Vnm, then V k−1

n | m;

(iv) if V k
n ∥ Vnm, then V k−1

n ∥ m.

Proof. We use Lemma 2.7 without reference. For (i), assume that V k
n | m. Since

m is odd, Vn is also odd, and so v2(V
k+1
n ) = 0. If p > 2 and p | Vn, then p ∤ b and

we obtain by Lemma 2.3 that

vp(Vnm) = vp(mn) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

≥ vp(V
k
n ) + vp(Vn) = vp(V

k+1
n ).
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Therefore vp(Vnm) ≥ vp(V
k+1
n ) for all primes p dividing Vn. This implies V k+1

n |

Vnm.

For (ii), assume that V k
n ∥ m. By (i), it is enough to show that V k+2

n ∤ Vnm. Since

V k+1
n ∤ m, there exists a prime p dividing Vn such that vp(V k+1

n ) > vp(m). Here we

remark that the letter p in the proof of (i) and in the proof of (ii) may be different

or may be the same. We believe that there is no ambiguity since (i) is already done.

Now since V k
n | m and m is odd, Vn is also odd, and so v2(V

k+1
n ) = v2(m) = 0.

Therefore p is odd. By Lemma 2.3, we obtain

vp(Vnm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn) < vp(V
k+1
n ) + vp(Vn) = vp(V

k+2
n ).

This shows that V k+2
n ∤ Vnm, as required.

For (iii), assume that V k
n | Vnm. We show that vp(V

k−1
n ) ≤ vp(m) for all primes p

dividing Vn. If p is odd and p | Vn, then we apply Lemma 2.3 to obtain that

vp(Vn) + vp(V
k−1
n ) = vp(V

k
n ) ≤ vp(Vnm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn),

and so vp(V
k−1
n ) ≤ vp(m). It remains to show that v2(V

k−1
n ) ≤ v2(m). If a is odd

and b is even, then it follows from Lemma 2.9 that v2(V
k−1
n ) = 0 ≤ v2(m). Recall

that (a, b) = 1, so a and b cannot be both even. So we have the following two

remaining cases: (a is even and b is odd) or (a and b are odd).

Case 1 a is even and b is odd. We will show that k must be 1, and so

v2(V
k−1
n ) = 0 ≤ v2(m). If 2 | n, then we apply Lemma 2.10 and the assumption

that V k
n | Vnm to obtain

1 ≤ k = v2(V
k
n ) ≤ v2(Vnm) = 1.

Similarly, if 2 ∤ n, then 2 ∤ nm and we can use Lemma 2.10 again to obtain

kv2(a) = v2(V
k
n ) ≤ v2(Vnm) = v2(a).

In any case, k = 1, as asserted.
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Case 2 a and b are odd. We use Lemma 2.11 in this case. If n ̸≡ 0

(mod 3), then v2(V
k−1
n ) = 0 ≤ v2(m). If n ≡ 0 (mod 6), then nm ≡ 0 (mod 6),

and so k = v2(V
k
n ) ≤ v2(Vnm) = 1; thus v2(V

k−1
n ) = 0 ≤ v2(m). We now suppose

n ≡ 3 (mod 6). Since m is odd, nm ≡ 3 (mod 6). Therefore

k(v2(U6)− v2(U3)) = v2(V
k
n ) ≤ v2(Vnm) = v2(U6)− v2(U3).

So k = 1 and thus v2(V
k−1
n ) = 0 ≤ v2(m). Hence vp(V

k−1
n ) ≤ vp(m) for all primes

p dividing Vn, as desired. This proves (iii).

For (iv), assume that V k
n ∥ Vnm. By (iii), we have V k−1

n | m. If V k
n | m, then we

obtain by (i) that V k+1
n | Vnm which contradicts V k

n ∥ Vnm. Therefore V k−1
n ∥ m.

This completes the proof.

Theorem 3.6 is the extension of Theorems 1.2 and 1.5 to the case of Vn.

In the next example, we show that a version of Theorem 3.6 where m is even does

not exist.

Example 3.7. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, and m is even. Let p be an

odd prime dividing Vn. By Lemma 2.3, we have p ∤ D, τ(p) ∤ n and τ(p) | 2n.

Since m is even and τ(p) | 2n, we obtain τ(p) | mn. By Lemma 2.3, we have

p ∤ Vnm, and so Vn ∤ Vnm. This shows that m in Theorem 3.6 cannot be even.

3.3 Exact divisibility by powers of the integers in the Lucas

sequences of the first and second kinds

In this section, we extend Theorems 1.3 and 1.6 to the case of Un and Vn

and obtain some relevant results.

Theorem 3.8. [11, Theorem 13] Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a

is odd, b is even, and m is even. Then

(i) if V k
n | m, then V k+1

n | Unm;

(ii) if V k
n ∥ m, then V k+1

n ∥ Unm;

(iii) if V k+1
n | Unm, then V k

n | m;
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(iv) if V k+1
n ∥ Unm, then V k

n ∥ m.

Proof. For (i), assume that V k
n | m. We show that vp(V

k+1
n ) ≤ vp(Unm) for all

primes p dividing Vn. By Lemma 2.9, we have v2(Vn) = 0. So let p be an odd

prime dividing Vn. By Lemma 2.3, p ∤ D, τ(p) ∤ n, and τ(p) | 2n. Then τ(p) | nm.

By Lemmas 2.1 and 2.3, we obtain

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

≥ vp(V
k
n ) + vp(n) + vp(Uτ(p))

= vp(V
k
n ) + vp(Vn)

= vp(V
k+1
n ), as required.

For (ii), assume that V k
n ∥ m. By (i), it is enough to show that V k+2

n ∤ Unm. Since

V k+1
n ∤ m, there exists a prime p such that vp(V

k+1
n ) > vp(m). By Lemma 2.9,

v2(V
k+1
n ) = 0, and so p ̸= 2. Since p | Vn, we know that p ∤ D and τ(p) | nm.

Therefore we obtain by Lemmas 2.1 and 2.3 that

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn)

< vp(V
k+1
n ) + vp(Vn)

= vp(V
k+2
n ), as desired.

For (iii), assume that V k+1
n | Unm. By Lemma 2.9, v2(m) ≥ 0 = v2(V

k
n ). If p is

odd and p | Vn, then we apply Lemmas 2.1 and 2.3 again to obtain

vp(Vn) + vp(V
k
n ) = vp(V

k+1
n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn).

This shows that vp(V
k
n ) ≤ vp(m) for every prime p dividing Vn. So V k

n | m.

For (iv), suppose V k+1
n ∥ Unm. By (iii), it is enough to show that V k+1

n ∤ m. If
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V k+1
n | m, we apply (i) to obtain V k+2

n | Unm contradicting V k+1
n ∥ Unm. Therefore

the proof is complete.

Theorem 3.9. [11, Theorem 14] Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a

is even, b is odd and m is even. Let

t = min({v2(n) + v2(a)− 2} ∪ {yp − k| p is an odd prime factor of Vn}) and

yp =

⌊
vp(m)

vp(Vn)

⌋
for each odd prime p dividing Vn.

Then

(i) if V k
n | m and 2 | n, then V k+1

n | Unm;

if V k
n | m and 2 ∤ n, then V k+1

n

2
| Unm;

if V k
n | m, 2 ∤ n, and v2(m) ≥ v2(V

k
n ) + 1, then V k+1

n | Unm;

if V k
n | m, 2 | n, and V k+1

n

2
| m, then t ≥ 0, v2(m) ≥ k, and V k+t+1

n | Unm;

(ii) if V k
n ∥ m, 2 | n and V k+1

n

2
∤ m, then V k+1

n ∥ Unm;

(iii) if V k
n ∥ m, 2 | n and V k+1

n

2
| m, then V k+t+1

n ∥ Unm;

(iv) if V k
n ∥ m, 2 ∤ n and v2(m) = v2(V

k
n ), then V k

n ∥ Unm;

(v) if V k
n ∥ m, 2 ∤ n and v2(m) ≥ v2(V

k
n ) + 1, then V k+1

n ∥ Unm;

Proof. For (i), assume that V k
n | m. If p is an odd prime and p | Vn, then p ∤ D,

τ(p) | nm, and we can apply Lemmas 2.1 and 2.3, to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

≥ vp(V
k
n ) + vp(Vn) = vp(V

k+1).

From this point on, we sometimes use Lemmas 2.1 and 2.3 without reference.

Next, we consider v2(V
k+1
n ) and v2(Unm). If 2 | n, then we apply Lemma 2.10 to

obtain

v2(Unm) = v2(nm) + v2(a)− 1 = v2(m) + v2(n) + v2(a)− 1

≥ v2(V
k
n ) + v2(n) + v2(a)− 1

≥ v2(V
k
n ) + 1 = v2(V

k
n ) + v2(Vn) = v2(V

k+1
n ).
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This implies the first part of (i). Since m is even, 2 | nm. So if 2 ∤ n, then we can

still apply Lemma 2.10 to obtain

v2(Unm) = v2(nm) + v2(a)− 1

= v2(m) + v2(a)− 1 (3.8)

≥ v2(V
k
n ) + v2(a)− 1 = v2(V

k
n ) + v2(Vn)− 1 = v2

(
V k+1
n

2

)
.

This implies the second part of (i). For the third part of (i), we assume that 2 ∤ n

and v2(m) ≥ v2(V
k
n )+1, and then we repeat the argument used in the second part

to obtain

v2(Unm) = v2(m) + v2(a)− 1 ≥ v2(V
k
n ) + v2(a) = v2(V

k+1
n ).

Therefore vp(Unm) ≥ vp(V
k+1
n ) for all primes p, which implies the desired result.

Next, we prove the last part of (i). Assume that V k
n | m, 2 | n, and V k+1

n

2
| m. Since

a and n are even, v2(n) + v2(a)− 2 ≥ 0. In addition, vp(m) ≥ vp(V
k
n ) = kvp(Vn),

and so yp ≥ k. Therefore t ≥ 0 and t+1 ≤ v2(n) + v2(a)− 1. By Lemma 2.10, we

have vp(Vn) = 1, and therefore vp(m) ≥ k and

v2(Unm) = v2(nm) + v2(a)− 1 = v2(m) + v2(n) + v2(a)− 1

≥ k + t+ 1 = v2(V
k+t+1
n ).

If p is an odd prime and p | Vn, then

vp(Unm) = vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn)

≥ ypvp(Vn) + vp(Vn)

= (yp + 1)vp(Vn)

≥ (k + t+ 1)vp(Vn) = vp(V
k+t+1
n ).

Hence vp(Unm) ≥ vp(V
k+t+1
n ) for all primes p dividing Vn. Thus V k+t+1

n | Unm, as

desired.

Next, we prove (ii). Assume that V k
n ∥ m, 2 | n and V k+1

n

2
∤ m. By (i), it is enough

to show that V k+2
n ∤ Unm. By Lemma 2.10, we know that v2(Vn) = 1. Then
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v2(m) ≥ v2(V
k
n ) = v2

(
V k+1
n

2

)
. Since V k+1

n

2
∤ m, there exists an odd prime p dividing

Vn such that vp(V
k+1
n ) > vp(m). Then p ∤ D, τ(p) | nm, and

vp(V
k+2
n ) = vp(V

k+1
n ) + vp(Vn) > vp(m) + vp(Vn)

= vp(m) + vp(n) + vp(Uτ(p))

= vp(Unm).

This implies V k+2
n ∤ Unm.

For (iii), assume that V k
n ∥ m, 2 | n, and V k+1

n

2
| m. By (i), we obtain t ≥ 0,

v2(m) ≥ k, and V k+t+1
n | Unm. So it remains to show that V k+t+2

n ∤ Unm. We first

observe that since V k+1
n

2
| m, we obtain vp(V

k+1
n ) ≤ vp(m) for every odd prime p.

If v2(m) ≥ k + 1, then v2(m) ≥ v2(V
k+1
n ) which implies V k+1

n | m contradicting

the assumption V k
n ∥ m. Therefore v2(m) = k. Next, we show that V k+t+2

n ∤ Unm.

If t = yp − k for some odd prime p dividing Vn, then we apply Lemmas 2.1 and

2.3 to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(Vn) =

(
vp(m)

vp(Vn)
+ 1

)
vp(Vn)

< (yp + 2)vp(Vn) = (k + t+ 2)vp(Vn) = vp(V
k+t+2
n ),

and so V k+t+2
n ∤ Unm. If t = v2(n)+ v2(a)− 2, then we obtain by Lemma 2.10 that

v2(Unm) = v2(nm) + v2(a)− 1

= v2(m) + v2(n) + v2(a)− 1

= k + t+ 1 < v2(V
k+t+2
n ),

and so V k+t+2
n ∤ Unm. This proves (iii).

Next, we prove (iv). Assume that V k
n ∥ m, 2 ∤ n and v2(m) = v2(V

k
n ). By (i),

we have V k+1
n

2
| Unm. To show that V k

n | Unm, it suffices to prove that v2(V
k
n ) ≤

v2(Unm). Recall from (3.8) in the proof of the second part of (i) that

v2(Unm) = v2(m) + v2(a)− 1 = v2(V
k
n ) + v2(a)− 1 ≥ v2(V

k
n ),

and

v2(Unm) = v2(m) + v2(a)− 1 = v2(V
k
n ) + v2(Vn)− 1 < v2(V

k+1
n ).
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So V k
n | Unm and V k+1

n ∤ Unm. Thus V k
n ∥ Unm.

