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Chapter 1

Introduction

Coding theory introduced in 1948 by Claude Shannon is the study of the prop-
erties of codes and deals with the design of error-correcting codes for the reliable
transmission of information across noisy channels. Linear codes, subspaces of the
vector space Fy, are interesting extensively studied due to their nice algebraic struc-
tures and wide applications. A linear code contained in its dual is called a self-
orthogonal code and a linear code meets its dual trivialy is called a linear complemen-
tary dual (LCD) code. Self-orthogonal and linear complementary dual codes form
important classes of linear codes due to their algebraic structures, practical appli-
cations in communications systems, and linked with other mathematical objects as
shown in [2, 3, 5, 6, 8, 10, 11, 12, 15, 20, 21, 24] and references therein. Self-orthogonal
codes have been applied in constructions of quantum codes in [11] and [20]. In [7],
LCD codes have been shown to be asymptotically good and meet the asymptotic
Gilbert-Varshamov bound.

The concepts of self-orthogonal codes and linear complementary dual codes have
been generalized in the notion of hulls. This concept has been first introduced and
applied in the characterization of finite projective planes in [1]. Precisely, the hull
of a linear code is the intersection of the code and its dual. It is easily seen that
self-orthogonal codes are linear codes with maximal hull and LCD codes are linear

codes with minimal (trivial) hull. Later, it has been shown that the complexity of



some algorithms in coding theory has been determined by the hull dimension of codes
[13, 14, 25, 26]. Precisely, most of the algorithms work if the hull of codes is small.
Since then, hulls of codes have become of interest and extensively studied. In [23], the
number of linear codes with common hull dimension and the average hull dimension of
inear codes have been studied. Recently, a rigorous treatment of hulls of linear codes
have been given and applied in constructions of good quantum error correcting codes
in [8, 17, 28]. Optimal and good LCD codes have been studied in [3, 7, 10, 19]. Bounds
and the optimality of self-orthogonal codes have been established in [12, 20, 22, 27].
Therefore, it is of interest to study constructions and optimality of linear codes with
prescribed hull dimension and their applications.

In this thesis, we focus on constructions and optimality of linear codes over small
finite fields with hull dimension one with respect to the Euclidean and Hermitian inner
products. Some basic properties of linear codes, hull of linear codes, and bounds on
the parameters of codes are discussed in Chapter 2. Constructions of optimal binary
[n, 2]5 linear codes with Euclidean hull dimension one are given for all lengths n > 3
in Chapter 3 together with the enumeration of such codes up to equivalence. In
Chapter 4, constructions of optimal ternary [n, 2] linear codes with Euclidean hull
dimension one are presented for all lengths n > 3. Optimal quaternary [n, 2], codes
with Hermitian hull dimension one are established in Chapter 5 for all lengths n > 3
such that n = 1,2,4 (mod 5). Subsequently, good lower and upper bounds on the
minimum weight of quaternary [n, 2]4 linear codes with Hermitian hull dimension one

are given for positive integers n = 0,3 (mod 5).



Chapter 2

Preliminaries

In this section, some definitions and properties of linear codes and hulls of linear

codes are recalled as well as the proofs of preliminary results required in this study.

2.1 Linear Codes over Finite Fields

Let F, denote the finite field of order ¢. For a positive integer n, a linear code
of length n over K, is defined to be a subspace of the F -vector space Fy. For an
element w in Fy, let wt(w) denote the Hamming weight of w. Precisely, wt(w) =
{i € {1,2,...\n} |w; # 0} for all w = (wy,ws, .. .,w,) € Fy. A linear code C' of
length n over I, is called an [n,k,d], code if the F,-dimension is k and the minimum

Hamming weight of a linear code C'is
d = wt(C') = min{wt(c) | wt(c) € C'\ {0}},

or an [n, k], code if the minimum Hamming weight of C'is not specified. The minimum
Hamming weight is key to determine the error-correcting capability of a code. Let
t be a positive integer. A code C' is said to be t-error-correcting if the minimum
distance decoding (see [16, Definition 2.5.1]) is able to correct t or fewer errors. In
[16, Theorem 2.5.10], it is proved that a code C' is t-error-correcting if and only if

wt(C') > 2t+1. Hence, wt(C') determines the efficiency of the code C. A k xn matrix



G over I, is called a generator matriz for an [n, k,d|, code C' if the rows of G form a

basis of C'. A generator matrix of the form [ [k,‘X] is said to be in standard form.

Example 2.1.1. Let C' be linear code of length 5 over Fy with a generator matrix

1 0101
01111

Then C' = {0000,10101,01111,11010}. Since wt(10101) = 3, wt(01111) = 4, and

wt(11010) = 3, we have wt(C) = 3. This implies that C is a [5,2, 3|2 linear code.

Linear [n, k], codes Cy and Cy are said to be (permutation) equivalent if there
exists a permutation 0 on {1,2,...,n} such that Cy = {(cs1),C52)55---»Com)) |
(c1,¢9,...,¢,) € Cy}. For [16, Theorem 4.6.3] every linear code is equivalent to a

linear code that has a generator matrix in standard form.

Example 2.1.2. Let ¢ = 2 and n = 4. Let p = (14)(34) be a permutation on
{1,2,3,4}. Then
C1 = {0000,0101,0010,0111}

is equivalent to the code
Cy = {0000, 1100, 0001,1110}

permuted by p.

For positive integers m, n, denote by M,,(F,) the set of m x n matrices whose
entries are in F,. For A = [a;;] € M, ,(F,), let AT denote the transpose matrix of A.

In addition, if ¢ = r? is square, let AT = [a7].

2.2 Hulls of Linear Codes

For w = (uy, ug, ..., u,) and v = (v1, v, ...,v,) in Fy, two inner products between

uw and v are defined as follows :

1. (uw,v)g = > ww; is called the Euclidean inner product between w and v.

4



2. For g =7r% (u,v)y := >, u;T; = (u,v)g is called the Hermitian inner product

between w and v, where @ = a" for all a € F,

For a linear code C of length n over F,, the Fuclidean dual and (resp., Hermitian

dual) of a linear code C' is defined to be the set

C:={uecF!|(u,c)p=0forall ceC}

(resp., C*1 :={u € F! | (u,c)y =0 for all c € C})

and the Euclidean (resp., Hermitian) hull of C' is defined to be Hull(C) = C'N C*E
(resp., Hullg(C) = C' N C*n).

An (n — k) x n matrix H over IF, is called a parity-check matrix of an [n, k, d],
code C'if H is a generator matrix of C+#. A parity-check matrix of the form [Y| I, k]

is said to be in standard form (see [16, Definition 4.5.3]).

Theorem 2.2.1 ([16, Theorem 4.5.9]). If G = [I;|A] is the standard form generator
matriz of an [n,k],-code C, then the standard form generator matriz of CLE is

H = [-AT|I,, 4]
Example 2.2.2. Let C' be a linear code of length 5 over Fy with a generator matrix

101 01

0-1-1 11

Then C' = {00000, 10101,01111,11010} has parameters [5, 2, 3],. By Theorem 2.2.1,

we have that
1 1100

H=101010
11001

is a parity-check matrix for C' and hence,
C+® = {00000, 10011, 11001, 01010, 01111, 11100, 10110, 00101}.

By the definition of the hull, we have Hull(C') = {00000, 01111}.



Example 2.2.3. Let Fy = {0,1,w,w? = w + 1} and let C be a linear code of length

5 over [y with a generator matrix
1 01 w W
010 1 w
Then C has parameters [5, 2, 4],. By Theorem 2.2.1, C*# has a generator matrix
1 0100
H=1w 1 010
wrw 0 01

Using a direct calculation, we have Hullg(C') = {00000, 101ww?, wlww?1, w?0w?1w}.

For n € {1,2}, it is easy to see that there are no [n, 2] codes with hull dimension
one. Throughout, we assume that the length n of the codes is greater than 2.
The hull dimension of a linear code can be determined using its generator matrix

in [8] as follows.

Proposition 2.2.4 ([8, Propositions 3.1]).- Let C" be a linear [n,k,d], code with

generator matriz G. Then rank(GGT) is independent of G and
rank(GG') =k — dim(Hull(C)) = k — dim(Hull(C*®)).
In addition, if q is square, then

rank(GG") = k — dim(Hullg(C)) = & — dim(Hullg(C*1)).

1 01 01
Example 2.2.5. From Example 2.2.2, we have k =2, G = and
01 1 11
10
GGT =
00

This implies that rank(GGT) = 1. By Proposition 2.2.4, it follows that
dim(Hull(C)) = k — rank(GG™)
=2-1=1

Hence, dim(Hull(C)) = 1.



1 01 w w?

Example 2.2.6. From Example 2.2.3, we have k =2, G = and
0101 w
0 0
GG' =
01

This implies that rank(GG') = 1. By Proposition 2.2.4, it can be deduced that

dim(Hullg(C)) = k — rank(GG")

=2—-1=1.

