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Chapter 1

Introduction

Throughout this thesis, let n, k be positive integers and let o(n) be the
sum of all positive divisors of n. We call n a perfect number if it is equal to the sum
of its proper divisors, that is o(n) = 2n. For example, 6 and 28 are perfect numbers
since 0(6) = 1424346 = 12 = 2x6 and 0(28) = 14+24+4+7+14+28 = 56 = 2x28.
Euler proved in 1747 that an even perfect number is of the form 2P~1(2? —1), where
both p and 2P — 1 are primes. The primes of the form 27 — 1 are called a Mersenne
prime where p is prime. List of Mersenne primes is shown as A000668 in the
On-Line Encyclopedia of Integer Sequences (OEIS). We do not know whether the
set of Mersenne primes is finite or infinite, so we do not know whether there are
infinitely many even perfect numbers. Currently only 51 even perfect numbers are
known and the largest known even perfect number i 282989932(282589933 _ 1)[1()].
On the other hand, it is not known whether an odd perfect number exists. Ochem
and Rao proved in 2012 {18] that any odd perfect number is greater than 105
and it has at least 101 not necessarily distinct prime factors and that its largest
prime power divisor is greater than 10°2.

Various authors have defined concepts that are closely related to perfect
numbers. A positive integer n is called deficient if o(n) < 2n and n is called
abundant if o(n) > 2n. In 1965, Sierpinski [29] defined n to be pseudoperfect if n
can be written as a sum of some (or all) of its proper divisors. In 2012, Pollack
and Shevelev [21] studied a subclass of pseudoperfect numbers and introduced the
concept of k-near-perfect numbers. A positive integer n is called k-near-perfect if n
is the sum of all of its proper divisors with at most k exceptions (called redundant
divisors). 1t is called ezactly k-near-perfect number if it is a sum of all of its proper
divisors with exactly k exceptions. A positive integer n is called near-perfect with

redundant divisor d if d is a proper divisor of n and o(n) = 2n + d and n is



called quasiperfect if o(n) = 2n+ 1. Pollack and Shevelev [21] presented an upper
bound on the count of near-perfect numbers and proved that there are infinitely
many exactly k-near-perfect numbers for all large k. In 2013, Ren and Chen
[27] determined all near-perfect numbers with two distinct prime divisors. Tang,
Ren, and Li [35] proved that there are no odd near-perfect numbers with three
distinct prime divisors. In 2015, Li and Liao [15] gave two equivalent conditions
of all even near-perfect numbers of the form 2%p;p, and 2%p?p, where p; and
po are odd primes with p; < py. The following year, Tang, Ma, and Feng [34]
showed that the only odd near-perfect number with four distinct prime divisors is
173369889 = 3472112192

A positive integer n is said to be ezactly k-deficient-perfect if o(n) =
2n —dy — dy — - - - — dj, for some distinct proper divisors dy, ds, . .., d; of n. In this
case, dy,ds,...,d; are also called deficient divisors of n. For k£ = 1, it is called
deficient-perfect. Moreover, n is called almost perfect if o(n) = 2n — 1. In 2013,
Tang, Ren and Li [35] determined all deficient-perfect numbers with at most two
distinct prime divisors. In 2014, Tang and Feng [33] showed that there are no
odd deficient-perfect numbers with three distinct primes divisors. Recently, Chen
[5] determined all odd exactly 2-deficient-perfect numbers with two distinct prime
divisors. Sun and He [32] also showed that the only odd deficient-perfect number
with four distinct prime divisors is 9018009 = 3272112132, In this work, we show
that the only odd exactly 3-deficient-perfect number with at most two distinct
prime divisors is 1521 = 32 - 132,

This thesis is composed of 3 chapters. In Chapter 1, we introduce prob-
lems concerning the sum of divisors, generalization of perfect numbers, and lit-
erature review. After this introduction, definitions, preliminaries, and lemmas
concerning the sum of divisors, generalizations of perfect numbers, and p-adic val-
uation are described in Chapter 2. In Chapter 3, we present the main results. For
related problems of the divisor functions or divisibility problems can be found in

[1,2,3,8,9,12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 28, 31, 36].



Chapter 2

Preliminaries and Lemmas

In this chapter, we give definitions, preliminaries, and lemmas concerning

the sum of divisors, generalizations of perfect numbers, and p-adic valuation.

Definition 2.1. For each positive integer n, we define o(n) to be the sum of all

positive divisors of n.

Definition 2.2. An arithmetical function f is said to be multiplicative if f is not

identically zero and if f(mn) = f(m)f(n) for every m,n € N with (m,n) = 1.

Theorem 2.3. The function o _is multiplicative and satisfies
C'lj+1 73
o(n) =[] 2=

g1 pj—l

J]=

where n = pi'py® - ~pi¥ is the canonical factorization of n.
Definition 2.4. A positive integer n is said to be perfect if o(n) = 2n.

Definition 2.5. A positive integer n is said to be k-near-perfect if n is expressible
as the sum of all its proper divisors with at most k exceptions (called redundant
divisors). Moreover, we say that n is exactly k-near-perfect if n can be written as a
sum of all of its divisors with exactly k exceptions that is o(n) = 2n+dy+ds - - -+d
and it is called near-perfect if o(n) = 2n +d.