For (v), assume that V k
n ∥ m, 2 ∤ n, and v2(m) ≥ v2(V

k
n ) + 1. By (i), it suffices

to show that V k+2
n ∤ Unm. Since V k+1

n ∤ m, there exists a prime p dividing Vn such

that vp(V
k+1
n ) > vp(m). If p = 2, then we obtain by Lemma 2.10 that

v2(Unm) = v2(m) + v2(a)− 1 < v2(V
k+1
n ) + v2(Vn)− 1 < v2(V

k+2
n ),

and so V k+2
n ∤ Unm. If p > 2, then we obtain

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(V
k+1
n ) + vp(Vn) = vp(V

k+2
n ),

which implies V k+2
n ∤ Unm. This completes the proof.

Next, we prove the converse of Theorem 3.9. From this point on, we apply

Lemmas 2.1, 2.3, 2.7, and 2.10 without reference.

Theorem 3.10. [11, Theorem 15] Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1,

a is even, b is odd, and m is even. Then

(i) for all odd primes p, if vp(V k+1
n ) ≤ vp(Unm), then vp(V

k
n ) ≤ vp(m);

(ii) if V k+1
n | Unm and 2 | n, then V

min (k,v2(m))
n | m;

if V k+1
n ∥ Unm and 2 | n, then V

min (k,v2(m))
n ∥ m;

(iii) if V k+1
n | Unm and 2 ∤ n, then V k

n | m;

(iv) if V k+1
n ∥ Unm, 2 ∤ n and V k+2

n

2
∤ Unm, then V k

n ∥ m;

(v) if V k+1
n ∥ Unm, 2 ∤ n, and V k+2

n

2
| Unm, then V k+1

n ∥ m.

Proof. For (i), assume that p is an odd prime and vp(V
k+1
n ) ≤ vp(Unm). If p | Vn,

then

vp(Vn) + vp(V
k
n ) = vp(V

k+1
n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(n) + vp(Uτ(p))

= vp(m) + vp(Vn),
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which implies (i). By (i), we only need to consider the 2-adic valuation in the

proofs of (ii), (iii), (iv), and (v).

For (ii), assume that V k+1
n | Unm and 2 | n. For convenience, let c = min(k, v2(m)).

If v2(m) ≥ k, then v2(V
k
n ) = k ≤ v2(m), and so V k

n | m. If v2(m) < k, then

v2(V
v2(m)
n ) = v2(m) and vp(V

v2(m)
n ) ≤ vp(V

k
n ) ≤ vp(m) for all odd primes p, and

therefore V
v2(m)
n | m. In any case, we obtain V c

n | m. This proves the first part of

(ii). Suppose further that V k+1
n ∥ Unm but V c+1

n | m. Then

v2(m) ≥ v2(V
c+1
n ) = min(k, v2(m)) + 1,

which implies c = k. Then V k+1
n = V c+1

n | m. By (i) of Theorem 3.9, we obtain

V k+2
n | Unm contradicting V k+1

n ∥ Unm. This completes the proof of (ii).

For (iii), assume that V k+1
n | Unm and 2 ∤ n. Then

v2(a) + v2(V
k
n ) = v2(V

k+1
n ) ≤ v2(Unm) = v2(nm) + v2(a)− 1

= v2(m) + v2(a)− 1.

Therefore v2(V
k
n ) < v2(m), and so V k

n | m.

For (iv), assume that V k+1
n ∥ Unm, 2 ∤ n, and V k+2

n

2
∤ Unm. By (iii), V k

n | m. If

V k+1
n | m, then we obtain from (i) of Theorem 3.9 that V k+2

n

2
| Unm, a contradiction.

So V k
n ∥ m.

For (v), assume that V k+1
n ∥ Unm, 2 ∤ n, and V k+2

n

2
| Unm. If p is odd, then

vp(V
k+2
n ) ≤ vp(Unm), and so we obtain by (i) that vp(V

k+1
n ) ≤ vp(m). In addition,

v2(V
k+1
n ) + v2(a)− 1 = v2(V

k+2
n )− 1 ≤ v2(Unm) = v2(nm) + v2(a)− 1

= v2(m) + v2(a)− 1,

and so v2(V
k+1
n ) ≤ v2(m). Therefore V k+1

n | m. If V k+2
n | m, we obtain from (i) of

Theorem 3.9 that V k+3
n

2
| Unm, which implies V k+2

n | Unm contradicting V k+1
n ∥ Unm.

Therefore V k+1
n ∥ m and the proof is complete.

The following Theorem is an extension of Theorem 1.3.

Theorem 3.11. [11, Theorem 16] Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1,

a and b are odd, and m is even. Let c = v2(U6)− 1,

t = min({v2(n) + c− 1} ∪ {yp − k| p is an odd prime factor of Vn}),
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s = min({c− 1} ∪ {yp − k| p is an odd prime factor of Vn}), and

yp =

⌊
vp(m)

vp(Vn)

⌋
for each odd prime p dividing Vn.

Then

(i) if V k
n | m, then V k+1

n | Unm;

(ii) if V k
n ∥ m and n ̸≡ 0 (mod 3), then V k+1

n ∥ Unm;

(iii) if V k
n ∥ m, n ≡ 0 (mod 6) and V k+1

n

2
∤ m, then V k+1

n ∥ Unm;

(iv) if V k
n | m, n ≡ 0 (mod 6), and V k+1

n

2
| m, then t ≥ 0 and V k+t+1

n | Unm;

if V k
n ∥ m,n ≡ 0 (mod 6) and vk+1

n

2
| m, then V k+t+1

n ∥ Unm;

(v) if V k
n ∥ m, n ≡ 3 (mod 6), 2 ∥ a2 + 3b and V k+1

n

2
∤ m, then V k+1

n ∥ Unm;

(vi) if V k
n | m, n ≡ 3 (mod 6), 2 ∥ a2 + 3b, and V k+1

n

2
| m, then s ≥ 0 and

V k+s+1
n | Unm;

if V k
n ∥ m, n ≡ 3 (mod 6), 2 ∥ a2 + 3b and V k+1

n

2
| m, then V k+s+1

n ∥ Unm;

(vii) if V k
n ∥ m, n ≡ 3 (mod 6), 4 | a2 + 3b and V k+1

n

2c
∤ m, then V k+1

n ∥ Unm;

(viii) if V k
n | m, n ≡ 3 (mod 6), 4 | a2 + 3b and V k+1

n

2c
| m, then V k+2

n | 2cUnm;

if V k
n ∥ m, n ≡ 3 (mod 6), 4 | a2 + 3b and V k+1

n

2c
| m, then V k+2

n ∥ 2cUnm.

Proof. As usual, to prove that V d
n | Unm, we show that vp(V

d
n ) ≤ vp(Unm) for all

primes p dividing Vn. Similarly, if we would like to prove that V d
n ∤ Unm, then we

show that vp(V d
n ) > vp(Unm) for some prime p. If p is odd, then we apply Lemmas

2.1 and 2.3; if p = 2, then we use Lemma 2.11; and we will do this without further

reference. For (i), assume that V k
n | m. If p is odd and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p))

≥ vp(V
k
n ) + vp(Vn) = vp(V

k+1).

So it remains to show that v2(Unm) ≥ v2(V
k+1
n ). If n ̸≡ 0 (mod 3), then v2(V

k+1
n ) =

0 ≤ v2(Unm). So suppose that n ≡ 0 (mod 3). Then nm ≡ 0 (mod 6) and so

v2(Unm) = v2(nm) + v2(U6)− 1 ≥ v2(V
k
n ) + v2(n) + v2(U6)− 1. (3.9)
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Since U3 = a2 + b is even and U6 = a(a2 + 3b)U3, we know that v2(U3) ≥ 1 and

v2(U6) ≥ 1. So if n ≡ 0 (mod 6), then v2(n) ≥ 1 and (3.9) implies that

v2(Unm) ≥ v2(V
k
n ) + v2(U6) ≥ v2(V

k
n ) + v2(Vn) = v2(V

k+1
n ).

If n ≡ 3 (mod 6), then (3.9) implies

v2(Unm) ≥ v2(V
k
n ) + v2(U6)− 1 ≥ v2(V

k
n ) + v2(U6)− v2(U3) = v2(V

k+1
n ).

In any case, v2(Unm) ≥ v2(V
k+1
n ). This proves (i).

For (ii), assume that V k
n ∥ m and n ̸≡ 0 (mod 3). By (i), it is enough to show

that V k+2
n ∤ Unm. Since V k+1

n ∤ m, there exists a prime p dividing Vn such that

vp(V
k+1
n ) > vp(m). Since v2(V

k+1
n ) = 0, we see that p ̸= 2. Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p))

< vp(V
k+1
n ) + vp(Vn) = vp(V

k+2
n ), as desired.

For (iii), assume that V k
n ∥ m, n ≡ 0 (mod 6), and V k+1

n

2
∤ m. By (i), it is enough

to show that V k+2
n ∤ Unm. Since V k+1

n

2
∤ m and v2(

V k+1
n

2
) = v2(V

k
n ) ≤ v2(m), we see

that there exists an odd prime p dividing Vn such that vp(V
k+1
n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(V
k+1
n ) + vp(Vn) = vp(V

k+2
n ).

Therefore V k+2
n ∤ Unm, as required.

For (iv), we first assume that V k
n | m, n ≡ 0 (mod 6), and V k+1

n

2
| m. Since

v2(n) ≥ 1 and v2(U6) ≥ v2(U3) ≥ 1, it is not difficult to see that t ≥ 0. If p is an

odd prime dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn)

≥ ypvp(Vn) + vp(Vn) = (yp + 1)vp(Vn)

≥ (k + t+ 1)vp(Vn) = vp(V
k+t+1
n ).

In addition,

v2(Unm) = v2(nm) + v2(U6)− 1 = v2(m) + v2(n) + v2(U6)− 1

≥ v2(V
k
n ) + t+ 1 = k + t+ 1 = v2(V

k+t+1
n ).
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Therefore V k+t+1
n | Unm. This proves the first part of (iv). Next, assume further

that V k
n ∥ m. It is enough to show that V k+t+2

n ∤ Unm. Recall that yp =
⌊

vp(m)

vp(Vn)

⌋
,

so vp(m) < (yp+1)vp(Vn). So if t = yp−k for some odd prime p dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn)

< (yp + 2)vp(Vn) = (k + t+ 2)vp(Vn) = vp(V
k+t+2
n ),

which implies V k+t+2
n ∤ Unm. So suppose t = v2(n) + v2(U6) − 2. Since V k+1

n

2
| m,

we see that vp(m) ≥ vp(V
k+1
n ) for all odd primes p. If v2(m) ≥ k + 1, then

v2(m) ≥ v2(V
k+1
n ),which implies V k+1

n | m contradicting the assumption V k
n ∥ m.

Therefore v2(m) ≤ k. Then

v2(Unm) = v2(nm)+v2(U6)−1 = v2(m)+v2(n)+v2(U6)−1 ≤ k+t+1 < v2(V
k+t+2
n ).

Therefore, V k+t+2
n ∤ Unm as required.

For (v), assume that V k
n ∥ m, n ≡ 3 (mod 6), 2 ∥ a2 +3b, and V k+1

n

2
∤ m. By (i), it

suffies to show that V k+2
n ∤ Unm. Since U6 = a(a2+3b)U3 and 2 ∥ a2+3b, we obtain

v2(Vn) = v2(U6) − v2(U3) = 1. Since V k+1
n

2
∤ m and v2

(
V k+1
n

2

)
= v2(V

k
n ) ≤ v2(m),

there exists an odd prime p dividing Vn such that vp(V
k+1
n ) > vp(m). Therefore

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(V
k+1
n ) + vp(Vn)

= vp(V
k+2
n ), as desired.

For (vi), assume that V k
n | m, n ≡ 3 (mod 6), 2 ∥ a2 + 3b, and V k+1

n

2
| m. Since

a2 + 3b and U3 are even, and U6 = a(a2 + 3b)U3, we have v2(U6) − 2 ≥ 0. Since

V k
n | m, we have yp ≥ k for all odd primes p dividing Vn. Therefore s ≥ 0. By

the same argument as in the proof of (v), we obtain v2(Vn) = 1. In addition,

v2(m) ≥ v2(V
k
n ) = k and vp(V

k+1
n ) = vp(

V k+1
n

2
) ≤ vp(m) for every odd prime p. If

V k
n ∥ m and v2(m) ≥ k + 1 = v2(V

k+1
n ), then V k+1

n | m which is a contradiction.

Therefore,

if V k
n ∥ m, then v2(m) = k. (3.10)

We will apply (3.10) later. For now, we only need to apply v2(m) ≥ k. We obtain

v2(Unm) = v2(nm) + v2(U6)− 1 = v2(m) + v2(U6)− 1 ≥ k + v2(U6)− 1

≥ k + s+ 1 = v2(V
k+s+1
n ).
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If p > 2 and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ (yp + 1)vp(Vn)

≥ (k + s+ 1)vp(Vn) = vp(V
k+s+1
n ).