Therefore, dim(Hullg(C)) = 1.

2.3 Constructions and Bounds

Using the analysis on a generator matrix of linear codes in [19], we have the fol-

lowing results. For an [n, 2], code with generator matrix

a11 Qi - Qip
G = ,
Qo1 Qg2 -+ Aap
we write
aq
G = ) (2.1)
&%)
where oy = [an ai - aln:| and az = [am Qgo - - a2n:|‘

Qg
Alternatively, by setting 5, = " for 1 <1 < n, G can be viewed as

g
G:[ﬁl G 5n]' (2.2)
For i,7 € Iy, let
Sy= e {L2. .n}a=| |3l (2.3)

J



Example 2.3.1. Let C' and C’ be ternary linear codes of length 7 generated by

1101122
0011111

and
110112 2

1 110011
We see that G and G’ are determined by Sig = 2,50 = 1,511 = 2,5 = 2, and

Si; = 0 otherwise. It is easily seen that C' and C” are equivalent by the permutation

(14)(25).

Remark 2.3.2. The generator matries determined by

Sy = re w2n oy o= ||y
J

generate equivalent linear codes. The equivalences are induced by a permutation on
{1,2,...,n}.
The Griesmer Bound in [9] is applied in this work.

Theorem 2.3.3 (Griesmer Bound, [9, Theorem 2.7.4]). Let q be a prime power and

let n, k and d-be positive integers. If there exists an [n,k,d], code, then

The minimum Hamming weight of linear codes is important to determine the
error-correcting capability of codes. In this thesis, we focus on the maximum of the
minimum Hamming weight of linear codes. For a prime power ¢, positive integers

n, k and non-negative integer /¢, let
D,(n,k, ) == max{d | 3[n, k,d], code with dim(Hull(C)) = ¢}

and

D}l(n,k,€) :==max{d | 3[n, k,d], code with dim(Hully(C)) = ¢}.

Based on the Griesmer Bound, the following upper bounds on D, (n, k, ¢) and Dé{(n, k,0)

can be derived in the next lemma.



Lemma 2.3.4. Let q¢ be a prime power and let n,k and ¢ be inegers such that

1<k<nand0</?. Then

Dy(n, b, ) < {WJ

(" = 1)

and

-1 k—1
D};(n,k,é) < {%J if q is square.
q —

Proof. From the Griesmer Bound in Theorem 2.3.3, for any linear [n, k, d|, code, we

have i .
-1 —1
d 1 d(¢® —1)
n > —|'>d = 7
- ;[qzl 7 ; ¢ (g—1)g"!

It follows that

Hence, D,(n, k) < L%J as desired.
(qfl)q’“‘an

Since the above proof is independent of the inner product, Dfl{(n, k,0) < L D

follows similarly. O

In this thesis, we focus on Dg(n, k, 1) and D?(n, k,1). The details are discussed

in the following chapters.



Chapter 3

Optimal Binary Linear Codes with

FEuclidean Hull Dimension One

In this chapter, we focus on construction of binary linear codes with hull dimension
one. For each integer n > 3, an optimal [n,2]s code with hull dimension one is con-

structed. Moreover, the enumeration of such optimal codes is given up to equivalence.

3.1 Basic Concepts

From the setup in Subsection 2.3 (c.f. [19]), a linear [n, 2], code C' with generator

matrix
Qi
G = (3.1)
&)
with o = [an a1y - aln} and ap = [am dgo - a2ni| can be viewed of the
form C' = {0, a1, as,a1 + as}. From (2.3), we have oy = [an ay - ap,| and
Qg = [am Ay - a%} and it is not difficult to see that

Wt(Oél) = SlO + Sll,Wt(OéQ) = 501 + SH,Wt(C(l + 062) = SlO -+ Sm.

10



Hence,

wt(C) = min{wt(ay), wt(ag), wt(ay + ag)}

= min{Sio + Si1, So1 + S11, S10 + So1 }- (3.2)
From (3.1), we have

Sio+ S S
GGT = |7 Y| (mod2). (3.3)
St So1 + S11

Example 3.1.1. Let C be the binary linear code of length 5 with generator matrix

1.0 0 1 1
011 01

Then Soo = 0,S10 = 2,801 = 2 and S11 = 1 which implies that Sig + S11 = 3 and
So1 + S11 = 3 By (3.3), it follows that

which implies that rank(GGT) =1 and dim(Hull(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4.

Remark 3.1.2. The binary codes determined by
(S(]la SlO; Sll) e{(aa b7 C), (b7 a, C)J (C7 b7 a’)u (CL, ¢, b)7 <b7 ¢, CL), (C7 a, b)}

are equivalent. This follows from the fact that

aq [6%) (05} + (6] (05} (05} -+ (0%)] (6%)
) 2 ) 2 2 an

(0%) (o%1 Qg a1 + Qo (071 a1 + Qo

generate the same code.

Example 3.1.3. By Remark 3.1.2, let a = 2,b =0 and ¢ = 3. Then
(5017 5107 Sll) E{(27 07 3)7 (OJ 27 3)7 (37 07 2)7 (27 37 0)7 (OJ 37 2)7 (37 27 O)}

11



For (So1, S10,511) = (2,0,3), we have that a; = 00111 and ay = 11111. Let C be

linear code with generator matrix

o 00111
G = =
[a%) 11111

Then C' = {00000,00111,11111,11000}. By Remark 3.1.2, we have that

o 00111
| = determined by (So1, Sio, Si1) = (0,2,3)
o | 1 1.0 0 0]
(i +as| (110 0 0
S determined by (So1, S10,511) = (3,0, 2)
Qg 1 1 1 1 1
o | fooa1a
' = 1 determined by (Sol, 510, 511) = (2, 3, 0)
_a1 + CYQ_ _1 1-0 0 0_
o1+ « 1 17T 00 0
' 2| = determined by (So1, S10,511) = (0, 3,2),and
| _O 01 1 1
«Q I 11 11
2 = determined by (S(]l, SlO; SH> = (3, 2, 0)
a1 + Qo 1 100 0_‘

generate linear code C.

For binary linear codes with dimension two and hull dimension one, the upper

bound in Lemma 2.3.4 can be simplified as
2
Do(n,2,1) < ELJ . (3.4)

Using the notations above, the exact value of Dy(n, 2, 1) can be derived together with

the enumeration of optimal [n, 2] codes as follows.

3.2 n=1 (mod 6)

2n

In the following theorem, we give constructions of optimal [n, 2, \_?J]g codes of

such lengths with hull dimension one for all n =1 (mod 6).

12



Theorem 3.2.1. Let n > 3 be an integer. If n =1 (mod 6), then

pinzy - |2

and there exists a unique (up to equivalence) optimal [n,Q, L%”HZ code with hull

dimension one.

Proof. Assume that n =1 (mod 6). Then n = 6t + 1 for some positive integer ¢ and

) = [ ] —a

For the existence, by (3.4), it suffices to show that there exists an [n, 2,4t], code
with hull dimension one. Let C' be a linear code with generator matrix G defined in

(3.1) such that (So1, S10,511) = (2t,2¢,2t + 1). Then C is an [n, 2,d]s code, where

d = IHin{Sol —+ 511, SlO -+ Sll; SlO + 501}
=min{4t + 1,4t + 1,4t}

= 4t by (3.2).

From (3.3), we have

which implies that rank(GG%) = 1. We therefore have dim(Hull(C')) = 1 by Propo-
sition 2.2.4.
For the uniqueness, we first show that Sy; + Sip + S11 = n. Suppose that there

exists an [n, 2, 4t]y code with hull dimension one and Sy > 0. Then
501+510+511 Sn—1:6t

Since min{.Syp + Si1, So1 + S11, S10 + So1} = 4t is required, the only possible choice of
(So1, S10, S11) is (2t,2t,2t). In this case, we have

13



by (3.3). By Proposition 2.2.4, we therefore have dim(Hull(C)) = 2 # 1, a contradic-
tion. Hence, n = Sg1 + S19 + S11.

It remains to focus on (Sp1, Sto, S11) satisfying So; + Sip + S11 = n = 6t + 1 and
min{ Sy + S11, So1 + Si1, S10 + So1 } = 4t. It follows that

(Sor, S10, S11) €{(2t,2t, 2t + 1), (2t, 2 + 1,2t), (2t + 1,2t,2t),
(2t — 1,2t + 1,2t +1), (2t + 1,2t — 1,2t + 1),

(2t +1,2t 41,2t — 1)}

We consider the following 2 cases.
Case 1. (So1, S10,511) € {(2t,2t,2t +1),(2¢,2t +1,2t), (2t + 1,2¢,2t) }. By (3.3), the

corresponding matrices GGT are of the forms

respectively. In these cases, we have rank(GGT) = 1 which implies that there hull
dimensions are one by Proposition 2.2.4. From Remark 3.1.2, these codes are equiv-
alent.

Case 2. (So1,510,511) € {(2t — 1,2t + 1,2t + 1), (2t + 1,2t — 1,2t + 1), (2t + 1,2t +
1,2t — 1)}. From (3.3), it is easily seen that

Hence, rank(GGT) = 2 which implies that the codes are LCD by Proposition 2.2.4.
]

Example 3.2.2. Let ¢ = 2. By Theorem 3.2.1, we have that (S, S10,S11) =
(2t,2t,2t 4+ 1) = (4,4,5). Let C be the binary linear code of length 13 determined by

the triple (4, 4,5) with generator matrix

060o0oo0011111T1T1T171
1111000011111

14



By (3.3), it follows that

11
GGT =
11
which implies that rank(GGT) = 1 and dim(Hull(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4. Then C' is an optimal [13, 2, 8], code with hull dimension one.

3.3 n =3 (mod 6)

Next, we show that there does not exist [n, 2, L%”J]g codes with hull dimension one
for all n = 3 (mod 6). Later, we give constructions of optimal [n,2, |2 | — 1]5 codes

of such lengths with hull dimension one.

Theorem 3.3.1. Let n > 3 be an integer. If n = 3(mod 6), then

Do(n,2,1)= %”J — 1.

In this case, there exists a unique (up to equivalence) optimal [3,2,1], code with hull
dimension one and there are two (up to equivalence) optimal [n,2, L%”J — 1]2 codes

with hull dimension one for-all n.> 3.

Proof. Assume that n. = 3(mod 6). Then n =6t + 3 for some integer ¢t > 0. By (3.4),

we have

Ds(n.2,1) < %”J > LMJ ~ 4ty

Suppose there exists an [n, 2, L%"J =4t + 2} , code with hull dimension one. Then,
by (3.2), we have wt(C') = min{Sy; + S11, S10 + S11, S10 + So1} = 4t + 2 and Sp; +
S10+ 511 < n = 6t+3. Hence, the only possible choice of (Sp1, S10,511) is (2t+ 1,2t +
1,2t +1). By (3.3), we have

0 1
GGT =
10
By Proposition 2.2.4, it follows that dim(Hull(C')) = 0 # 1, a contradiction. Hence,

there does not exist an [n, 2, [%‘H? code.

15



For the existence of an [n, 2, 4t 4 1], code with hull dimension one, let C' be a linear
code with generator matrix G viewed in the form of (3.1) such that (Sp;, Sto,S11) =

(2t,2t + 2,2t + 1). Then C' is an [n,2,d]; code, where

d= miH{S(n + 511, 810 + Sll; SIO + SOI}
= min{4t + 1,4t + 3,4t + 2}

— 4t +1 by (3.2).

From (3.3), we have

which implies that rank(GG?) = 1. As desired, we have dim(Hull(C)) = 1 by
Proposition 2.2.4.
To determine the number of [n,2, 4t + 1], codes with hull dimension one, we claim

that Sg1 + Si0 + S11 = n. Suppose that Spg > 0. Then

5’01+510+511<n—1:6t+2.

Since min{ S0+ 511, So1 +511; S10+S01 } = 4t+1, the possible choices of (Sp1, Sig, S11)
are (2t,2t + 1,2t + 1), (2t + 1,2t + 1,2t), and (2t +1,2¢,2t + 1). By (3.3), the matrix
GG7T is of the form

0 1 | 10 —and 11 7

11 0 1 1.0
respectively. Hence, rank(GGT) = 2 which implies that dim(Hull(C)) = 0 # 1 by
Proposition 2.2.4.

Now, it remains to focus on the triples (Sp1, S10, S11) satisfying Sp; + S0 + S11 =

n = 6t + 3 and min{S1g + S11, So1 + S11, S10 + So1} = 4t + 1. By inspection, we have

(501, 510, Sll) S T1 U TQ U Tg, Where

Ty ={(2t,2t + 2,2t + 1), (2t +2,2¢, 2t + 1), (2t + 2,2t + 2,2t — 1)},
To={(2t — 1,2t + 2,2t + 2), (2t + 1,2¢, 2t + 2), (2t + 1,2t + 2,2t)},

T5={(2t,2t + 1,2t + 2), (2t + 2,2t — 1,2t + 2), (2t + 2,2t + 1,2¢)}.

16



By (3.3), the matrices GGT are of the forms

1 1 0 0 1 0
, , and
1 1 01 0 0
for (So1, Si0,S11) in Ty, Ty, and T3, respectively. It follows that rank(GGT) = 1 and

the codes have hull dimension one by Proposition 2.2.4.

From Remark 3.1.2, the codes determined by

(So1,S10,511) € {(2t,2t + 2,2t + 1), (2t + 2,2t,2t + 1), (2t + 2,2t + 1, 2t),

(28,2t + 1,2t + 2), (2t + 1,2t,2t + 2), (2t + 1,2t + 2,2¢) }
are equivalent, and the codes determined by

(301,810,511) e {(2t+ 2,2t 4+ 2,2t — 1), (2t — 1,2t + 2,2t + 2),

(2t+2,20 — 1,264 2)}

are equivalent. Since a code in the first family contains a codeword of weight 4t + 3
but the latter does not, two codes from different families are not equivalent. Hence,
there are two (up to equivalence) optimal [n, 2, L%”J — 1} , codes with hull dimension
one for all n > 3. For n = 3, we have t = 0 and hence, the second family does not
exist which implies that there exists a unique (up to equivalence) optimal 3,2, 1],

code with hull dimension one. O]

Example 3.3.2. Let t = 2. By Theorem 3.3.1, we have that (So1, S10, 511) = (2t, 2t +
2, 2t + 1) = (4, 6, 5) and (S()l, 5107 Sll) — (2t + 2, 2t + 2, 2t — 1) = (6, 6, 3) indeed 2

inequivalent codes.

1. Let C} be the binary linear code of length 15 determined by the triple (4,6,5)

with generator matrix

0oo0o0oo0111111111T171

1=

11110000001 1T1T1T71

By (3.3), it follows that
11
G,G] =
11

17



which implies that rank(G;G;7) = 1 and dim(Hull(C)) = 2 —rank(G,G,7) = 1
by Proposition 2.2.4. Then (' is an optimal [15, 2, 9]5 code with hull dimension

one.

2. Let Cy be the binary linear code of length 15 determined by the triple (6,6, 3)

with generator matrix

0ooo0oo0oo0o0111111T1T171
1111110000O0O01T171

By (3.3), it follows that

1.0
GyGE =
0 0
which implies that rank(GyGs”) =1 and dim(Hull(C)) = 2 — rank(GoGy") = 1
by Proposition 2.2.4. Then (5 is an optimal [15,2;9]5 code with hull dimension

one.

By Theorem 3.2.1, we have that C7 and C5 are not equivalent.

3.4 n =5 (mod 6)

In the following theorem, we give constructions of an optimal [n, 2, L%”J |2 code with

dimesion 2 and Euclidean hull dimension one is given for all lengths n =5 (mod 6).

Theorem 3.4.1. Let n > 3 be an integer. If n = 5(mod 6), then

Dy(n,2,1) = %”J

and there exists a unique (up to equivalence) optimal [n,2, L%"Jb code with hull

dimension one.

Proof. Assume that n = 5(mod 6). Then n = 6t + 5 for some positive integer ¢. By
(3.4), we have

pinay < |2 2050 Ly

18



For the existence of an [n, 2, 4t 4 3], code with hull dimension one, let C' be a linear
code with generator matrix G viewed in the form of (3.1) such that (Sp;, Sto,S11) =

(2t + 2,2t + 1,2t + 2). Then C' is an [n, 2, d]s code, where

d = min{Sy; + Si1, S10 + S11, S10 + So1 }
= Inin{4t + 3,4t + 3,4t + 3}

— 4t 43 by (3.2).

From (3.3), we have

which implies that rank(GGT) = 1.- Hence, we have dim(Hull(C')) = 1 by Proposi-
tion 2.2.4.
To determine the number of [n; 2,4t 4 3], codes with hull dimension one, we claim

that So1 + Si9 + S11 = n. Suppose that Sgy > 0. Then

Sor +S10+ 511 <n—1=6t+4.

Since min{ S + S11, So1 +.S11, 510 + So1} = 4t + 3, there are no possible choices of
(501, SlO, SH), a contradiction. Hence, 501 + SlO + SH = n.
It is not difficult to see that the triples (Sp1,S10,511) satisfying Sp1 + S1o + S11 =

n=6t+5 and min{Sw + 511, S()1 + SH, SIO = S()l} =4t + 3 are in the set
{2t +1,2t 42,2t +2), (2t + 2,2t + 1,2t + 2), (2t + 2,2t + 2,2t + 1) }.