This implies V k+s+1
n | Unm. Next, assume further that V k

n ∥ m. It remains to show

that V k+s+2
n ∤ Unm. By the definition of yp, we know that (yp + 1)vp(Vn) > vp(m).

So if s = yp − k for some odd prime p dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < (yp + 2)vp(Vn)

= (k + s+ 2)vp(Vn) = vp(V
k+s+2
n ),

which implies V k+s+2
n ∤ Unm. By (3.10), we know that v2(m) = k. So if s =

v2(U6)− 2, then

v2(Unm) = v2(nm) + v2(U6)− 1 = v2(m) + v2(U6)− 1 = k + s+ 1 < v2(V
k+s+2
n ).

So in any case, V k+s+2
n ∤ Unm, as required.

For (vii), we let c = v2(U6)−1 and assume that V k
n ∥ m, n ≡ 3 (mod 6), 4 | a2+3b,

and V k+1
n

2c
∤ m. By (i), it is enough to show that V k+2

n ∤ Unm. Since 4 | a2 + 3b

and U6 = a(a2 + 3b)U3, we have v2(U6) ≥ v2(U3) + 2. By Lemma 2.8, we obtain

v2(U3) = 1, and so v2(Vn) = v2(U6)− v2(U3) = v2(U6)− 1 = c. Since V k+1
n

2c
∤ m and

v2

(
V k+1
n

2c

)
= (k + 1)v2(Vn)− v2(Vn) = v2(V

k
n ) ≤ v2(m),

there exists an odd prime p dividing Vn such that vp(V
k+1
n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(V
k+1
n ) + vp(Vn) = Vp(V

k+2
n ).

Therefore V k+2
n ∤ Unm.

For (viii), assume that V k
n | m , n ≡ 3 (mod 6), 4 | a2 + 3b, and V k+1

n

2c
| m. Then

for each odd prime p dividing Vn, we have

vp(V
k+1
n ) = vp

(
V k+1
n

2c

)
≤ vp(m). (3.11)

Since 4 | a2+3b and U6 = a(a2+3b)U3, we obtain v2(U6) ≥ v2(U3)+2. By the same

argument as in the proof of (vii), we obtain v2(Vn) = v2(U6)−1 = c. Since V k
n | m,
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we see that v2(m) ≥ v2(V
k
n ) = kv2(Vn). If V k

n ∥ m and v2(m) ≥ (k+1)v2(Vn), then

vp(m) ≥ vp(V
k+1
n ) for all primes p, and so V k+1

n | m, a contradiction. Therefore

v2(m) ≥ kv2(Vn), (3.12)

and

if V k
n ∥ m, then kv2(Vn) ≤ v2(m) < (k + 1)v2(Vn). (3.13)

We will apply (3.13) later. For now (3.12) is good enough. We obtain

v2(2
cUnm) = v2(U6)− 1 + v2(Unm) = v2(U6)− 1 + v2(nm) + v2(U6)− 1

= 2(v2(U6)− 1) + v2(m)

≥ 2(v2(U6)− 1) + kv2(Vn)

= 2(v2(U6)− 1) + k(v2(U6)− 1)

= (k + 2)(v2(U6)− 1) = v2(V
k+2
n ).

If p > 2 and p | Vn, then

vp(2
cUnm) = vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn)

≥ vp(V
k+1
n ) + vp(Vn) = vp(V

k+2
n ),

where the last inequality is obtained from (3.11). This implies that V k+2
n | 2cUnm.

So the first part of (viii) is proved. Next, assume further that V k
n ∥ m. To prove

the second part, it now suffices to show that V k+3
n ∤ 2cUnm. We have

v2(2
cUnm) = v2(U6)− 1 + v2(Unm)

= v2(U6)− 1 + v2(nm) + v2(U6)− 1

= 2(v2(U6)− 1) + v2(m)

< 2(v2(U6)− 1) + (k + 1)(v2(U6)− 1)

= (k + 3)(v2(U6)− 1) = v2(V
k+3
n ),

where the inequality is obtained form (3.13) and the fact that v2(Vn) = v2(U6)−1.

This completes the proof.

The next Theorem is the converse of Theorem 3.11 and also the extension

of Theorem 1.6.
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Theorem 3.12. [11, Theorem 17] Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1,

a and b are odd and m is even. Then

(i) for every odd prime p dividing Vn, if vp(V
k+1
n ) ≤ vp(Unm), then vp(V

k
n ) ≤

vp(m) ;

(ii) if V k+1
n | Unm and n ̸≡ 0 (mod 3), then V k

n | m;

if V k+1
n ∥ Unm and n ̸≡ 0 (mod 3), then V k

n ∥ m;

(iii) if V k+1
n | Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then V k

n | m;

if V k+1
n ∥ Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then V k

n ∥ m;

if V k+1
n | Unm, n ≡ 0 (mod 6), and v2(m) < k, then V

v2(m)
n ∥ m;

(iv) if V k+1
n | Unm, n ≡ 3 (mod 6), 2 ∥ a2 + 3b, and v2(m) ≥ k, then V k

n | m;

if V k+1
n ∥ Unm, n ≡ 3 (mod 6), 2 ∥ a2 + 3b, and v2(m) ≥ k, then V k

n ∥ m;

if V k+1
n | Unm, n ≡ 3 (mod 6), 2 ∥ a2 +3b, and v2(m) < k, then V

v2(m)
2 ∥ m;

(v) if V k+1
n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then V k

n | m;

if V k+1
n ∥ Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then V k

n ∥ m.

Proof. We apply Lemmas 2.1, 2.3, and 2.11 throughout the proof without refer-

ence. For (i), assume that p is an odd prime dividing Vn and vp(V
k+1
n ) ≤ vp(Unm).

Then

vp(Vn) + vp(V
k
n ) = vp(V

k+1
n ) ≤ vp(Unm) ≤ vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn),

which implies (i). Therefore we only need to consider the 2-adic valuation in the

proof of (ii) to (v).

For (ii), assume that V k+1
n | Unm and n ̸≡ 0 (mod 3). Since v2(V

k
n ) = 0 ≤ v2(m),

we obtain by (i) that V k
n | m. Suppose futher that V k+1

n ∥ Unm. If V k+1
n | m, then

(i) of Theorem 3.11 implies V k+2
n | Unm, which contradicts V k+1

n ∥ Unm, and so

V k
n ∥ m.

For (iii), assume that V k+1
n | Unm and n ≡ 0 (mod 6).

Case 1 v2(m) ≥ k. Then v2(V
k
n ) = k ≤ v2(m). So we obtain by (i) that

V k
n | m. If V k+1

n ∥ Unm, then we obtain by (i) of Theorem 3.11 that V k+1
n ∤ m, and

so V k
n ∥ m. This proves (iii) in the case v2(m) ≥ k.
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Case 2 v2(m) < k. For convenience, let d = v2(m). Since v2(V
d
n ) = d =

v2(m) and vp(V
d
n ) ≤ vp(V

k
n ) ≤ vp(m) for every odd prime p dividing Vn, we obtain

V d
n | m. If V d+1

n | m, then d + 1 = v2(V
d+1
n ) ≤ v2(m) = d, a contradiction. So

V d
n ∥ m.

For (iv), assume that V k+1
n | Unm, n ≡ 3 (mod 6), and 2 ∥ a2 + 3b. Since U6 =

a(a2 + 3b)U3 and 2 ∥ a2 + 3b, we obtain v2(Vn) = v2(U6)− v2(U3) = 1.

Case 1 v2(m) ≥ k. Then v2(V
k
n ) = k ≤ v2(m), and so we obtain by (i)

that V k
n | m. If V k+1

n ∥ Unm, then we obtain by (i) of Theorem 3.11 that V k
n ∥ m.

This proves (iv) in the case v2(m) ≥ k.

Case 2 v2(m) < k. For convenience, let d = v2(m). Then v2(V
d
n ) =

d = v2(m) and vp(V
d
n ) ≤ vp(V

k
n ) ≤ vp(m). Therefore V d

n | m. If V d+1
n | m, then

d+ 1 = v2(V
d+1
n ) ≤ v2(m) = d, a contradiction. Therefore V d

n ∥ m.

For (v), assume that V k+1
n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b. Since U6 =

a(a2 + 3b)U3 and 4 | a2 + 3b, we obtain v2(U6) ≥ v2(U3) + 2. By Lemma 2.8, we

have v2(U3) = 1. Then v2(Vn) = v2(U6)− v2(U3) = v2(U6)− 1 and

v2(V
k
n ) + v2(Vn) = v2(V

k+1
n ) ≤ v2(Unm) = v2(nm) + v2(U6)− 1 = v2(m) + v2(Vn).

So v2(V
k
n ) ≤ v2(m). By (i), we obtain V k

n | m. If V k+1
n ∥ Unm, then we obtain by

(i) of Theorem 3.11 that V k+1
n ∤ m, and so V k

n ∥ m. This completes the proof.

The next example shows that m in Theorems 3.8 to 3.12 is necessarily

even.

Example 3.13. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1 and m is odd. Let p be an

odd prime dividing Vn. By Lemma 2.3, we have p ∤ D, τ(p) ∤ n and τ(p) | 2n.

Therefore τ(p) is even and v2(τ(p)) = v2(n) + 1. So τ(p) ∤ nm. By Lemma 2.1,

vp(Unm) = 0. Therefore Vn ∤ Unm. This shows that m in Theorems 3.8 to 3.12

cannot be odd.

Example 3.14. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1. Let p > 2 and p | Un.

By Lemma 2.1, we have (i) vp(Un) = vp(n) + vp(Up) − 1 if p | D and p | n, and

(ii) vp(Un) = vp(n) + vp(Uτ(p)) if p ∤ D and τ(p) | n. For (i), we have p | D and

so vp(Vnm) = 0 and Un ∤ Vnm. For (ii), we have τ(p) | nm and so vp(Vnm) = 0
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and Un ∤ Vnm. This shows that there is no interesting divisibility relation such as

Uk
n | Vnm.
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Abstract: Lucas sequence of the first kind is an integer sequence (Un)n≥0 which depends on parameters
a, b ∈ Z and is defined by the recurrence relation U0 = 0, U1 = 1, and Un = aUn−1 + bUn−2 for n ≥ 2.
In this article, we obtain exact divisibility results concerning Uk

n for all positive integers n and k. This
extends many results in the literature from 1970 to 2020 which dealt only with the classical Fibonacci
and Lucas numbers (a = b = 1) and the balancing and Lucas-balancing numbers (a = 6, b = −1).
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1. Introduction

Throughout this article, let a and b be relatively prime integers and let (Un)n≥0 be the Lucas sequence
of the first kind which is defined by the recurrence relation U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for
n ≥ 2. To avoid triviality, we also assume that b , 0 and α/β is not a root of unity where α and β
are the roots of the characteristic polynomial x2 − ax − b. In particular, this implies that α , β and
the discriminant D = a2 + 4b , 0. If a = b = 1, then (Un)n≥0 reduces to the sequence of Fibonacci
numbers Fn; if a = 6 and b = −1, then (Un)n≥0 becomes the sequence of balancing numbers; if a = 2
and b = 1, then (Un)n≥0 is the sequence of Pell numbers; and many other famous integer sequences are
just special cases of the Lucas sequence of the first kind.

The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used
in Matijasevich’s solution to Hilbert’s 10th problem [7–9]. More precisely, Matijasevich shows that

F2
n | Fnm if and only if Fn | m. (1.1)

Hoggatt and Bicknell-Johnson [3] give a generalization of (1.1) by replacing F2
n by F3

n , and for a
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general k, they prove that
if Fk

n | m, then Fk+1
n | Fnm. (1.2)

Benjamin and Rouse [1], and Seibert and Trojovský [27] also provide a different proof of (1.2).
Then the investigation on the exact divisibility results for a subsequence of (Fn)n≥1 begin with the
work of Tangboonduangjit et. al [12, 29] and is generalized by Onphaeng and Pongsriiam [10].
The most general results in this direction are obtained by Pongsriiam [18] where (1.2) is extended
to include the divisibility and exact divisibility for both the Fibonacci and Lucas numbers. Finally,
Onphaeng and Pongsriiam [11] have recently given the converse of the results in [18] which
completely answers this kind of questions for the Fibonacci and Lucas numbers. Then Panraksa and
Tangboonduangjit [13] initiate the investigation on a special subsequence of (Un)n≥0. Patra, Panda, and
Khemaratchatakumthorn [14] also obtain the analogue of those results for the balancing and Lucas-
balancing numbers. For other related and recent results on Fibonacci, Lucas, balancing, and Lucas-
balancing numbers, see for example in [2, 4–6, 15–17, 19–25, 28] and references there in.

In this article, we extend all results in the literature to the Lucas sequence of the first kind. We
organize this article as follows. In Section 2, we give some auxiliary results which are needed later.
In Section 3, we give main theorems and some related examples. Remark that the corresponding
results for other generalizations of the Fibonacci sequence have not been discovered. For example, the
question on exact divisibility by powers of the Tribonacci numbers Tn is wide open, where Tn is given
by T0 = 0, T1 = T2 = 1, and Tk = Tk−1 + Tk−2 + Tk−3 for k ≥ 3. We leave this problem to the interested
readers.