By (3.3), the corresponding matrices GG' are of the forms

00 10 11
) ) and )
01 00 11
respectively. We have rank(GG?T) = 1 and their hull dimensions are one by Proposi-

tion 2.2.4. These codes are equivalent by Remark 3.1.2. ]
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Example 3.4.2. Let t = 2. By Theorem 3.4.1, we have that (Sp1, S10,511) = (2t +
2,2t + 2,2t + 1) = (6,6,5). Let C be the binary linear code of length 17 determined

by the triple (6,6,5) with generator matrix

cooo0o0006011111111111
11111100000O011T1T171

By (3.3), it follows that

11
GG' =
11
which implies that rank(GGT) = 1 and dim(Hull(C)) = 2 — rank(GG") = 1 by

Proposition 2.2.4. Then C'is an optimal [13,2, 11]5 code with hull dimension one.

3.5 n=0,2,4 (mod 6)

Next, we show that there does not exist [n, 2, L%”J ]2 codes with hull dimension one
for all n = 0,2,4 (mod 6). Later, we give constructions of optimal [n, 2, L%”J —1]s

codes of such lengths with hull dimension one.

Lemma 3.5.1. Let n > 3 be an integer. If n = 0,2,4 (mod 6), then there are no

n, 2, L%”J]g codes with hull dimension one.

Proof. Assume that n.=0,2,4 (mod 6). Suppose that there exists an [n,2, | %]
code C' with hull dimension one.
First, we prove that Sy + So1 + S11 = n. Suppose that Spy > 0.

Case I. n = 0,2 (mod 6). If follows that {@J <& = 2] for all n =0 (mod 6),

and {2(71371)J < 2=l — |2 for all n = 2 (mod 6). Since Spp > 0, there exists an

[n—1,2,]2|]2 code C’" by puncturing at one of the zero columns. From (3.4), we

3]s 2552 3

have

a contradiction.
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Case II. n = 4 (mod 6). Since Sgo > 0, there exists an [n — 1,2, [%|], code C" by

puncturing at one of the zero columns. Since n — 1 = 3 (mod 6), we have

%”J — wt(C") < Dy(n —1,2,1) = {@J - %”J i< %”J

by Theorem 3.3.1. This is a contradiction.
From the discussion above, we have Sig + So1 + S11 = n.
Next, we consider the following 2 cases.
Case 1. Sp; is odd. Since n is even, it follows that either Sy or Sy; is odd. From

(3.3), we have

01 11
GGEh)= or GG' =
11 10
In both cases, rank(GGT) = 2. By Proposition 2.2.4, we have dim(Hull(C)) = 2 —
rank(GGT) = 0.

Case 2. 517 is even. Then Sjg and Sy have the same parity. If Sjy and Sy are even,

then
[0 0]
GGT =
LO 0_
by (3.3). If S1o and Sp; are odd, then
1.0
GGT =

by (3.3). In both cases, dim(Hull(C)) = 2 — rank(GGT) # 1 by Proposition 2.2.4.
From the two cases, we have dim(Hull(C)) # 1, a contradiction. Hence, there are

no [n,2, |2 |], codes with hull dimension one. O

Theorem 3.5.2. Let n > 3 be an integer. If n = 0,2,4(mod 6), then

Dy(n,2,1) = f?nJ —1.

Moreover, the following statements hold.

1. There exists a unique (up to equivalence) optimal [n,2, L%”J — 1]2 code with

hull dimension one for alln =4 or n = 0,2(mod 6).
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2. There are two (up to equivalence) optimal [n, 2, L%”J — 1}2 codes with hull di-

mension one for all n > 4 such that n = 4(mod 6).

Proof. Assume that n = 0,2,4(mod 6). By Lemma 3.5.1, we have

Dy(n,2,1) < {%”J ~ 1.

First, we observe that there are no triples (Sp1, Sto, S11) satisfying So;+ S0+ 511 <
n—2 and min{Sip+S11, So1+ 511, S10+S01 } = L%”J —1. Hence, Sp1+S19+S511 > n—1.
We consider the following two cases.

Case 1. n = Sp; + S0 + S11. We show that there are no [n, 2, L%"J — 1] codes with
hull dimension one as follows.

Case 1.1. n = 0(mod 6). Then n = 6t for some positive integer ¢. The triples
(So1, S10, S11) satisfying Sg; 4+ S10 + S11 = n = 6t and min{Syp + Si1, So1 + S11, S10 +

So1} = L%"J — 1 =4t — 1 are in the set

{(2t,2t + 1,2t = 1), (2,2t — 1,2t + 1), (2t + 1,2¢,2t — 1),
(2t+ 1,264 1,2t —2), (2t + 1,26 — 2,2t + 1), (2t = 2,2t + 1,2t + 1),

(2t + 1,2t —1,26), (2t — 1,2, 2t +1), (2t = 1,2t + 1,2¢)}.

The corresponding generator matrices (G-have the property that rank(GGT) = 2
which implies that dim(Hull(C')) =0 # 1 by Propesition 2.2.4.

Case 1.2. n = 2(mod 6). Then n =6t + 2 for some positive integer ¢. The triples
(So1, S10, S11) satisfying Sp; + S10+S11 = n = 6t+2 and min{S1o+ 511, So1 + 511, S10+
So1} = L%”J — 1 = 4t are in the set

{(2t,2t,2t + 2), (2t + 2,2, 2t), (2t, 2t + 2,21), (2t — 2,2t + 2,2t + 2),
(2t 42,2t — 2,2t +2), (2t + 2,2t + 2,2t — 2), (2t + 1,2t — 1,2t + 2),
(2t +2,2t+ 1,2t — 1), (2t + 1,2t + 2,2t — 1), (2t — 1,2t + 1,2t + 2),

(2t +2,2t — 1,2t +1), (2t — 1,2t + 2,2t + 1)}

22



The corresponding generator matrix G of (Sp1, S10,S11) in

{(2t,2t,2t + 2), (2t + 2,2, 2t), (2t, 2t + 2, 2¢), (2t — 2,2t + 2,2t + 2),

(2t +2,2t — 2,2t +2), (2t + 2,2t + 2,2t — 2)}

has the property that rank(GG?T) = 0 which implies that dim(Hull(C)) = 2 # 1 by

Proposition 2.2.4. The corresponding generator matrix G of (Sp1, S1g, S11) in

{2t +1,2t — 1,2t +2), (2t + 2,2t + 1,2t — 1), (2t + 1,2t + 2,2t — 1),

(2t — 1,26+ 1,2t +2), (2t + 2,26 — 1,2t + 1), (2t — 1,2t + 2,2t + 1)}

has the property that rank(GG?T) = 2 which implies that dim(Hull(C')) = 0 # 1 by
Proposition 2.2.4.

Case 1.3. n = 4(mod 6). Then n = 6t + 4 for some positive integer ¢. The triples
(So1, S10, S11) satisfying So; + Sho+S11 = n = 6t+4 and min{S10+ 511, So1 + 511, S10+

So1} = L%”J —1=4¢t+ 1 are in the set

{(2t,2t + 1,26 +3), (2t — 1,2t + 2,2t +3), (2t 4+ 3,2t — 1,2t + 2),
2t + 3,2t +2,2t — 1), (2t = 1,2t + 3,2t +2), (2t + 2,2t + 3,2t — 1),

(

( )

(2t 42,2t —1,2t +3), (2t — 1,2t + 2,2t +3), (264 3,2t — 1,2t + 2),
(2t 4 3,2t + 2,2t = 1), (26 — 1,2t 43,2t +2) (2t + 2,2t + 3,2t — 1),
( )

2t + 3,2t + 3,2t — 2), (2t = 2,26+ 3,2t + 3),(2t — 2,2t + 3,2t + 3) }.

The corresponding generator matrices GG have the property that rank(GGT) = 2
which implies that dim(Hull(C')) = 0 # 1 by Proposition 2.2.4.

Case 2. n — 1 = Sp; + S0 + S11. The existence of an [n, 2, L%"J — 1] code with hull
dimension one is given as follows.

Case 2.1. n = 0(mod 6). Then n — 1 = 5(mod 6). By Theorem 3.4.1, there exists

an [n — 1,2, F("; DJ]Q code with generator matrix G and hull dimension one. Let

G’ = [0 G]. Tt is not difficult to see that G’ generates an [n, 2, L@J] code D with

hull dimension one. Since L@J = |2| — 1, D has parameters [n,2, | 2| — 1],.
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Case 2.2. n = 2(mod 6). Then n — 1 = 1(mod 6). By Theorem 3.2.1, there exists

2(n—1)

3 J]g code with generator matrix G and hull dimension one. Let

an an [n—l,Q,L

G’ = [0 G]. It is not difficult to see that G’ generates an [n, 2, L@J]Q code D with

hull dimension one. Since L@J = L%”J — 1, D has parameters [n, 2, L%”J — 1.

Case 2.3. n = 4(mod 6). Then n — 1 = 3(mod 6). By Theorem 3.3.1, there exists

2(n—1)
3

an an [n— 1,2, L J — 1]5 code with generator matrix G and hull dimension one.

Let G' = [0 G]. Tt is not difficult to see that G’ generates an [n, 2, V("g_l)J — 15

code D with hull dimension one. Since {@J - 1= L%"J — 1, D has parameters
n,2, | 2] —1)s.
The enumeration for each case follows from Theorem 3.4.1, Theorem 3.2.1, and

Theorem 3.3.1, respectively. [

Example 3.5.3. By Example 3.4.2, we have that C is a linear code with parameters
(17,2, 8]2 generated by

0000001111 11111171
1111110000001 11T171

Let G’ = [0 G]. By Theorem 3.5.2, we have that G’ generates an optimal [18,2, 7],

code with hull dimension one.

Example 3.5.4. By Example 3.2.2, we have that C'is a linear code with parameters
(13,2, 8]5 generated by

00001TT1T11111T11
1111000011111

Let G’ = [0 G]. By Theorem 3.5.2, we have that G’ generates an optimal [14,2, 7],

code with hull dimension one.

Example 3.5.5. By Example 3.3.2, we have that (] is a linear code with parameters
(15,2, 9], generated by

000011111111 111

1=

111100000O0T1T1T1T11
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Let G| = [0 G4]. By Theorem 3.5.2, we have that G| generates an optimal [16, 2, 8],

code with hull dimension one.

Example 3.5.6. By Example 3.3.2, we have that Cs is a linear code with parameters
[15,2,9]5 generated by

000000111111 T1T11
1111110000O0O0T1T171

Let G, = [0 G3]. By Theorem 3.5.2, we have that G/, generates an optimal [16, 2, 8],
code with hull dimension one. By Theorem 3.5.2, we have that G| and G, generate

two inequivalent codes.
The above results can be summarized as follows.

Theorem 3.5.7. Let n >3 be an integer. Then

25 fn=15 d 6),
Dy(n. 51y 2 LSJ if n (mod 6)

|2} =1 if n=10,2,3,4 (mod 6).
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Chapter 4

Optimal Ternary Linear Codes

with Euclidean Hull Dimension

One

In this chapter, we focus on constructions of [n,2]3 codes with hull dimension one.
For each integer n. > 3, an optimal [n, 2|3 code with hull dimension one is constructed.

Consequently, the exact value of Dj(n, 2, 1) is presented for all integers n > 3.

4.1 Basic Concepts
From the setup in Subsection 2.3 or in [19], a linear [n,2]3 code C' with generator
matrix

=" (4.1)

&%)

can be viewed of the form C = {0, ay, ag, 201, 203, a1 + g, 201 + @, aq + 209, 201 +

2a}. From (2.3), we have aq = |ay; agp --- aln] and ap = [am Uoy -+ a2n]
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and it is not difficult to see that

I
NE
E?w

Wt(Oél) = Wt(QOél) ij) (42)
i=1 j=0
2 2
Wt(a2> = Wt(2a2> = Z Sij; (43)
i=0 j=1
Wt(Oél + OQ) = Wt(2a1 + 2042) = SOl + S(]Q + 510 + 511 + SQ() + SQQ, (44)
Wt(ZOél —+ 062) = Wt(OZl -+ 2052) = S()l -+ SOQ —+ SlO -+ 512 + SQO -+ 521. (45)
Hence,
wty(C) = min{wt (o), wt(201), wt(aw), wt(2a2), wt(ag + ),
wt (201 +200), wt(201 + @g), wt(oq + 20) }
2 2 2 2
= min{z Z Sij, Z Z Sij, So1 +:S02 + S1o + S11 + Sag + S92,
i=1 4=0 i=0 j=1
So1 4 Sz + Sig 512 4 S0 + So1}- (4.6)
From (4.1), we have
2. 2 2 2
2 2By 20 208
GGT /.4 12:1 7=0 Ziéjié (mod 3) (4 7)
3] DS 2

Example 4.1.1. Let € be the ternary linear code of length 5 with generator matrix

1 0 10 2
011 2 1
Then SIO = S()l = SH = SOQ = 521 =1 and S()() = 520 = 512 = 522 =0.In Fg, it

follows that

By (4.7), it follows that

01
which implies that rank(GGT) = 1 and dim(Hully(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4.
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From Lemma 2.3.4, it can be concluded that
3
Dy(n,2,1) < HJ (45)

Using the notations above, the exact value for D3(n,2,1) can be derived in the

following sections.

4.2 n=1 (mod 4)

In the following theorem, we give constructions of an optimal [n, 2, BTHJ |3 code with

dimesion 2 and Euclidean hull dimension one is given for all lengths n =1 (mod 4).

Theorem 4.2.1. Let n > 3 be an integer. If n =1 (mod 4), then

Dy, 2, 1) = &”J

Proof. Assume that n = 1 (mod 4). Then n = 4t +1 for some positive integer ¢ and
= 2]

4
From (3.4), it suffices to show the existence of an [n, 2, 3¢|, code with hull dimen-
sion one.

Case 1. t is even. Let C be linear code with generator matrix G of the form (4.1)

determined by
t t
Soo = 0, So1 = S10 = So2 = S20 = 512 = Sy = Sz = 3 and Sy = 3 + 1.

Then C'is an [n, 2, d]3 code, where

2 2 2

2
d = min{z Z Sij, Z Z Sij, 501 + S()Q + Slo + 511 + 520 + SQQ,

i=1 j=0 i=0 j=1
So1 + So2 + S10 + S12 + Sa0 + So1}
=min{3t 4+ 1,3t + 1,3t,3t + 1} by (4.6)

= 3t.
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From (4.7), we have

1 2
GGT =
21
which implies that rank(GGT) = 1. As desired, we have dim(Hull(C')) = 1 by
Proposition 2.2.4.
Case 2. tis odd. Let C be linear code with generator matrix G of the form (4.1)

determined by

t+1 t—1
+ and S()l:SlO:SQQ:—.

Soo = 0, Soz = S20 = Si2 = S91 = Si1 = 2

Then C'is an [n, 2, d]3 code, where

2 2 2

2
d= min{ZZSij, ZSZ‘]‘,SOI + S0z + Sio +511 + S0 + S22,

i—1 =0 i—0 =1
So1 4 Sos + Sio+ Si2 + Soo + Sa1}
= min{3t + 1,3t + 1,3t,3t + 1} by (4.6)

= 3t.

From (4.7), we have

GGT:12
= 1

which implies that rank(GG”) = 1. By Proposition 2.2.4, we therefor have dim(Hull(C)) =

1 as desired. O]

Example 4.2.2. Let t = 2. By Theorem 4.2.1 and t is even, we have that Sy =
0, S[)l = Sl() = SOQ = SQO = 812 = 511 = SQQ =1 and 521 = 2. Let C be the ternary

linear code of length 9 with generator matrix

10021122 2
0120212171

In F3, we have
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By (4.7), it follows that

2 1
which implies that rank(GGT) = 1 and dim(Hull(C)) = 2 — rank(GGT) = 1 by
Proposition 2.2.4. Then C is an optimal [9, 2, 6]3 code with hull dimension one by
(4.8).

4.3 n =2 (mod 4)

In the following theorem, we give constructions of optimal [n, 2, BT”J];), codes of

such lengths with hull dimension one where n =2 (mod 4).

Theorem 4.3.1. Let n. > 3 be an integer. If n =2 (mod 4), then

Dy, 2 1) = ﬁﬂ

Proof. Assume that n =2 (mod 4). Then n = 4¢ + 2 for some positive integer ¢ and
2] = LWJ =3t+ L.

From the bound in (4.8), it suffices to show the existence of an [n, 2, 3t + 1], code
with hull dimension one.
Case 1. t is even. Let C be linear code with generator matrix G of the form (4.1)

determined by

t t t
Soo = 0, 50125102511=§+1, 50225202521252225and512:§—1.

Then C' is an [n, 2, d]3 code, where

2 2 2 2

d = min{z Z Sij, Z Z Sij, 501 + S()Q ‘I— Slo + 511 ‘I— 520 —f‘ 522,

i=1 j=0 i=0 j=1
So1 + Soz2 + S10 + S12 + Sa0 + So1}
=min{3t+ 1,3t + 1,3t + 3,3t + 1} by (4.6)

=3t + 1.
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From (4.7), we have

GGT:12
21

which implies that rank(GGT) = 1. Hence, dim(Hull(C')) = 1 by Proposition 2.2.4.
Case 2. tis odd. Let C be linear code with generator matrix G of the form (4.1)

determined by

t+1 t—1
+ and 812282127.

Soo =0, So1 = So2 = S10 = S20 = S11 = S22 =

Then C' is an [n, 2, d|3 code, where

2 2

2. 2
d= min{zzsij, ZSZ‘]‘,SM +502 —|—510+5’11 +520+322,
i=1 j=0 =0 j=1
So1 802+ Sio + S12 + 520 + Sa1 }
=min{3t + 1,3t +1,3t + 3,3t + 1} by (4.6)

=3t + 1.