2. Preliminaries and Lemmas

In this section, we recall some well-known results and give some useful lemmas for the reader’s
convenience. The order (or the rank) of appearance of n ∈ N in the Lucas sequence (Un)n≥0 is defined
as the smallest positive integer m such that n | Um and is denoted by τ(n). The exact divisibility mk ‖ n
means that mk | n and mk+1 - n. For a prime p and n ∈ N, the p-adic valuation of n, denoted by vp(n) is
the power of p in the prime factorization of n. We sometimes write the expression such as a | b | c = d
to mean that a | b, b | c, and c = d. We let D = a2 + 4b be the discriminant and let α and β be the roots
of the characteristic polynomial x2 − ax − b. It is well known that if D , 0, then the Binet formula
Un =

αn−βn

α−β
holds for all n ≥ 0. Next, we recall Sanna’s result [26] on the p-adic valuation of Lucas

sequence of the first kind.

Lemma 1. [26, Theorem 1.5] Let p be a prime number such that p - b. Then, for each positive integer
n,

vp(Un) =



vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Upτ(p)) − 1 if p - D, τ(p) | n, and p | n,

vp(Uτ(p)) if p - D, τ(p) | n, and p - n,

0 if p - D and τ(p) - n.

In fact, we use Lemma 1 only for p = 2, because there is a more suitable version of Lemma 1 when

AIMS Mathematics Volume 5, Issue 6, 6739–6748.
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p is odd as given by Panraksa and Tangboonduangjit [13] in their calculation concerning a special
subsequence of (Un)n≥0. We state it in the next lemma.

Lemma 2. [13, Lemma 2.3] Let m, n ≥ 1 and p a prime factor of Un such that p - b. Then, if (i) p is
odd, or (ii) p = 2 and n is even, or (iii) p = 2 and m is odd, we have

vp(Unm) = vp(m) + vp(Un).

Lemma 3. Let a and b be odd integers. Then, for each positive integer n,

v2(Un) =


v2(n) + v2(U6) − 1 if n ≡ 0 (mod 6),
v2(U3) if n ≡ 3 (mod 6),
0 if n ≡ 1, 2, 4, 5 (mod 6).

Proof. Since U1 = 1, U2 = a are odd and U3 = a2 + b is even, we have τ(2) = 3. Applying Lemma 1
for p = 2, we obtain the desired result. �

The next two lemmas are also important tools in proving exact divisibility by Uk
n for all n, k ∈ N.

Lemma 4. [10, Lemma 2.3] Let k, `, m be positive integers, s nonzero integer, and sk | m. Then
sk+` |

(
m
j

)
s j for all 1 ≤ j ≤ m satisfying 2 j−`+1 > j. In particular, sk+1 |

(
m
j

)
s j for all 1 ≤ j ≤ m, and

sk+2 |
(

m
j

)
s j for all 3 ≤ j ≤ m.

Proof. The statement in [10, Lemma 2.3] is given for s ≥ 1 but it is easy to see that if s ≤ −1, then we
can replace s by −s and every divisibility relation still holds. Therefore this is true for all s , 0. �

Lemma 5. Let m, n ≥ 1 and r ≥ 0 be integers. Then

(i) Umn+r =
∑m

j=0

(
m
j

)
U j

n(bUn−1)m− jU j+r,

(ii) Umn =
∑m

j=1

(
m
j

)
U j

n(bUn−1)m− jU j.

Proof. By Binet’s formula, we obtain αn = αUn + bUn−1, βn = βUn + bUn−1, and

Umn+r =
αmn+r − βmn+r

α − β

=
1

α − β
((αUn + bUn−1)m αr − (βUn + bUn−1)mβr)

=
1

α − β

 m∑
j=0

(
m
j

)
(αUn) j(bUn−1)m− jαr −

m∑
j=0

(
m
j

)
(βUn) j(bUn−1)m− jβr


=

1
α − β

m∑
j=o

((
m
j

)
U j

n(bUn−1)m− j
(
α j+r − β j+r

))

=

m∑
j=0

(
m
j

)
U j

n(bUn−1)m− jU j+r.

This proves (i). Since U0 = 0, (ii) follows immediately from (i) by substituting r = 0. �

AIMS Mathematics Volume 5, Issue 6, 6739–6748.
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Recall that we assume throughout this article that (a, b) = 1. This is necessary for the proof of the
following lemmas.

Lemma 6. Suppose (a, b) = 1. Then (Um,Un) = U(m,n) and in particular (Un,Un+1) = 1 for each
m, n ∈ N.

Proof. This is well known. �

Lemma 7. Let n ≥ 1 and (a, b) = 1. If p is a prime factor of Un, then p - b. Consequently, (Un, b) = 1
for all n ≥ 1.

Proof. Suppose for a contradiction that (a, b) = 1, n ≥ 1, p | Un, and p | b. We can choose n to be the
smallest such integer. Since U1 = 1, U2 = a, we see that n ≥ 3. Since p | Un = aUn−1 +bUn−2 and p | b,
we have p | aUn−1. By the choice of n, p - Un−1. So p | a. Therefore p | (a, b) = 1, a contradiction. �

Lemma 8. Let a and b be odd, (a, b) = 1, and v2(U6) ≥ v2(U3) + 2. Then v2(U3) = 1.

Proof. Since U3 = a2 + b is even and U6 = a(a2 + 3b)U3, we obtain v2(U3) ≥ 1 and

v2(U6) = v2(U3) + v2(a2 + 3b). (2.1)

If v2(U3) ≥ 2, then 4 | a2 +b, and so b ≡ 3 (mod 4) and (2.1) implies v2(U6) = v2(U3)+1 contradicting
v2(U6) ≥ v2(U3) + 2. Thus v2(U3) = 1.

�

3. Main results

We begin with the simplest main result of this paper.

Theorem 9. Let k, m, and n be positive integers. If Uk
n | m, then Uk+1

n | Unm.

Proof. If Uk
n | m, then we obtain by Lemma 4 that, Uk+1

n |
(

m
j

)
U j

n for all 1 ≤ j ≤ m, which implies
Uk+1

n | Unm, by Lemma 5. �

Next, we extend Theorem 9 to include exact divisibility. The proof of Theorem 10 is much longer
than that of Theorem 9 since we would like to cover all possible cases. Although many cases can be
combined, it is more convenient to state them separately. Recall that for x ∈ R, the largest integer
which is less than or equal to x is denoted by bxc.

Theorem 10. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk
n ‖ m. Then

(i) if a is odd and b is even, then Uk+1
n ‖ Unm;

(ii) if a is even and b is odd, then Uk+1
n ‖ Unm;

(iii) if a and b are odd and n . 3 (mod 6), then Uk+1
n ‖ Unm;

(iv) if a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 - m, then Uk+1

n ‖ Unm;

(v) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 2 ‖ a2 + 3b, then Uk+1

n ‖ Unm;

(vi) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 4 | a2 + 3b, then Uk+t+1

n ‖ Unm, where

t = min({v2(U6) − 2} ∪ {yp − k | p is an odd prime factor of Un})

and yp =
⌊ vp(m)

vp(Un)

⌋
for each odd prime p dividing Un.
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Proof. By Theorem 9, we obtain Uk+1
n | Unm. So for (i) to (v), it is enough to show that Uk+2

n - Unm.
We divide the calculation into several cases.
Case 1. a is odd and b is even. Since U1 and U2 are odd and Ur = aUr−1 + bUr−2 ≡ Ur−1 (mod 2) for
r ≥ 3, it follows by induction that Un is odd. From the assumption Uk

n ‖ m, we have Uk+1
n - m, and

so there exists a prime p dividing Un such that vp(Uk+1
n ) > vp(m). Since Un is odd, p is also odd. In

addition, p - b by Lemma 7. So we can apply Lemma 2(i) to obtain

vp(Unm) = vp(m) + vp(Un) < vp(Uk+1
n ) + vp(Un) = vp(Uk+2

n ),

which implies Uk+2
n - Unm, as required. This proves (i).

Case 2. a is even and b is odd. Similar to Case 1, we have U1 is odd, U2 is even, Ur ≡ Ur−2 (mod 2)
for r ≥ 3, and so Un is even if and only if n is even. In addition, there exists a prime p such that p | Un,
vp(Uk+1

n ) > vp(m), and p - b. So if 2 - n, then Un is odd, p is odd, and we obtain by Lemma 2(i) that

vp(Unm) = vp(m) + vp(Un) < vp(Uk+1
n ) + vp(Un) = vp(Uk+2

n ), (3.1)

which implies Uk+2
n - Unm. If 2 | n, then we can still use either Lemma 2(i) or Lemma 2(ii) to obtain

(3.1), which leads to the same conclusion Uk+2
n - Unm. This proves (ii).

Case 3. a and b are odd. Similar to Case 1, there is a prime p such that p | Un, vp(Uk+1
n ) > vp(m), and

p - b.
Case 3.1 n . 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we obtain by Lemmas 3 and 2, respectively
that p is odd and

vp(Unm) = vp(Un) + vp(m) < vp(Un) + vp(Uk+1
n ) = vp(Uk+2

n ). (3.2)

If n ≡ 0 (mod 6), then n is even and Lemma 2(i) or Lemma 2(ii) can still be used to obtain (3.2). In
any case, Uk+2

n - Unm. This proves (iii).
Case 3.2 n ≡ 3 (mod 6) and Uk+1

n
2 - m. Since Uk

n ‖ m, we can write m = cUk
n where c ≥ 1 and Un - c.

By Lemma 4, Uk+2
n |

(
m
j

)
U j

n for 3 ≤ j ≤ m. Then we obtain by Lemma 5 that

Unm = Umn ≡ mUn(bUn−1)m−1 +
m(m − 1)

2
U2

n(bUn−1)m−2a (mod Uk+2
n ).

By Lemma 3, we know that v2(Un) = v2(U3) ≥ 1. Since Uk+1
n
2 - m and m = cUk

n, we see that Un
2 does not

c. Let d = bUn−1 + Un
2 (m − 1)a. By Lemmas 6 and 7, we obtain

(
Un
2 , d

)
=

(
Un
2 , bUn−1

)
= 1. Then

Unm ≡ mUnbm−2Um−2
n−1

(
bUn−1 +

Un

2
(m − 1)a

)
≡ cUk+1

n bm−2Um−2
n−1 d (mod Uk+2

n ).

By Lemmas 6 and 7, we obtain Uk+2
n | Unm if and only if Un | cd. But if Un | cd, then Un

2 | cd which
implies Un

2 | c, a contradiction. So Un - cd and therefore Uk+2
n - Unm. This proves (iv). To prove

(v) and (vi), we first assume that a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 | m. (The other condition

will be assumed later). Then vp(Uk+1
n ) ≤ vp(m) for all odd primes p and v2(Uk+1

n ) − 1 ≤ v2(m). If
v2(Uk+1

n ) − 1 < v2(m), then v2(Uk+1
n ) ≤ v2(m), and so vp(Uk+1

n ) ≤ vp(m) for all primes p, which implies
Uk+1

n | m contradicting the assumption Uk
n ‖ m. Hence

v2(Uk+1
n ) − 1 = v2(m) and vp(Uk+1

n ) ≤ vp(m) for every odd prime p (3.3)
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We now separate the consideration into two cases according to the additional conditions in (v) and (vi).
Observe that v2(a2 + 3b) = 1 is equivalent to 2 ‖ a2 + 3b.
Case 4. v2(a2 + 3b) = 1. Since U6 = a(a2 + 3b)U3, we obtain v2(U6) = v2(U3) + 1. Recall that n ≡ 3
(mod 6) and Uk

n | m. So n is odd, m is even, and nm ≡ 0 (mod 6). If Uk+2
n | Unm, then we obtain by

Lemma 3 and (3.3) that

v2(Uk+1
n ) + v2(Un) = v2(Uk+2

n ) ≤ v2(Unm) = v2(n) + v2(m) + v2(U6) − 1
= v2(Uk+1

n ) − 1 + v2(U3)
= v2(Uk+1

n ) + v2(Un) − 1,

which is a contradiction. Therefore Uk+2
n - Unm. This proves (v).

Case 5. v2(a2 +3b) ≥ 2. Then v2(U6) = v2(U3)+v2(a2 +3b) ≥ v2(U3)+2. By Lemma 8, v2(U3) = 1 and
so v2(U6) = x + 2 where x = v2(a2 + 3b)− 1 ∈ N. For each odd prime p dividing Un, let yp =

⌊ vp(m)
vp(Un)

⌋
be

the largest integer which is less than or equal to vp(m)
vp(Un) . Since Uk

n | m, we have yp ≥ k for all odd p | Un.
Let

t = min({x} ∪ {yp − k | p is an odd prime factor of Un}).

Then t ≥ 0. By Lemma 3 and (3.3), v2(m) = (k + 1)v2(U3) − 1 = k and

v2(Unm) = v2(m) + v2(U6) − 1 = k + x + 1 ≥ k + t + 1 = v2(Uk+t+1
n ). (3.4)

By the definition of yp, we have vp(m) ≥ ypvp(Un). So by Lemma 2, if p is an odd prime dividing Un,
then

vp(Unm) = vp(m) + vp(Un) ≥ (yp + 1)vp(Un) ≥ (k + t + 1)vp(Un) = vp(Uk+t+1
n ). (3.5)

By (3.4) and (3.5), vp(Unm) ≥ vp(Uk+t+1
n ) for all primes p dividing Un. This show that Uk+t+1

n | Unm. It
remains to show that Uk+t+2

n - Unm. If t = yp − k for some odd prime p dividing Un, then we recall the
definition of yp and apply Lemma 2 to obtain

vp(Unm) = vp(m) + vp(Un) < (yp + 2)vp(Un) = (k + t + 2)vp(Un) = vp(Uk+t+2
n ).