From (4.7), we have

G’GT:12
2 1

which implies that rank(GGT) = 1. Hence, dim(Hull(C)) = 1 by Proposition 2.2.4.
O

Example 4.3.2. For t = 2. By Theorem 4.3.1 and t is even, we have that Sy, =
512 = O, 502 = 520 = 521 = 522 =1 and 501 = 510 = 511 = 2. Let C be the ternary

linear code of length 10 with generator matrix

110011022 2
0011112012

In F3, we have



By (4.7), it follows that
1 2

2 1
which implies that rank(GGT) = 1 and dim(Hull(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4. Then C'is an optimal [10, 2, 7|3 code with hull dimension one.

4.4 n =3 (mod 4)

In the following theorem, we give constructions of an optimal [n, 2, BT"J |3 code with

dimesion 2 and Euclidean hull dimension one is given for all lengths n = 3 (mod 4).

Theorem 4.4.1. Let n > 3 be an integer- If n =3 (mod 4), then

a2y |21

Proof. Assume that n = 3 (mod 4). Then n = 4¢ + 3 for some positive integer ¢ and
n 3(41+3
|20 ] = L—( o )J =3t +2.
From (4.8), it suffices to construct an [n, 2,3t + 2|, code with hull dimension one.

Let C be linear code with generator matrix G of the form (4.1) determined by
Soo = 0, So1 + So2 =510 + S20= S11 + S22 =¢ + 1 and Sip + So1 = ¢.

Then C'is an [n, 2,d]3 code, where

2 2 2

2
d= min{ZZSij, ZS,-J-,Sm + 502 + S10 + S11 + S20 + S22,

i=1 =0 i=0 j—1
So1 + Soz2 + S10 + S12 + Sa0 + So1}
— min{3t + 2,3t + 2,3t +3,3t -2} by (4.6)

= 3t + 2.

From (4.7), we have

acT 21

1 2
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which implies that rank(GGT) = 1. Therefore, dim(Hull(C')) = 1 by Proposi-
tion 2.2.4. [

Example 4.4.2. Let t = 2. By Theorem 4.4.1 and ¢ is even, we have that Sy, =
0, SlO = 501 = 511 = 512 = 521 =1 and 520 = 502 = S22 = 2. Let C be the ternary

linear code of length 11 with generator matrix
10112220022

0112100222 2

In F3, we have

By (4.7), it follows that

which implies that rank(GGT) = 1-and dim(Hull(C)) = 2 — rank(GGT) = 1 by
Proposition 2.2.4. Then C"is an optimal {11, 2,8]3 code with hull dimension one by
(4.8).

4.5 n =0 (mod4)

Next lemma, we show that there does not exist [n, 2, [%”J] 3 codes with hull dimen-
sion one for all n = 0 (mod 4). Later, a construction of an optimal [n,2, |2 | — 1],

code with hull dimension one is given for all lengths n = 0 (mod 4).

Lemma 4.5.1. Letn > 3 be an integer and let C be an [n,2]3 code. If n =0 (mod 4)

and wt(C) = BT"J, then weight of every non-zero codeword is BT”J

Proof. Assume that n = 0 (mod 4) and C has parameters [n,2, |2*|]5. Then n = 4¢

for some positive integer ¢t and BT”J = 3t.
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Suppose that Syy > 0. Then, by puncturing C' at one of the zero columns, an

[n—1,2,|22|]5 code C’ is obtained. By Theorem 2.3.3, we have

3¢ — BT”J — wi(C) < L@J P

a contradiction. Hence,
Soo = 0 and n = Sp; + Soz + S1o + S20 + S11 + Siz + Sa1 + Saa.

From (4.2), (4.3), (4.4) and (4.5), it is easily seen that

Z wt(c) = 6(So1 + So2 + S0 + S20 + S11 + Si2 + So1 + Sa0) = 6n = 24¢.
ceC\{0}

Since C'\ {0} contains 8 codewords and wt(C') = 3t, every codeword in C'\ {0} has
weight 3t = BT"J 0

Lemma 4.5.2. Let n >3 be an integer.  If n. =0 (mod 4), then there are no

[n,2, |22 |]5 codes with hull dimension one.

Proof. Assume that n =0 (mod 4). Then

SlESi

Suppose that there exists-an [n, L J] 3 code C' with generator matrix G. If Sy > 0,

2,
then there exists an [n—1, 2, BT"J 2 code C” by puncturing at one of the zero columns.
)<

By (4.8), we have L?’—“J = wt(C

B { J < LS"J a contradiction. Hence, Soo = 0

which implies that
So1 + Soz2 + Sio + S20 + S11 + S12 + S21 + S22 = n.

By Lemma 4.5.1, the weight of every non-zero codeword in C' is LI"J From (4.7), we
have that
GGT =
xz 0

where z € {0,1,2} which implies that rank(GGT) = 0 or 2. By Proposition 2.2.4,
dim(Hull(C)) = 0 or 2 which means dim(Hull(C')) # 1. Hence, there are no [n, 2, | 2% |]

codes with hull dimension one. ]
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Theorem 4.5.3. Let n > 3 be an integer. If n =0 (mod 4), then

Ds(n,2,1) = B{“J —1.

Proof. Assume that n =0 (mod 4). Then n = 4t for some positive integer ¢ and

{%J_1:{@J—1:3t—1.

From Lemma 4.5.2, it is enough to give a construction an [n,2,3t — 1], code
with hull dimension one. Since n — 1 = 4t — 1 = 4(t — 1) + 3, there exists an
n—1,2,3(t — 1)+ 2 =3t — 1]; code with generator matrix G and hull dimension
one by Theorem 4.4.1. Let G' = [0 G]. It is not difficult to see that G’ generates an

[n,2,3t — 1] code with hull dimension one. O

Example 4.5.4. By Example 4.4.2, we have that C'is a linear code with parameters
[11,2, 8]3 generated by

1 0002 21221 2
0122 0012 2 21

Let G’ = [0 G]. By Theorem 4.5.3, we have that G’ generates an optimal [12,2,7]3
code with hull dimension one.

The above results on D3(n;2,1) can be summarized as follows.

Theorem 4.5.5. Let n > 3 be-an integer. Then

ml_ 1 4fn=0 d 4),
Da(n.2,1) = MJ ifn (mod 4)

Ed ifn=1,2,3 (mod 4).

g
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Chapter 5

Quaternary Linear Codes with

Hermitian Hull Dimension One

In this chapter, a brief discussion on Hermitian hull of linear codes is given as well
as the construction ideas for linear codes with prescribed Hermitian hull dimension.
From now on, we focus on quaternary linear codes of dimension two and Hermitian
hull dimension one.

Using the analysis on a generator matrix of a linear code similar to that of [7], we

derived the following results.

5.1 Basic Concepts

Let Fy = {0,1,w,w? = w+ 1} and let C be an [n, 2], code over F, with generator

matrix

ailr aig - QAip

a1 Q22 -+ A2y

ay
By setting 3, = for all 1 <[ < n, the matrix GG can be viewed of the form
agy

G:[ﬁll Bz - Binl- (5.1)
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1

Fori,j e Fy, let S;;:={l €{1,2,...,n} | B = }H. It is not difficult to see that
J

the generator matrix G and the code C are determined explicitly by the values S;;

for all 4,7 € F4. For constructions of quternary linear codes, it suffices to established

the values S;;.

Alternatively, let oy = |ay; ajp - -- G1n] and oy = [am ays -+ agy,|- Then
. 851
G and C can be view as G = and
&)

2 2 2 2
C = {O,al,ag,wal,w a1, Whg, W g, O+ G, WOy + Qg, W + g, 1 + W, O + WA,
2 2 2 2
wa + wag, w0 + wag, Wway +w Ao, W™ +iw 042},

respectively.

By inspection, it is easily seen that

wt(o) = wt(way) = wt(w?ay) Z Z Sij, (5.2)

i€F; jeF,

wt () = wt(way) = wt(w?as) Z Z S, (5.3)

1€Fy jeF}

wt(o + ag) = wt(won + way) = wi(w?a +wlay) = Z Z Sijs (5.4)

1€Fy jEF4,i#]

Wt(Oél + won) = Wt(wa1 + CL)2062) = Wt(w2a1 + 062) = Z Z Sij, (55)

i€Fy jEF, i#w]

and

wt(ag + wan) = wt(way + ap) = wt(w?aq + way) = Z Z Sij- (5.6)

i€F4 jEFy itw?]
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Let Yo = Sll + Sww + Sw2w27 Y1 = Slw2 + Swl + Suﬂwa and Yo = Sw21 + Slw + Swa-

Then we have

Z Z Sij Yo + wyr + Wy
GGh = | ' : (5.7)
Yo + Wy + wye > > Si
1€Fy jEFy

where the calculation is done in Fj,.

The construction is illustrated in the following example.

Example 5.1.1. Let C' be a quaternary linear code of length 4 determined by S1g =
So1 = S = S = 1 and Spo = Sow = Sowz = Siwz = Swo = Sw1 = Sww = Suw? =

Sw20 = Su21 = S,2 = Su22 = 0. Then the generator matrix of C' is of the form
101 1
01 1 w

Consequently, we have

Yo =1, y1 =0, and ¢y = 1.

In Fy, we have

ZZSijzland ZZSijzl.

i€Fy} jelFy i€y jEF]

By (5.7), it follows that

1 T+ w? 1w
a6t = _
14w 1 w? 1

which implies that rank(GGT) = 1 and dim(Hully(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4.
By setting £ = 2 and ¢ = 4 in Lemma 2.3.4, the next lemma follows.

Lemma 5.1.2. D{(n,2,1) < |22] for all integers n > 3.
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5.2 Optimal Quaternary Linear Codes with Her-
mitian Hull Dimension One with n = 1,2,4 (mod 5)

In this section, we focus on constructions of optimal quaternary linear codes with
dimension 2 and Hermitian hull dimension one, and establish the exact values of

Dil(n,2,1) for arbitrary lengths n > 3 such that n = 1,2,4 (mod 5).

Theorem 5.2.1. Let n > 3 be an integer. If n =1,2,4 (mod 5), then

Di(n,2,1) = L%”J
Proof. Assume that n = 1,2,4 (mod 5). From Lemma 5.1.2, it follows that D (n,2,1) <
\_%"J It remains to show the existence of a [n, 2, L%”H , code whose Hermitian hull
dimension is one.
We consider the constructions in the following 3 cases.
Case 1. n =1 (mod 5). Then n = 5t + 1 for some positive integer t. Based on the

parity of ¢, we consider the following two subcases.

Case 1.1. tis even. For 1 < r < n, let 3, be the 2 X 1 matrix over [F4 defined by

[0 1)" P < K4

0wt if L1 <r< 2
o —iftE+1<r <%
117 if3r1<r<




Let C be an [n, 2|4 code generated by

G=16 Bo - 5n]'

Then Sp1 = Sow = Swo = S11 = Suwzw? = S1u2 = Suw2w = Su21 = Sww? = %7 S0 = % + 1,

and S;; = 0 otherwise. It follows that

Yo = S11 + Sww + S22 =1,
Y1 = S1w2 + Su1 + Sz, = t, and

Yo = Su21 +S1w + Suwz = .

In Fy, it can be deduced that
I DIEFTD Py REIT
i€lf) jelFy i€y jeF;

By (5.7), we have
GGl =

which implies that rank(GG') = 1. By Proposition 2.2.4, C' has Hermitian hull
dimension 2 — rank(GGT) = 1.
By the definition of .S;; and (5.2)-(5.6), it can be deduced that

wt(a) = wt(wa,) =wt(w?ay) = 4t + 1,
wt(ap) = wt(was) = wt(w?ay) = 4t,

20q + wlap) = 4t + 1,

wt(ag + ) = wht(wag + was) = wt(w
wt(ag + way) = wt(way + wiay) = wt(w?a; + ag) = 4t + 1, and

wt(ag + wiay) = wt(way + ap) = wt(w?aq + waw) = 4t + 1.

Hence, C' has minimum weight 4t = L@J = L

4n

3 J Therefore, C' is an optimal

[n,2, | %]4 code with Hermitian hull dimension one.

40



Case 1.2. tis odd. For 1 <r < n, let 5, be the 2 x 1 matrix over [F; defined by

(

0wl if1<r<H
107 i1 <r <2
w 0]T if 2000 41 < p < 3D

[w2 w2]T if 3(15;'1) +1<r< 4(t;‘1),

w2 w]T i A ) < < B

ﬁr =
[w w?]T if —5(t;1) +1<r< —6(t;1),
(017 if S 4 g < < TS
L S B

[ W™ 5 R T < S

\[w2 1]T if 9t;3 4 1 g r S 10t+2'

Let C be an [n, 2|4 code generated by

G=18 B« 5n]'

— — o 1 T ot _ _ _ _ t—-1
Then SOw - SlO &= Sw(] T Sw2w2 y > Sw2w Tt Sww2 = "9 SOl =51 = Slo.;2 - Suﬂl - "9

2

and S;; = 0 otherwise. It follows that

Yo = Sll + Sww 13 Sw2w2 =1,
y1 = S1w2 + 501 + Se2, = t, and

Y2 = Sw21 + Slw + Sww2 =1.

In F4, we have
ZZSijzland ZZSU:O
1€F) jeFy 1€F4 jeF}

From (5.7), it can be concluded that

1
GG =

0 0
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From Proposition 2.2.4, it can be concluded that C' has Hermitian hull dimension
2 —rank(GGT) =2 —-1=1.
Using the definition of S;; and (5.2)-(5.6), we have

wt(ay) = wt(way) = wt(w?ay) = 4t + 1,
wt(ap) = wt(wag) = wt(w?ay) = 4t,
wt(ay + ag) = wt(way + way) = wt(w?a; + w?ay) = 4t + 1,
wt(ag + way) = wt(way + wiay) = wt(w?a; + ag) = 4t + 1, and

wt(ag + w?ay) = wt(way +az) = wt(w?ay + way) = 4t + 1.

Hence, C' has minimum weight 4¢ = {@J = L%”J Consequently, C' is an optimal
[n,2, |2 |]4 code with Hermitian hull dimension one.

From the two subcases, it follows that

Dy (n,2,1) = L%"J

for all n =1 (mod 5).

Case 2. n = 2 (mod 5). Then n = 5t + 2 for some positive integer ¢. Since a
quaternary linear code C'is determined by the values S;; for all i,5 € [y, in the
remaining parts, we give constructions of linear codes in terms of S;;. However, an
explicit form of its generator matrix G' can be determined in the same way as Case
1. We consider the following two subcases.

Case 2.1 t is even. Let Sp; = Syo = Sp202 = S1w2 = Su20 = Spw? = %, Sow =35 — 1,

S0 =511 = S,21 = % + 1, and S;; = 0 otherwise. It can be concluded that
Z/O == Sll + Sww + Sw2w2 = t+ 17
Y1 = S1w2 + Sw1 + Sz, = ¢, and

Yo = Sy21 + Stw + Suz =t + 1.

In Fy, it can be deduced that

Zzsijzland ZZSU:I‘

i€F}; jeFy i€Fy jeF]
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By (5.7), we have

GG =

w? 1

which implies that rank(GGT) = 1 and dim(Hullg(C)) = 1 by Proposition 2.2.4.
Based on the definition of S;; and (5.2)—(5.6), it can be deduced that

wt(a;) = wt(way) = wt(w?ay) = 4t + 3,

wt(ap) = wt(was) = wt(w?ay) = 4t + 1,
wt(ag + ag) = wt(way + way) = wt(w?ay + w?ay) = 4t + 1,
wt(ag + way) = wt(way + way) = wt(w?a; + ag) = 4t + 2, and

wt(ag + w?ay) = wt(way + ap) = wt(w o +wag) = 4t + 1.

Hence, the minimum weight of C' is 4t + 1 = L@J = L%”J As desired, C' is an
optimal [n, 2, | %] code with Hermitian hull dimension one.
Case 2.2. tis odd. Let Sl() — Sll = Sw2w2 = Slwz = Sw2w = Dy21 — Sww2 = %,

So1 = Sow = Swo = %7 and S;; = 0 otherwise. Then

Yo =811+ Stz =7+ 1,
Y = S + Su1 + Sezw =t +1, and

Yo = Sw21 +Slw+Sww2 =i +1.

In Fy, we have

> Sy=1land Y Y S;=0.

i€F% jeFy i€Fy jEF}

By (5.7), it follows that

0
GGl =

0 0

In this case, rank(GGT) = 1 and dim(Hully(C)) = 2—rank(GGT) = 1 by Proposition
2.24.
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Using the definition of S;; and (5.2)(5.6), we have

wt(ap) = wt(way) = wt(w?ay) = 4t + 3,
wt(ap) = wt(was) = wt(w?ay) = 4t + 2,
wt(ag + ap) = wt(way + way) = wt(w?ay + w?ag) = 4t + 1,
wt(a + way) = wh(way + way) = wt(w?a; + ap) = 4t + 1, and
wt(ag + w?ay) = wt(way + ay) = wt(w?ay + way) = 4t + 1
which implies that C' has minimum weight 4¢ + 1 = L@J = L%‘J In this case, C'
is an optimal [n, 2, | % |]; code with Hermitian hull dimension one.

From the two subcases, it follows that

Di¥(n,2,1) = {%"J

for all n =2 (mod 5).

Case 3. n =4 (mod 5). Then n = 5t + 4 for some positive integer ¢t. We consider
the following two cases based on the parity of ¢.

Case 3.1. t is even. Let Sp, = S19 = Suo = Su2e2 = Sue? = Su2e = 5, Sor = S =

S1w2 = Sz = % + 1, and 5;; = 0 otherwise. Then
Yo = S11 + Sww + Suze2 =t+ 1

y1= St2+Su1 +Su2, =t 1, and

Yo =S 21 + 510w + Sz =t + 1.