If t = x = v2(U6) − 2, then we use Lemma 3 to get

v2(Unm) = v2(m) + v2(U6) − 1 = k + t + 1 < v2(Uk+t+2
n ).

In any case, Uk+t+2
n - Unm. This completes the proof. �

The next example shows that the integer t in Theorem 10(vi) can be any odd positive integer.

Example 11. Let M ∈ N be given. We show that there are positive integers k, m, n, a, b satisfying
the conditions in Theorem 10(vi) with t = M. Choose a = 1 and b =

(
24M − 1

)
/3. Then a and b

are odd integers, (a, b) = 1, and v2(a2 + 3b) = 4M > 2. Next choose any k, n ∈ N such that n ≡ 3
(mod 6). Since v2(U6) = v2(U3) + v2(a2 + 3b) ≥ v2(U3) + 2, we obtain by Lemmas 3 and 8 that
v2(Un) = v2(U3) = 1 and v2(U6) = 4M + 1. Since Un ≥ U3 = a2 + b > 2 and v2(Un) = 1, we can write
Un = 2pa1

1 pa2
2 · · · p

as
s where s ≥ 1, p1, p2, . . . , ps are distinct odd primes, and a1, a2, . . . , as are positive

integers. Next, choose m = 2k pa1(k+M)
1 pa2(k+M)

2 · · · pas(k+M)
s . Then Uk

n ‖ m and Uk+1
n
2 | m. Therefore k, m, n,

a, b satisfy all the conditions in Theorem 10(vi). Finally, we have

v2(U6) − 2 = v2(a2 + 3b) − 1 = 4M − 1

and yp − k = M for all p ∈ {p1, p2, . . . , ps}, and therefore t = min{4M − 1,M} = M, as desired.
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Next, we prove the converse of Theorem 10.

Theorem 12. k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk+1
n ‖ Unm. Then

(i) if a is odd and b is even, then Uk
n ‖ m;

(ii) if a is even and b is odd, then Uk
n ‖ m;

(iii) if a and b are odd and n . 3 (mod 6), then Uk
n ‖ m;

(iv) if a and b are odd, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b, then Uk
n ‖ m;

(v) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k, then Uk
n ‖ m;

(vi) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k, then

m is even, v2(m) ≥ k + 1 − v2(a2 + 3b), and Uv2(m)
n ‖ m.

Proof. Some parts of the proof are similar to those of Theorem 10, so we skip some details.
Case 1. a is odd and b is even. Similar to Case 1 of Theorem 10, we have Un is odd. For any prime
p | Un, we obtain by Lemma 2 that

vp(Uk
n) + vp(Un) = vp(Uk+1

n ) ≤ vp(Unm) = vp(Un) + vp(m), (3.6)

which implies Uk
n | m. If Uk+1

n | m, then by Theorem 9, we have Uk+2
n | Unm which contradicts

Uk+1
n ‖ Unm. Therefore Uk+1

n - m, and thus Uk
n ‖ m.

Case 2. a is even and b is odd. Then Un is even if and only if n is even. So if 2 - n, then for any
prime p | Un, we have p is odd, (3.6) holds, and so Uk

n | m. If 2 | n, then we can still apply Lemma
2(i) or Lemma 2(ii) to obtain (3.6) and conclude that Uk

n | m. If Uk+1
n | m, then by Theorem 9, we have

Uk+2
n | Unm which contradicts Uk+1

n ‖ Unm. So Uk+1
n - m and therefore Uk

n ‖ m.
We now assume throughout that a and b are odd and divide the consideration into four cases

according to the additional conditions in (iii) to (vi).
Case 3. n . 3 (mod 6). If n ≡ 1, 2, 4, 5 (mod 6), then we apply Lemma 3 to obtain v2(Uk

n) = 0 ≤
v2(m), and use Lemma 2 to show that for any odd prime p | Un,

vp(Un) + vp(Uk
n) = vp(Uk+1

n ) ≤ vp(Unm) = vp(m) + vp(Un). (3.7)

If n ≡ 0 (mod 6), then n is even and we can apply Lemma 2(i) or Lemma 2(ii) to obtain (3.7) for any
prime p | Un. In any case, we have Uk

n | m. Again, by Theorem 9, we have Uk+1
n - m, and so Uk

n ‖ m.
This proves (iii).
Case 4. n ≡ 3 (mod 6) and 2 ‖ a2 + 3b. Similar to Case 4 in the proof of Theorem 10 we have
v2(U6) = v2(U3) + 1. If m is odd, then nm ≡ 3 (mod 6) and we obtain by Lemma 3 that v2(Unm) =

v2(U3) < (k + 1)v2(U3) = v2(Uk+1
n ), which contradicts the assumption Uk+1

n | Unm. So m is even,
and thus nm ≡ 0 (mod 6). By Lemma 3 and the fact that n ≡ 3 (mod 6) is odd, we obtain v2(m) +

v2(U6) − 1 = v2(Unm) ≥ v2(Uk+1
n ) = v2(Uk

n) + v2(Un) = v2(Uk
n) + v2(U3) = v2(Uk

n) + v2(U6) − 1, which
implies v2(m) ≥ v2(Uk

n). If p is odd and p | Un, then we apply Lemma 2 to obtain (3.7) Therefore
vp(Uk

n) ≤ vp(m) for every prime p dividing Un. Thus Uk
n | m. By Theorem 9, Uk+1

n - m. Hence Uk
n ‖ m.

This proves (iv).
Case 5. n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k. Then U3 = a2 + b = (a2 + 3b) − 2b ≡ 2 (mod 4),
and so v2(U3) = 1. By Lemma 3, we obtain v2(m) ≥ kv2(U3) = kv2(Un) = v2(Uk

n). By Lemma 2, if p is
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an odd prime dividing Un, then (3.6) holds, and so we conclude that vp(Uk
n) ≤ vp(m) for every prime p

dividing Un. Therefore Uk
n | m. By Theorem 9, Uk+1

n - m and so Uk
n ‖ m. This proves (v).

Case 6. n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k. For convenience, let t = v2(m). Similar to Case
4, we have m is even. In addition, v2(U6) = v2(U3) + v2(a2 + 3b) = 1 + v2(a2 + 3b). So k > t ≥ 1 and
v2(m) = tv2(U3) = tv2(Un) = v2(U t

n). By Lemma 2, if p is odd and p | Un, then

vp(Un) + vp(U t
n) ≤ vp(Un) + vp(Uk

n) = vp(Uk+1
n ) ≤ vp(Unm) = vp(m) + vp(Un).

From the above inequalities, we obtain that vp(U t
n) ≤ vp(m) for every prime p dividing Un. Therefore

U t
n | m. If U t+1

n | m, then we obtain by Lemma 3 that t = v2(m) ≥ v2(U t+1
n ) = t + 1, which is false.

So U t+1
n - m. Therefore U t

n ‖ m. From Uk+1
n ‖ Unm, we also obtain k + 1 = v2(Uk+1

n ) ≤ v2(Unm) =

v2(m) + v2(U6) − 1 = v2(m) + v2(a2 + 3b), which implies v2(m) ≥ k + 1 − v2(a2 + 3b). This completes
the proof. �

The next example shows that v2(m) in Theorem 12(vi) can be any positive integer in [1, k).

Example 13. Let k ≥ 1 and 1 ≤ M < k be integers. We show that there are m, n, a, b satisfying the
conditions in Theorem 12(vi) with v2(m) = M. Choose n ∈ N and n ≡ 3 (mod 6).
Case 1. k − M is odd. Choose a = 1, b = 2k−M+1−1

3 , and m =
Uk

n
2k−M . Then a and b are odd integers,

(a, b) = 1, and v2(a2 + 3b) = k − M + 1 ≥ 2. Since v2(U6) = v2(U3) + v2(a2 + 3b) ≥ v2(U3) + 2, we
obtain by Lemmas 3 and 8 that v2(Un) = v2(U3) = 1 and v2(U6) = k − M + 2. By Lemma 2, for p > 2
and p | Un we obtain

vp(Unm) = vp(m) + vp(Un) = vp(Uk
n) + vp(Un) = vp(Uk+1

n ).

By Lemma 3, we have
v2(m) = v2(Uk

n) − v2(2k−M) = k − k + M = M

and
v2(Unm) = v2(m) + v2(U6) − 1 = M + k − M + 2 − 1 = v2(Uk+1

n ).

From these, we obtain Uk+1
n ‖ Unm and UM

n ‖ m. Therefore k,m, n, a, b satisfy all the conditions in
Theorem 12(vi).
Case 2. k − M is even. Choose a = 1, b = 5·2k−M+1−1

3 , and m =
Uk

n
2k−M . The verification is the same as that

in Case 1. So we leave the details to the reader.

Substituting a = b = 1 in Theorems 10 and 12, (Un) becomes the Fibonacci sequence (Fn)n≥0 and
we obtain our previous results [11, 18] as a corollary.

Corollary 14. [18, Theorem 2] and [11, Theorem 3.2] Let n ≥ 3. Then the following statements hold:

(i) if Fk
n ‖ m and n . 3 (mod 6), then Fk+1

n ‖ Fnm;
(ii) if Fk

n ‖ m, n ≡ 3 (mod 6) and Fk+1
n
2 - m, then Fk+1

n ‖ Fnm;

(iii) if Fk
n ‖ m, n ≡ 3 (mod 6) and Fk+1

n
2 | m, then Fk+2

n ‖ Fnm;
(iv) if Fk+1

n ‖ Fnm and n . 3 (mod 6), then Fk
n ‖ m;

(v) if Fk+1
n ‖ Fnm, n ≡ 3 (mod 6), and 2k | m, then Fk

n ‖ m;
(vi) if Fk+1

n ‖ Fnm, n ≡ 3 (mod 6), and 2k - m, then Fk−1
n ‖ m.
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Substituting a = 6 and b = −1, in our theorems, (Un) reduces to the sequence (Bn) of balancing
numbers and we obtain the results of Patra, Panda, and Khemaratchatakumthorn.

Corollary 15. [14, Theorem 9] For all k ≥ 1 and m, n ≥ 2, we obtain Bk
n ‖ m if and only if Bk+1

n ‖ Bnm.

Similarly by, substituting a = 2 and b = 1 in our theorems, we obtain the exact divisibility results
for the Pell sequence (Pn)n≥0 as follows.

Corollary 16. For all k ≥ 1 and m, n ≥ 2, we obtain Pk
n ‖ m if and only if Pk+1

n ‖ Pnm.

We also plan to solve this problem for the Lucas sequence of the second kind in the future. The
answers will appear in our next article.
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and our previous article extend many results in the literature and complete a long investigation on this
problem from 1970 to 2021.
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1. Introduction13

Throughout this article, let a and b be relatively prime integers and let (Un)n≥0 and (Vn)n≥0 be the
Lucas sequences of the first and second kinds which are defined by the recurrence relations

U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for n ≥ 2,

V0 = 2, V1 = a, and Vn = aVn−1 + bVn−2 for n ≥ 2.

To avoid triviality, we also assume that b , 0 and α/β is not a root of unity where α and β are the14

roots of the characteristic polynomial x2 − ax − b. In particular, this implies that α , β, α , −β, the15

discriminant D = a2 + 4b , 0, Un , 0, and Vn , 0 for all n ≥ 1. If a = b = 1, then (Un)n≥0 reduces16

to the sequence of Fibonacci numbers Fn; if a = 6 and b = −1, then (Un)n≥0 becomes the sequence of17

balancing numbers; if a = 2 and b = 1, then (Un)n≥0 is the sequence of Pell numbers; and many other18

famous integer sequences are just special cases of the Lucas sequences of the first and second kinds.19
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The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used1

in Matijasevich’s solution to Hilbert’s 10th problem [5, 6, 7]. More precisely, Matijasevich show that2

F2
n | Fnm if and only if Fn | m. (1.1)

From that point, Hoggatt and Bicknell-Johnson [4], Benjamin and Rouse [1], Seibert and Trojovský3

[19], Pongsriiam [15], Onphaeng and Pongsriiam [9, 10], Panraksa and Tangboonduangjit [11], and4

Patra, Panda, and Khemaratchatakumthorn [12] have made some contributions on the extensions of5

(1.1). For more details about the timeline and the development of this problem, we refer the reader6

to the introduction of our previous article [8]. In fact, the most general results in this direction has7

recently been given by us [8] as follows.8

Theorem 1. [8, Theorem 10] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk
n ‖ m. Then9

(i) if a is odd and b is even, then Uk+1
n ‖ Unm;10

(ii) if a is even and b is odd, then Uk+1
n ‖ Unm;11

(iii) if a and b are odd and n . 3 (mod 6), then Uk+1
n ‖ Unm;12

(iv) if a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 - m, then Uk+1

n ‖ Unm;13

(v) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 2 ‖ a2 + 3b, then Uk+1

n ‖ Unm;14

(vi) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 4 | a2 + 3b, then Uk+t+1

n ‖ Unm, where

t = min({v2(U6) − 2} ∪ {yp − k | p is an odd prime factor of Un}) and

yp =

⌊
vp(m)
vp(Un)

⌋
for each odd prime p dividing Un.