In F4, we have

ZZSijzland ZZSU:O‘

i€F} jeFy i€Fy jEF;

By (5.7), it can be concluded that

GG =
00

It means that rank(GG?) = 1 and C has Hermitian hull dimension one by Proposition

2.2.4.
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From the definition of S;; and (5.2)-(5.6), it can be deduced that

wt(a;) = wt(way) = wt(w?ay) = 4t + 3,

wt(ap) = wt(was) = wt(w?ay) = 4t + 4,
wt(ag + az) = wt(way + way) = wt(w?ay + w?ay) = 4t + 3,
wt(ag + way) = wt(way + wiay) = wt(w?ay + ag) = 4t + 3, and

wt(ag + w?ay) = wt(way + az) = wt(w?a; + wag) = 4t + 3.

J. Therefore, C' is an optimal

4(5t+4)J V_n
5 5

Hence, C' has minimum weight 4t + 3 = {
quaternary linear [n, 2, L%Jh code with Hermitian hull dimension one.
Case 3.2. tis odd. Let Sp1 = Sow = Suo = Si1 = Su202 = S1w2 = Sp2 = Sp21 =
S = %, Sio = %, and S;; = 0 otherwise. Then

Yo = S11 + S+ S =t +1,

1 = Stz + Set + S,z =t+ 1, and

Yo = Su21 + Sy + Sz =t+ 1.

In Fy, it can be deduced that

YN Sy=1and Y > S;=0.

1€Fy jEF4 i€Fy jEFy
By (5.7), we have
1

0
GG =
0.0

which implies that rank(GG?T) = 1 and dim(Hully(C)) = 2 — rank(GGT) = 1.
Applying the definition of S;; and (5.2)—(5.6), we have
wt(ay) = wt(way) = wt(w?ay) = 4t + 3,
wt(ap) = wt(was) = wt(w?ay) = 4t + 4,
wt(ag + ag) = wt(way + way) = wt(w?ay + w?ay) = 4t + 3,
wt(ag + way) = wt(way + wiay) = wt(w?a; + ag) = 4t + 3, and

wt(ag + w?ay) = wt(way + ay) = wt(w?ay + wag) = 4t + 3
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which implies that wt(C') = 4t + 3 = L@J L%"J Consequently, C' is an optimal

[n,2, | %]]4 code with Hermitian hull dimension one.

From the two subcases, it can be concluded that

Di(n,2,1) = L%”J

for all n =4 (mod 5). O

Example 5.2.2. Let t = 2. By Theorem 5.2.1 and t is even, we have that Sy; =
SOw = Pwd — Sll - Sw%ﬂ = Slw2 - Swa = Pw?l — Sww2 - 17510 = 2 and Sij =0
otherwise. Let C' be a quaternary linear code of length 11 with generator matrix
10170/ 0w 1o w? (1) w? w? w
00 1w 01« w' v 1 w?

Then By Theorem 5.2.1, it can be deduced that
Yo =1,y =1t, and yo = t.

In Fy, we have

ZZSijzland ZZSZ'j:O.

i€F}; jEF, i€y jEF

By (5.7), it follows that
GG' =
0 0

which implies that rank(GGT) = 1 and dim(Hullg(C)) = 2 — rank(GGT) = 1 by

Proposition 2.2.4. Then C' is an optimal [11, 2, 8]4 code with hull dimension one.

5.3 Bounds on Di(n,2,1) with n = 0,3 (mod 5)

In this section, we focus on the two remaining cases where n = 0,3 (mod 5).
For these cases, we provide good lower and upper bounds on the minimum weight of
[n,2]4 codes with Hermitian hull dimension one. Precisely, upper and lower bounds

on Di(n,2,1) are given with the gap one.
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Theorem 5.3.1. Let n be a positive integer. If n = 0,3 (mod 5), then there exists

an [n, 2, L%”J — 1]4 code with Hermitian hull dimension one.

Proof. Assume that n = 0,3 (mod 5). We consider the following two cases.

Case 1. n =0 (mod 5). Then n—1 =4 (mod 5) and n = 5t for some positive integer

4(n—1)
5

t. By Theorem 5.2.1, there exists an [n — 1,2, { J]4 code C' with Hermitian hull

dimension one. Let G be a generator matrix for C' and let C” be a quaternary linear

code generated by G’ = [0 G]. Since

{4@5— 1>J _ {4(&5— 1>J Adi— 1 — {@J 1= T%”J -1,

it follows that C” is an [n, 2, F("_l)J]z = [n,2, %] — 1] code with Hermitian hull

5

dimension one.

Case 2. n =3 (mod 5). Thenn — 1 =2 (mod 5) and n = 5t 4+ 3 for some positive

4(n—1)

= J]4 code C with Hermitian

integer t. By Theorem 5.2.1, there existsan [n—1, 2, [
hull dimension one. Let G be a generator matrix for C' and let C” be a quaternary

linear code generated by G" = [0 G]. Since

o o) )

it can be easily seen that C’is an [n,2, [@J]g =[n,2,|2| — 1] code with Her-

mitian hull dimension one. O]

Example 5.3.2. By Example 5.2.2, we have that (' is a linear code with parameters
[11,2, 8], generated by

1100 w1l w2 1 w W w

001 w01 w? w? w 1 W

Let G’ = [0 G]. By Theorem 5.2.1, we have that G’ generates an optimal [10,2,7]3

code with hull dimension one.

Corollary 5.3.3. Let n be a positive integer. If n = 0,3 (mod 5) then
4 4
{E"J ~1<DH(n,2,1) < LE"J
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Proof. While the lower bound is given in Theorem 5.3.1, the upper bound is guaran-

teed by Lemma 5.1.2. O

Constructions and bounds on quaternary linear codes with dimension two and
Hermitian hull dimension one have been studied. Optimal quaternay [n,2]; codes
with Hermitian hull dimension one have been constructed for all lengths n > 3 such
that n = 1,2,4 (mod 5). Good lower and upper bounds on the minimum weight
of quaternay [n,2]4 codes with Hermitian hull dimension one have been given for all

lengths n = 0,3 (mod 5). The above results are summarized as follows.

Theorem 5.3.4. Let n > 3 be an integer. Then
o 4n =
D, (n,2,1) = { for-alln =1,2,4 (mod 5)
and

4 4
{EnJ — 1< D¥(n,2,1) < {%J for all n = 0,3 (mod 5).

Based on our inspection, we propose the following conjecture.

Conjecture 5.3.5. D}(n,2,1) = |22 | — 1 for all positive integers n = 0,3 (mod 5).
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Chapter 6

Conclusion

In this chapter, we summarize the existence of binary and ternary linear codes
with Euclidean hull dimension one and quaternary linear codes with Hermitian hull
dimension one. For a linear [n,k,d|, code, the minimum weight d measures the
efficiency of the code. A linear code C' is optimal if C' has the highest minimum
weight amoung all linear [n, k|, codes. Precisely, a linear code with Euclidean hull
dimension one and Hermitian hull dimension one are optimal if d = D,(n, k, 1) and
d = Df (n,k, 1), respectively. The results in Chapters 3-6 are summarized in the

following tables.

49



Table 6.1: Existence of optimal [n,2,d]s and [n,2,d]3 codes with dimension two Eu-

clidean hull dimension one.

q n d Optimal Remark
n=0 (mod 6) | %] -1 v Theorem 3.5.2
n =1 (mod 6) |2 ] v Theorem 3.2.1
n=2(mod6) | [&] -1 v Theorem 3.5.2

’ n =3 (mod 6) | %] -1 v Theorem 3.3.1
n=4 (mod6) | |%] -1 v Theorem 3.5.2
n =5 (mod 6) | 2] v Theorem 3.4.1
n=0 (mod4) ||| -1 v Theorem 4.5.3
n =1 (mod 4) ES v Theorem 4.2.1

’ n =2 (mod 4) |22 ] v Theorem 4.3.1
n = 3 (mod 4) 2] v Theorem 4.4.1

Table 6.2: Existence of optimal [n,2,d]s codes with dimension two and Hermitian

hull dimension one.

q n d Optimal Remark
n=0 (mod5) | [£] -1 7 Theorem 5.3.1
n =1 (mod 5) |42 ] v Theorem 5.2.1

4| n=2(modH5) E3 v Theorem 5.2.1
n=3(mod5) | [£] -1 ? Theorem 5.3.1
n =4 (mod 5) 4] v Theorem 5.2.1
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In Table 6.1 and 6.2, n > 3 is a positive integer, d in the three column indicates
the maximum minimum weight constructed in the corresponding theorem, and v
(resp., ?) certifies the optimality (resp., the open cases).

The study of D,(n,k,1) and Df(n, k,1) for all possible values ¢, n, k, and [ is an

interesting problem.
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