Theorem 2. [8, Theorem 12] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk+1
n ‖ Unm. Then15

(i) if a is odd and b is even, then Uk
n ‖ m;16

(ii) if a is even and b is odd, then Uk
n ‖ m;17

(iii) if a and b are odd and n . 3 (mod 6), then Uk
n ‖ m;18

(iv) if a and b are odd, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b, then Uk
n ‖ m;19

(v) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k, then Uk
n ‖ m;20

(vi) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k, then

m is even, v2(m) ≥ k + 1 − v2(a2 + 3b), and Uv2(m)
n ‖ m.

For other related and recent results on Fibonacci, Lucas, balancing, and Lucas-balancing numbers,21

see for example in [3, 13, 14, 16, 17, 20] and references there in.22

In this article, we extend Theorems 1 and 2 to the case of Vn and the mix of Un and Vn. For23

example, we obtain in Theorem 15 that if a and m are even, b is odd, and Vk+1
n ‖ Unm, then 2 | n implies24

Vmin(k,v2(m))
n ‖ m; while 2 - n implies Vk

n | m and the exponent k can be replaced by k + 1 if and only if25

Vk+2
n
2 | Unm.26

2. Preliminaries and Lemmas27

In this section, we recall some definition and well known results, and give some useful lemmas
for the reader’s convenience. The order (or the rank) of appearance of n ∈ N in the Lucas sequence
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(Un)n≥0 is defined as the smallest positive integer m such that n | Um and is denoted by τ(n). The exact
divisibility mk ‖ n means that mk | n and mk+1 - n. The letter p is always a prime. For n ∈ N, the p-adic
valuation of n, denoted by vp(n) is the power of p in the prime factorization of n. We sometimes write
the expression such as a | b | c = d to mean that a | b, b | c, and c = d. For each x ∈ R, we write bxc
to denote the largest integer less than or equal to x. So bxc ≤ x < bxc + 1. We let D = a2 + 4b be the
discriminant and let α and β be the roots of the characteristic polynomial x2 − ax − b. Then it is well
known that if D , 0, then the Binet formula

Un =
αn − βn

α − β
and Vn = αn + βn holds for all n ≥ 0.

Next, we recall Sanna’s result [18] on the p-adic valuation of the Lucas sequence of the first kind.1

Lemma 3. [18, Theorem 1.5] Let p be a prime number such that p - b. Then, for each positive integer
n,

vp(Un) =



vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Upτ(p)) − 1 if p - D, τ(p) | n, and p | n,

vp(Uτ(p)) if p - D, τ(p) | n, and p - n,

0 if p - D and τ(p) - n.

In particular, if p is an odd prime such that p - b, then, for each positive integer n,

vp(Un) =


vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Uτ(p)) if p - D and τ(p) | n,
0 if p - D and τ(p) - n.

From Lemma 3, and the fact that Vn = U2n/Un, we easily obtain the following result.2

Lemma 4. If p is an odd prime and p - b. Then, for each positive integer n,

vp(Vn) =

vp(n) + vp(Uτ(p)) if p - D, τ(p) - n and τ(p) | 2n,

0 otherwise.

Proof. This follows from the application of Lemma 3, a straightforward calculation, and the fact that3

vp(Vn) = vp

(
U2n
Un

)
= vp(U2n) − vp(Un). �4

Next, we give some old and new lemmas that are needed in the proof of main theorems.5

Lemma 5. Let n ≥ 1 and (a, b) = 1. If p | Un or p | Vn, then p - b. Consequently, (Un, b) = (Vn, b) = 16

for all n ≥ 1.7

Proof. The case for Un is already given in [8, Lemma 7]. So suppose by way of contradiction that8

p | Vn and p | b. Since Vn = aVn−1 + bVn−2 and (a, b) = 1, we obtain p | Vn−1. Repeating this argument,9

we see that p | Vm for 1 ≤ m ≤ n. In particular, p | V1 = a contradicting (a, b) = 1. So if p | Vn, then10

p - b, and the proof is complete. �11
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Lemma 6. [8, Lemma 8] Let a and b be odd, (a, b) = 1, and v2(U6) ≥ v2(U3) + 2. Then v2(U3) = 1.1

For convenience, we also calculate the 2-adic valuation of Un and Vn as follows.2

Lemma 7. Assume that a is odd, b is even, and n ≥ 1. Then v2(Un) = v2(Vn) = 0.3

Proof. Since U1 = 1 and U2 = a are odd, and Ur = aUr−1 + bUr−2 ≡ Ur−1 (mod 2) for r ≥ 3, it follows4

by induction that Un is odd. Since Vn = U2n
Un

, Vn is also odd. This proves this lemma. �5

Lemma 8. Assume that a is even, b is odd, and n ≥ 1. Then

v2(Un) =

v2(n) + v2(a) − 1 if 2 | n,
0 if 2 - n,

v2(Vn) =

1 if 2 | n,
v2(a) if 2 - n,

Proof. Since 2 | D, we obtain by Lemma 3 that for each n ∈ N, v2(Un) = v2(n) + v2(U2) − 1 if 2 | n and6

v2(Un) = 0 if 2 - n. Since U2 = a, the formula for v2(Un) is verified. Then v2(Vn) can be obtained from7

a straightforward calculation and the fact that Vn = U2n
Un

. This completes the proof. �8

Lemma 9. Assume that a and b are odd, and n ≥ 1. Then

v2(Un) =


v2(n) + v2(U6) − 1 if n ≡ 0 (mod 6),
v2(U3) if n ≡ 3 (mod 6),
0 if n . 0 (mod 3),

v2(Vn) =


1 if n ≡ 0 (mod 6),
v2(U6) − v2(U3) if n ≡ 3 (mod 6),
0 if n . 0 (mod 3),

Proof. Since U1 and U2 are odd, and U3 = a2 + b is even, we have τ(2) = 3. In addition, 2 - D.9

Furthermore, 3 | n and 2 | n if and only if n ≡ 0 (mod 6); 3 | n and 2 - n if and only if n ≡ 3 (mod 6).10

Then applying Lemma 3 and the fact that Vn = U2n
Un

, we obtain the desired result. �11

3. Main Results12

We begin with the simplest theorem of this paper.13

Theorem 10. Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, and m is odd. Then14

(i) if Vk
n | m, then Vk+1

n | Vnm;15

(ii) if Vk
n ‖ m, then Vk+1

n ‖ Vnm;16

(iii) if Vk
n | Vnm, then Vk−1

n | m;17

(iv) if Vk
n ‖ Vnm, then Vk−1

n ‖ m.18

AIMS Mathematics Volume x, Issue x, xxx–xxx



 5

Proof. We use Lemma 5 without reference. For (i), assume that Vk
n | m. Since m is odd, Vn is also odd,

and so v2(Vk+1
n ) = 0. If p > 2 and p | Vn, then p - b and we obtain by Lemma 4 that

vp(Vnm) = vp(mn) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
≥ vp(Vk

n) + vp(Vn) = vp(Vk+1
n ).

Therefore vp(Vnm) ≥ vp(Vk+1
n ) for all primes p dividing Vn. This implies Vk+1

n | Vnm.1

For (ii), assume that Vk
n ‖ m. By (i), it is enough to show that Vk+2

n - Vnm. Since Vk+1
n - m, there

exists a prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Here we remark that the letter p in the proof

of (i) and in the proof of (ii) may be different or may be the same. We believe that there is no ambiguity
since (i) is already done. Now since Vk

n | m and m is odd, Vn is also odd, and so v2(Vk+1
n ) = v2(m) = 0.

Therefore p is odd. By Lemma 4, we obtain

vp(Vnm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn) < vp(Vk+1

n ) + vp(Vn) = vp(Vk+2
n ).

This shows that Vk+2
n - Vnm, as required.2

For (iii), assume that Vk
n | Vnm. We show that vp(Vk−1

n ) ≤ vp(m) for all primes p dividing Vn. If p is
odd and p | Vn, then we apply Lemma 4 to obtain that

vp(Vn) + vp(Vk−1
n ) = vp(Vk

n) ≤ vp(Vnm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn),

and so vp(Vk−1
n ) ≤ vp(m). It remains to show that v2(Vk−1

n ) ≤ v2(m). If a is odd and b is even, then it3

follows from Lemma 7 that v2(Vk−1
n ) = 0 ≤ v2(m). Recall that (a, b) = 1, so a and b cannot be both4

even. So we have the following two remaining cases: (a is even and b is odd) or (a and b are odd).5

Case 1 a is even and b is odd. We will show that k must be 1, and so v2(Vk−1
n ) = 0 ≤ v2(m). If 2 | n,

then we apply Lemma 8 and the assumption that Vk
n | Vnm to obtain

1 ≤ k = v2(Vk
n) ≤ v2(Vnm) = 1.

Similarly, if 2 - n, then 2 - nm and we can use Lemma 8 again to obtain

kv2(a) = v2(Vk
n) ≤ v2(Vnm) = v2(a).

In any case, k = 1, as asserted.6

Case 2 a and b are odd. We use Lemma 9 in this case. If n . 0 (mod 3), then v2(Vk−1
n ) = 0 ≤ v2(m).

If n ≡ 0 (mod 6), then nm ≡ 0 (mod 6), and so k = v2(Vk
n) ≤ v2(Vnm) = 1; thus v2(Vk−1

n ) = 0 ≤ v2(m).
We now suppose n ≡ 3 (mod 6). Since m is odd, nm ≡ 3 (mod 6). Therefore

k(v2(U6) − v2(U3)) = v2(Vk
n) ≤ v2(Vnm) = v2(U6) − v2(U3).

So k = 1 and thus v2(Vk−1
n ) = 0 ≤ v2(m). Hence vp(Vk−1

n ) ≤ vp(m) for all primes p dividing Vn, as7

desired. This proves (iii).8

For (iv), assume that Vk
n ‖ Vnm. By (iii), we have Vk−1

n | m. If Vk
n | m, then we obtain by (i) that9

Vk+1
n | Vnm which contradicts Vk

n ‖ Vnm. Therefore Vk−1
n ‖ m. This completes the proof. �10
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In the next example, we show that a version of Theorem 10 where m is even does not exist.1

Example 11. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, and m is even. Let p be an odd prime dividing2

Vn. By Lemma 4, we have p - D, τ(p) - n and τ(p) | 2n. Since m is even and τ(p) | 2n, we obtain3

τ(p) | mn. By Lemma 4, we have p - Vnm, and so Vn - Vnm. This shows that m in Theorem 10 cannot4

be even.5

Remark 12. The argument in Example 11 works provided that there exists an odd prime p dividing Vn.6

The case Vn = 2k for some k ∈ N ∪ {0} may occur but it is very rare. For example, when a = b = 1, we7

know from the result of Bugeaud, Mignotte, and Siksek [2] that Vn is 1 or is a power of 2 if and only if8

n = 0, 1, 3. Therefore we do not consider this rare case in our theorems.9

We now have the exact divisibility results for Un and Vn separately. In the next theorem, we consider10

them together. In other words, we investigate the relations of the type Vc
n | m implies Vd

n | Unm; and11

Vc
n ‖ Unm implies Vd

n ‖ m. We divide the results into 5 Theorems according to the parities of a and b.12

From this point on, we apply Lemma 5 without reference.13

Theorem 13. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is odd, b is even, and m is even. Then14

(i) if Vk
n | m, then Vk+1

n | Unm;15

(ii) if Vk
n ‖ m, then Vk+1

n ‖ Unm;16

(iii) if Vk+1
n | Unm, then Vk

n | m;17

(iv) if Vk+1
n ‖ Unm, then Vk

n ‖ m.18

Proof. For (i), assume that Vk
n | m. We show that vp(Vk+1

n ) ≤ vp(Unm) for all primes p dividing Vn. By
Lemma 7, we have v2(Vn) = 0. So let p be an odd prime dividing Vn. By Lemma 4, p - D, τ(p) - n,
and τ(p) | 2n. Then τ(p) | nm. By Lemmas 3 and 4, we obtain

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) ≥ vp(Vk
n) + vp(n) + vp(Uτ(p))

= vp(Vk
n) + vp(Vn) = vp(Vk+1

n ), as required.

For (ii), assume that Vk
n ‖ m. By (i), it is enough to show that Vk+2

n - Unm. Since Vk+1
n - m, there

exists a prime p such that vp(Vk+1
n ) > vp(m). By Lemma 7, v2(Vk+1

n ) = 0, and so p , 2. Since p | Vn,
we know that p - D and τ(p) | nm. Therefore we obtain by Lemmas 3 and 4 that

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) = vp(m) + vp(Vn)
< vp(Vk+1

n ) + vp(Vn) = vp(Vk+2
n ), as desired.

For (iii), assume that Vk+1
n | Unm. By Lemma 7, v2(m) ≥ 0 = v2(Vk

n). If p is odd and p | Vn, then we
apply Lemmas 3 and 4 again to obtain

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn).

This shows that vp(Vk
n) ≤ vp(m) for every prime p dividing Vn. So Vk

n | m.19

For (iv), suppose Vk+1
n ‖ Unm. By (iii), it is enough to show that Vk+1

n - m. If Vk+1
n | m, we apply (i)20

to obtain Vk+2
n | Unm contradicting Vk+1

n ‖ Unm. Therefore the proof is complete. �21
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We show in Example 18 that m in Theorems 13 to 17 cannot be odd.1

Theorem 14. Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is even, b is odd and m is even. Let

t = min({v2(n) + v2(a) − 2} ∪ {yp − k | p is an odd prime factor of Vn}) and

yp =

⌊
vp(m)
vp(Vn)

⌋
for each odd prime p dividing Vn.

Then2

(i) if Vk
n | m and 2 | n, then Vk+1

n | Unm;3

if Vk
n | m and 2 - n, then Vk+1

n
2 | Unm;4

if Vk
n | m, 2 - n, and v2(m) ≥ v2(Vk

n) + 1, then Vk+1
n | Unm;5

if Vk
n | m, 2 | n, and Vk+1

n
2 | m, then t ≥ 0, v2(m) ≥ k, and Vk+t+1

n | Unm;6

(ii) if Vk
n ‖ m, 2 | n and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;7

(iii) if Vk
n ‖ m, 2 | n and Vk+1

n
2 | m, then Vk+t+1

n ‖ Unm;8

(iv) if Vk
n ‖ m, 2 - n and v2(m) = v2(Vk

n), then Vk
n ‖ Unm;9

(v) if Vk
n ‖ m, 2 - n and v2(m) ≥ v2(Vk

n) + 1, then Vk+1
n ‖ Unm.10

Proof. For (i), assume that Vk
n | m. If p is an odd prime and p | Vn, then p - D, τ(p) | nm, and we can

apply Lemmas 3 and 4, to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
≥ vp(Vk

n) + vp(Vn) = vp(Vk+1).

From this point on, we sometimes use Lemmas 3 and 4 without reference. Next, we consider v2(Vk+1
n )

and v2(Unm). If 2 | n, then we apply Lemma 8 to obtain

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1
≥ v2(Vk

n) + v2(n) + v2(a) − 1
≥ v2(Vk

n) + 1 = v2(Vk
n) + v2(Vn) = v2(Vk+1

n ).

This implies the first part of (i). Since m is even, 2 | nm. So if 2 - n, then we can still apply Lemma 8
to obtain

v2(Unm) = v2(nm) + v2(a) − 1
= v2(m) + v2(a) − 1 (3.1)

≥ v2(Vk
n) + v2(a) − 1 = v2(Vk

n) + v2(Vn) − 1 = v2

(
Vk+1

n

2

)
.

This implies the second part of (i). For the third part of (i), we assume that 2 - n and v2(m) ≥
v2(Vk

n) + 1, and then we repeat the argument used in the second part to obtain

v2(Unm) = v2(m) + v2(a) − 1 ≥ v2(Vk
n) + v2(a) = v2(Vk+1

n ).
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Therefore vp(Unm) ≥ vp(Vk+1
n ) for all primes p, which implies the desired result. Next, we prove the

last part of (i). Assume that Vk
n | m, 2 | n, and Vk+1

n
2 | m. Since a and n are even, v2(n) + v2(a) − 2 ≥ 0. In

addition, vp(m) ≥ vp(Vk
n) = kvp(Vn), and so yp ≥ k. Therefore t ≥ 0 and t + 1 ≤ v2(n) + v2(a) − 1. By

Lemma 8, we have vp(Vn) = 1, and therefore vp(m) ≥ k and

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1 ≥ k + t + 1 = v2(Vk+t+1
n ).

If p is an odd prime and p | Vn, then

vp(Unm) = vp(m) + vp(n) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ ypvp(Vn) + vp(Vn)
= (yp + 1)vp(Vn) ≥ (k + t + 1)vp(Vn) = vp(Vk+t+1

n ).

Hence vp(Unm) ≥ vp(Vk+t+1
n ) for all primes p dividing Vn. Thus Vk+t+1

n | Unm, as desired.1

Next, we prove (ii). Assume that Vk
n ‖ m, 2 | n and Vk+1

n
2 - m. By (i), it is enough to show that

Vk+2
n - Unm. By Lemma 8, we know that v2(Vn) = 1. Then v2(m) ≥ v2(Vk

n) = v2

(
Vk+1

n
2

)
. Since Vk+1

n
2 - m,

there exists an odd prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Then p - D, τ(p) | nm, and

vp(Vk+2
n ) = vp(Vk+1

n ) + vp(Vn) > vp(m) + vp(Vn)
= vp(m) + vp(n) + vp(Uτ(p))
= vp(Unm).

This implies Vk+2
n - Unm.2

For (iii), assume that Vk
n ‖ m, 2 | n, and Vk+1

n
2 | m. By (i), we obtain t ≥ 0, v2(m) ≥ k, and Vk+t+1

n | Unm.

So it remains to show that Vk+t+2
n - Unm. We first observe that since Vk+1

n
2 | m, we obtain vp(Vk+1

n ) ≤ vp(m)
for every odd prime p. If v2(m) ≥ k + 1, then v2(m) ≥ v2(Vk+1

n ) which implies Vk+1
n | m contradicting

the assumption Vk
n ‖ m. Therefore v2(m) = k. Next, we show that Vk+t+2

n - Unm. If t = yp − k for some
odd prime p dividing Vn, then we apply Lemmas 3 and 4 to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(Vn) =

(
vp(m)
vp(Vn)

+ 1
)

vp(Vn)

< (yp + 2)vp(Vn) = (k + t + 2)vp(Vn) = vp(Vk+t+2
n ),

and so Vk+t+2
n - Unm. If t = v2(n) + v2(a) − 2, then we obtain by Lemma 8 that

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1 = k + t + 1 < v2(Vk+t+2
n ),

and so Vk+t+2
n - Unm. This proves (iii).3

Next, we prove (iv). Assume that Vk
n ‖ m, 2 - n and v2(m) = v2(Vk

n). By (i), we have Vk+1
n
2 | Unm.

To show that Vk
n | Unm, it suffices to prove that v2(Vk

n) ≤ v2(Unm). Recall from (3.1) in the proof of the
second part of (i) that

v2(Unm) = v2(m) + v2(a) − 1 = v2(Vk
n) + v2(a) − 1 ≥ v2(Vk

n),
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and
v2(Unm) = v2(m) + v2(a) − 1 = v2(Vk

n) + v2(Vn) − 1 < v2(Vk+1
n ).

So Vk
n | Unm and Vk+1

n - Unm. Thus Vk
n ‖ Unm.1

For (v), assume that Vk
n ‖ m, 2 - n, and v2(m) ≥ v2(Vk

n)+1. By (i), it suffices to show that Vk+2
n - Unm.

Since Vk+1
n - m, there exists a prime p dividing Vn such that vp(Vk+1

n ) > vp(m). If p = 2, then we obtain
by Lemma 8 that

v2(Unm) = v2(m) + v2(a) − 1 < v2(Vk+1
n ) + v2(Vn) − 1 < v2(Vk+2

n ),

and so Vk+2
n - Unm. If p > 2, then we obtain

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ),

which implies Vk+2
n - Unm. This completes the proof. �2

From this point on, we apply Lemmas 3, 4, 5, and 8 without reference.3

Theorem 15. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is even, b is odd, and m is even. Then4

(i) for all odd primes p, if vp(Vk+1
n ) ≤ vp(Unm), then vp(Vk

n) ≤ vp(m);5

(ii) if Vk+1
n | Unm and 2 | n, then Vmin (k,v2(m))

n | m;6

if Vk+1
n ‖ Unm and 2 | n, then Vmin (k,v2(m))

n ‖ m;7

(iii) if Vk+1
n | Unm and 2 - n, then Vk

n | m;8

(iv) if Vk+1
n ‖ Unm, 2 - n and Vk+2

n
2 - Unm, then Vk

n ‖ m;9

(v) if Vk+1
n ‖ Unm, 2 - n, and Vk+2

n
2 | Unm, then Vk+1

n ‖ m.10

Proof. For (i), assume that p is an odd prime and vp(Vk+1
n ) ≤ vp(Unm). If p | Vn, then

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn),

which implies (i). By (i), we only need to consider the 2-adic valuation in the proofs of (ii), (iii), (iv),11

and (v).12

For (ii), assume that Vk+1
n | Unm and 2 | n. For convenience, let c = min(k, v2(m)). If v2(m) ≥ k, then

v2(Vk
n) = k ≤ v2(m), and so Vk

n | m. If v2(m) < k, then v2(Vv2(m)
n ) = v2(m) and vp(Vv2(m)

n ) ≤ vp(Vk
n) ≤

vp(m) for all odd primes p, and therefore Vv2(m)
n | m. In any case, we obtain Vc

n | m. This proves the first
part of (ii). Suppose further that Vk+1

n ‖ Unm but Vc+1
n | m. Then

v2(m) ≥ v2(Vc+1
n ) = min(k, v2(m)) + 1,

which implies c = k. Then Vk+1
n = Vc+1

n | m. By (i) of Theorem 14, we obtain Vk+2
n | Unm contradicting13

Vk+1
n ‖ Unm. This completes the proof of (ii).14

For (iii), assume that Vk+1
n | Unm and 2 - n. Then

v2(a) + v2(Vk
n) = v2(Vk+1

n ) ≤ v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(a) − 1.
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Therefore v2(Vk
n) < v2(m), and so Vk

n | m.1

For (iv), assume that Vk+1
n ‖ Unm, 2 - n, and Vk+2

n
2 - Unm. By (iii), Vk

n | m. If Vk+1
n | m, then we obtain2

from (i) of Theorem 14 that Vk+2
n
2 | Unm, a contradiction. So Vk

n ‖ m.3

For (v), assume that Vk+1
n ‖ Unm, 2 - n, and Vk+2

n
2 | Unm. If p is odd, then vp(Vk+2

n ) ≤ vp(Unm), and so
we obtain by (i) that vp(Vk+1

n ) ≤ vp(m). In addition,

v2(Vk+1
n ) + v2(a) − 1 = v2(Vk+2

n ) − 1 ≤ v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(a) − 1,

and so v2(Vk+1
n ) ≤ v2(m). Therefore Vk+1

n | m. If Vk+2
n | m, we obtain from (i) of Theorem 14 that4

Vk+3
n
2 | Unm, which implies Vk+2

n | Unm contradicting Vk+1
n ‖ Unm. Therefore Vk+1

n ‖ m and the proof is5

complete. �6

Theorem 16. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a and b are odd, and m is even. Let
c = v2(U6) − 1,

t = min({v2(n) + c − 1} ∪ {yp − k | p is an odd prime factor of Vn}),
s = min({c − 1} ∪ {yp − k | p is an odd prime factor of Vn}), and

yp =

⌊
vp(m)
vp(Vn)

⌋
for each odd prime p dividing Vn.

Then7

(i) if Vk
n | m, then Vk+1

n | Unm;8

(ii) if Vk
n ‖ m and n . 0 (mod 3), then Vk+1

n ‖ Unm;9

(iii) if Vk
n ‖ m, n ≡ 0 (mod 6) and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;10

(iv) if Vk
n | m, n ≡ 0 (mod 6), and Vk+1

n
2 | m, then t ≥ 0 and Vk+t+1

n | Unm;11

if Vk
n ‖ m, n ≡ 0 (mod 6) and vk+1

n
2 | m, then Vk+t+1

n ‖ Unm;12

(v) if Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;13

(vi) if Vk
n | m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 | m, then s ≥ 0 and Vk+s+1

n | Unm;14

if Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b and Vk+1

n
2 | m, then Vk+s+1

n ‖ Unm;15

(vii) if Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c - m, then Vk+1

n ‖ Unm;16

(viii) if Vk
n | m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c | m, then Vk+2

n | 2cUnm;17

if Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c | m, then Vk+2

n ‖ 2cUnm.18

Proof. As usual, to prove that Vd
n | Unm, we show that vp(Vd

n ) ≤ vp(Unm) for all primes p dividing Vn.
Similarly, if we would like to prove that Vd

n - Unm, then we show that vp(Vd
n ) > vp(Unm) for some prime

p. If p is odd, then we apply Lemmas 3 and 4; if p = 2, then we use Lemma 9; and we will do this
without further reference. For (i), assume that Vk

n | m. If p is odd and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) ≥ vp(Vk
n) + vp(Vn) = vp(Vk+1).

So it remains to show that v2(Unm) ≥ v2(Vk+1
n ). If n . 0 (mod 3), then v2(Vk+1

n ) = 0 ≤ v2(Unm). So19

suppose that n ≡ 0 (mod 3). Then nm ≡ 0 (mod 6) and so20

v2(Unm) = v2(nm) + v2(U6) − 1 ≥ v2(Vk
n) + v2(n) + v2(U6) − 1. (3.2)
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Since U3 = a2 + b is even and U6 = a(a2 + 3b)U3, we know that v2(U3) ≥ 1 and v2(U6) ≥ 1. So if n ≡ 0
(mod 6), then v2(n) ≥ 1 and (3.2) implies that

v2(Unm) ≥ v2(Vk
n) + v2(U6) ≥ v2(Vk

n) + v2(Vn) = v2(Vk+1
n ).

If n ≡ 3 (mod 6), then (3.2) implies

v2(Unm) ≥ v2(Vk
n) + v2(U6) − 1 ≥ v2(Vk

n) + v2(U6) − v2(U3) = v2(Vk+1
n ).

In any case, v2(Unm) ≥ v2(Vk+1
n ). This proves (i).1

For (ii), assume that Vk
n ‖ m and n . 0 (mod 3). By (i), it is enough to show that Vk+2

n - Unm. Since
Vk+1

n - m, there exists a prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Since v2(Vk+1

n ) = 0, we see
that p , 2. Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ), as desired.

For (iii), assume that Vk
n ‖ m, n ≡ 0 (mod 6), and Vk+1

n
2 - m. By (i), it is enough to show that

Vk+2
n - Unm. Since Vk+1

n
2 - m and v2(Vk+1

n
2 ) = v2(Vk

n) ≤ v2(m), we see that there exists an odd prime p
dividing Vn such that vp(Vk+1

n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ).

Therefore Vk+2
n - Unm, as required.2

For (iv), we first assume that Vk
n | m, n ≡ 0 (mod 6), and Vk+1

n
2 | m. Since v2(n) ≥ 1 and v2(U6) ≥

v2(U3) ≥ 1, it is not difficult to see that t ≥ 0. If p is an odd prime dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn)
≥ ypvp(Vn) + vp(Vn) = (yp + 1)vp(Vn)
≥ (k + t + 1)vp(Vn) = vp(Vk+t+1

n ).

In addition,

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(n) + v2(U6) − 1
≥ v2(Vk

n) + t + 1 = k + t + 1 = v2(Vk+t+1
n ).

Therefore Vk+t+1
n | Unm. This proves the first part of (iv). Next, assume further that Vk

n ‖ m. It is enough
to show that Vk+t+2

n - Unm. Recall that yp =
⌊ vp(m)

vp(Vn)

⌋
, so vp(m) < (yp + 1)vp(Vn). So if t = yp − k for some

odd prime p dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < (yp + 2)vp(Vn) = (k + t + 2)vp(Vn) = vp(Vk+t+2
n ),

which implies Vk+t+2
n - Unm. So suppose t = v2(n) + v2(U6) − 2. Since Vk+1

n
2 | m, we see that vp(m) ≥

vp(Vk+1
n ) for all odd primes p. If v2(m) ≥ k + 1, then v2(m) ≥ v2(Vk+1

n ),which implies Vk+1
n | m

contradicting the assumption Vk
n ‖ m. Therefore v2(m) ≤ k. Then

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(n) + v2(U6) − 1 ≤ k + t + 1 < v2(Vk+t+2
n ).
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Therefore, Vk+t+2
n - Unm as required.1

For (v), assume that Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 - m. By (i), it suffies to show

that Vk+2
n - Unm. Since U6 = a(a2 + 3b)U3 and 2 ‖ a2 + 3b, we obtain v2(Vn) = v2(U6) − v2(U3) = 1.

Since Vk+1
n
2 - m and v2

(
Vk+1

n
2

)
= v2(Vk

n) ≤ v2(m), there exists an odd prime p dividing Vn such that

vp(Vk+1
n ) > vp(m). Therefore

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ), as desired.

For (vi), assume that Vk
n | m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 | m. Since a2 + 3b and U3 are2

even, and U6 = a(a2 + 3b)U3, we have v2(U6) − 2 ≥ 0. Since Vk
n | m, we have yp ≥ k for all odd primes3

p dividing Vn. Therefore s ≥ 0. By the same argument as in the proof of (v), we obtain v2(Vn) = 1. In4

addition, v2(m) ≥ v2(Vk
n) = k and vp(Vk+1

n ) = vp(Vk+1
n
2 ) ≤ vp(m) for every odd prime p. If Vk

n ‖ m and5

v2(m) ≥ k + 1 = v2(Vk+1
n ), then Vk+1

n | m which is a contradiction. Therefore,6

if Vk
n ‖ m, then v2(m) = k. (3.3)

We will apply (3.3) later. For now, we only need to apply v2(m) ≥ k. We obtain

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(U6) − 1 ≥ k + v2(U6) − 1 ≥ k + s + 1 = v2(Vk+s+1
n ).

If p > 2 and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ (yp + 1)vp(Vn) ≥ (k + s + 1)vp(Vn) = vp(Vk+s+1
n ).

This implies Vk+s+1
n | Unm. Next, assume further that Vk

n ‖ m. It remains to show that Vk+s+2
n - Unm.

By the definition of yp, we know that (yp + 1)vp(Vn) > vp(m). So if s = yp − k for some odd prime p
dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < (yp + 2)vp(Vn) = (k + s + 2)vp(Vn) = vp(Vk+s+2
n ),

which implies Vk+s+2
n - Unm. By (3.3), we know that v2(m) = k. So if s = v2(U6) − 2, then

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(U6) − 1 = k + s + 1 < v2(Vk+s+2
n ).

So in any case, Vk+s+2
n - Unm, as required.7

For (vii), we let c = v2(U6)−1 and assume that Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 +3b, and Vk+1

n
2c - m. By

(i), it is enough to show that Vk+2
n - Unm. Since 4 | a2 + 3b and U6 = a(a2 + 3b)U3, we have v2(U6) ≥

v2(U3) + 2. By Lemma 6, we obtain v2(U3) = 1, and so v2(Vn) = v2(U6) − v2(U3) = v2(U6) − 1 = c.
Since Vk+1

n
2c - m and

v2

(
Vk+1

n

2c

)
= (k + 1)v2(Vn) − v2(Vn) = v2(Vk

n) ≤ v2(m),

there exists an odd prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = Vp(Vk+2

n ).
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Therefore Vk+2
n - Unm.1

For (viii), assume that Vk
n | m , n ≡ 3 (mod 6), 4 | a2 + 3b, and Vk+1

n
2c | m. Then for each odd prime p

dividing Vn, we have

vp(Vk+1
n ) = vp

(
Vk+1

n

2c

)
≤ vp(m). (3.4)

Since 4 | a2 +3b and U6 = a(a2 +3b)U3, we obtain v2(U6) ≥ v2(U3)+2. By the same argument as in the2

proof of (vii), we obtain v2(Vn) = v2(U6) − 1 = c. Since Vk
n | m, we see that v2(m) ≥ v2(Vk

n) = kv2(Vn).3

If Vk
n ‖ m and v2(m) ≥ (k + 1)v2(Vn), then vp(m) ≥ vp(Vk+1

n ) for all primes p, and so Vk+1
n | m, a4

contradiction. Therefore5

v2(m) ≥ kv2(Vn), (3.5)

and6

if Vk
n ‖ m, then kv2(Vn) ≤ v2(m) < (k + 1)v2(Vn). (3.6)

We will apply (3.6) later. For now (3.5) is good enough. We obtain

v2(2cUnm) = v2(U6) − 1 + v2(Unm) = v2(U6) − 1 + v2(nm) + v2(U6) − 1
= 2(v2(U6) − 1) + v2(m)
≥ 2(v2(U6) − 1) + kv2(Vn)
= 2(v2(U6) − 1) + k(v2(U6) − 1)
= (k + 2)(v2(U6) − 1) = v2(Vk+2

n ).

If p > 2 and p | Vn, then

vp(2cUnm) = vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ),

where the last inequality is obtained from (3.4). This implies that Vk+2
n | 2cUnm. So the first part of

(viii) is proved. Next, assume further that Vk
n ‖ m. To prove the second part, it now suffices to show

that Vk+3
n - 2cUnm. We have

v2(2cUnm) = v2(U6) − 1 + v2(Unm)
= v2(U6) − 1 + v2(nm) + v2(U6) − 1
= 2(v2(U6) − 1) + v2(m)
< 2(v2(U6) − 1) + (k + 1)(v2(U6) − 1)
= (k + 3)(v2(U6) − 1) = v2(Vk+3

n ),

where the inequality is obtained form (3.6) and the fact that v2(Vn) = v2(U6) − 1. This completes the7

proof. �8

Theorem 17. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a and b are odd and m is even. Then9

(i) for every odd prime p dividing Vn, if vp(Vk+1
n ) ≤ vp(Unm), then vp(Vk

n) ≤ vp(m) ;10

(ii) if Vk+1
n | Unm and n . 0 (mod 3), then Vk

n | m;11

if Vk+1
n ‖ Unm and n . 0 (mod 3), then Vk

n ‖ m;12
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(iii) if Vk+1
n | Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then Vk

n | m;1

if Vk+1
n ‖ Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then Vk

n ‖ m;2

if Vk+1
n | Unm, n ≡ 0 (mod 6), and v2(m) < k, then Vv2(m)

n ‖ m;3

(iv) if Vk+1
n | Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) ≥ k, then Vk

n | m;4

if Vk+1
n ‖ Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) ≥ k, then Vk

n ‖ m;5

if Vk+1
n | Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) < k, then Vv2(m)

2 ‖ m;6

(v) if Vk+1
n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then Vk

n | m;7

if Vk+1
n ‖ Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then Vk

n ‖ m.8

Proof. We apply Lemmas 3, 4, and 9 throughout the proof without reference. For (i), assume that p is
an odd prime dividing Vn and vp(Vk+1

n ) ≤ vp(Unm). Then

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) ≤ vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn),

which implies (i). Therefore we only need to consider the 2-adic valuation in the proof of (ii) to (v).9

For (ii), assume that Vk+1
n | Unm and n . 0 (mod 3). Since v2(Vk

n) = 0 ≤ v2(m), we obtain by (i) that10

Vk
n | m. Suppose futher that Vk+1

n ‖ Unm. If Vk+1
n | m, then (i) of Theorem 16 implies Vk+2

n | Unm, which11

contradicts Vk+1
n ‖ Unm, and so Vk

n ‖ m.12

For (iii), assume that Vk+1
n | Unm and n ≡ 0 (mod 6).13

Case 1 v2(m) ≥ k. Then v2(Vk
n) = k ≤ v2(m). So we obtain by (i) that Vk

n | m. If Vk+1
n ‖ Unm, then we14

obtain by (i) of Theorem 16 that Vk+1
n - m, and so Vk

n ‖ m. This proves (iii) in the case v2(m) ≥ k.15

Case 2 v2(m) < k. For convenience, let d = v2(m). Since v2(Vd
n ) = d = v2(m) and vp(Vd

n ) ≤ vp(Vk
n) ≤16

vp(m) for every odd prime p dividing Vn, we obtain Vd
n | m. If Vd+1

n | m, then d+1 = v2(Vd+1
n ) ≤ v2(m) =17

d, a contradiction. So Vd
n ‖ m.18

For (iv), assume that Vk+1
n | Unm, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b. Since U6 = a(a2 + 3b)U3 and19

2 ‖ a2 + 3b, we obtain v2(Vn) = v2(U6) − v2(U3) = 1.20

Case 1 v2(m) ≥ k. Then v2(Vk
n) = k ≤ v2(m), and so we obtain by (i) that Vk

n | m. If Vk+1
n ‖ Unm, then21

we obtain by (i) of Theorem 16 that Vk
n ‖ m. This proves (iv) in the case v2(m) ≥ k.22

Case 2 v2(m) < k. For convenience, let d = v2(m). Then v2(Vd
n ) = d = v2(m) and vp(Vd

n ) ≤ vp(Vk
n) ≤23

vp(m). Therefore Vd
n | m. If Vd+1

n | m, then d + 1 = v2(Vd+1
n ) ≤ v2(m) = d, a contradiction. Therefore24

Vd
n ‖ m.25

For (v), assume that Vk+1
n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b. Since U6 = a(a2 + 3b)U3 and

4 | a2 + 3b, we obtain v2(U6) ≥ v2(U3) + 2. By Lemma 6, we have v2(U3) = 1. Then v2(Vn) =

v2(U6) − v2(U3) = v2(U6) − 1 and

v2(Vk
n) + v2(Vn) = v2(Vk+1

n ) ≤ v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(Vn).

So v2(Vk
n) ≤ v2(m). By (i), we obtain Vk

n | m. If Vk+1
n ‖ Unm, then we obtain by (i) of Theorem 16 that26

Vk+1
n - m, and so Vk

n ‖ m. This completes the proof. �27

The next example shows that m in Theorems 13 to 17 is necessarily even.28

Example 18. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1 and m is odd. Let p be an odd prime dividing Vn. By29

Lemma 4, we have p - D, τ(p) - n and τ(p) | 2n. Therefore τ(p) is even and v2(τ(p)) = v2(n) + 1. So30

τ(p) - nm. By Lemma 3, vp(Unm) = 0. Therefore Vn - Unm. This shows that m in Theorems 13 to 1731

cannot be odd.32
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Example 19. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1. Let p > 2 and p | Un. By Lemma 3, we have (i)1

vp(Un) = vp(n) + vp(Up) − 1 if p | D and p | n, and (ii) vp(Un) = vp(n) + vp(Uτ(p)) if p - D and τ(p) | n.2

For (i), we have p | D and so vp(Vnm) = 0 and Un - Vnm. For (ii), we have τ(p) | nm and so vp(Vnm) = 03

and Un - Vnm. This shows that there is no interesting divisibility relation such as Uk
n | Vnm.4
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