Definition 2.6. A positive integer n is said to be exactly k-deficient-perfect if
o(n) =2n—dy —dy - - - — dj, for some distinct positive proper divisors dy, ds, . . ., dy
of n and dy,ds,...,d, are called the deficient divisors of n. Furthermore, n is
k-deficient perfect if n is perfect or n is exactly [-deficient perfect for some [ =
1,2,..., k. In addition, a number that is 1- deficient-perfect is called a deficient-

perfect number.



The following two lemmas concerning deficient-perfect numbers are stated

and we will extend these lemmas in Chapter 3.

Lemma 2.7. [33] Let n = [['_, pi* be the canonical factorization of n. Ifn is an
odd deficient-perfect number, then the exponents «; are even for all i.

Lemma 2.8. [35] Let n be a prime power. If n is a deficient-perfect number, then

n = 2% with deficient divisor d = 1.

Definition 2.9. For each positive integer n and each prime p, v,(n) denotes the
p-adic valuation of n, which is defined to be the exponent of p in the canonical

factorization of n.
Theorem 2.10. For positive integers m and n, the following statements hold.
(i) vp(mn) = vy(m) + vy(n).

(11) vy(m +n) > min{v,(m), v,(n)}.



Chapter 3
Main Results

In this chapter, we give some lemmas and main results. As shown in
Lemma 2.7, Tang and Feng showed that if n is odd and n is deficient-perfect, then
n is a square. We can extend their result for exactly k-deficient-perfect numbers

as follows.

Lemma 3.1. Let n and k be positive integers. Suppose that n is odd ezxactly
k-deficient-perfect. Then n is-a square if and only if k is odd. In particular, if n

is odd exactly 3-deficient-perfect, then n is a square.

Proof. Since 1 has no proper divisor, we assume that n > 1 and write n =

prtps? - - - p2r, where py,po, ... py are distinet primes and aq, as, ..., «, are posi-
tive integers. Then there are divisors di, ds, ..., dy of n such that
2n —dy =dy— -« —di=o(n) = Ho(p?") = H(l +pi+--+pi). (3.1)
i=1 i=1

Since n is odd, we obtain that d; and p; are odd for every i = 1,2,...,k and
j=12,...,r. Reducing (3.1) mod 2, we get k= []'=,(a; + 1) (mod 2). We have

the equivalence: k is odd < «;is even forall © < n is a square. [

Moreover, we extend the result of Tang, Ren, and Li in Lemma 2.8 from

deficient-perfect number to exactly k-deficient-perfect numbers.

Lemma 3.2. Let n > 2, k > 1 be integers. If n is a prime power and n is an
exactly k-deficient-perfect number, then k = 1 andn is a power of 2. Consequently,
if n is an exactly k-deficient-perfect number and k > 2, then n has at least two
distinct prime divisors. In particular, every exactly 3-deficient-perfect number has

at least two distinct prime divisors.



(e}

Proof. Suppose that n = p® is an exactly k-deficient-perfect number with & defi-

cient divisors d; = p%, where p is a prime and «, f5; are integers with a > 3 >

Bo > ...> [ >0. Then

U(n):2n—d1—d2——dk

(e B1

a(p®) = 2p" —p” —p*

—pP— P
P =1=2p 1) = " PP+ M) - 1)
P+ 4+ ) - 1) = L=p* = 2p°

P +p” 4™ -1) - 1=p%(p - 2). (3:2)
If p > 3, we have that

pagpa(p_Q):(pﬂl _|_p52++p5k)(p_1)_]_
<@ R+ 1) -1
=" T S T T ™) -

=p¥ =p* K =,

which is a contradiction. Therefore p =2 and n is a power of 2. By (3.2), we

obtain dy +- - ++dy = pPL+p”? +- - +p% = 1, which implies k = 1 and 3, = 0. [
Now, the main result of this research is presented.

Theorem 3.3. The only odd exactly 3-deficient-perfect number with two distinct
prime divisors is 1521 = 3% - 132 and deficient divisors are d; = 507, dy = 117,
and ds3 = 39.

Proof. Assume that n = p%apgﬁ is an exactly 3-deficient-perfect number with dis-
tinct deficient divisors di,ds, and ds, where p; and p, are two distinct primes
such that 2 < p; < p9, a,8 > 1, and dy > dy > d3. Then a(p%apgﬁ) =

2930y — dy — dy — ds, where dy = p*pbt, dy = pi*p%, ds = pi*p%, Dy = -
1



Then

,_ o) | dy ds ds

+ +
ey’ pepy  preps”  plepy’

P -2 -1 1 11
T - D P | Di Dy Dy
SR i CxiantE SO N
(pr = D(p2 = pieps”  Dv Do D
D1D2 1 1 1
T —Dm-1 D D, Dy

If p1 > 5, then

P1P2 1 1 1

5.7 1 1
2 < <t s 18411
G- Dm-D D Dy D16 5 7% :
which is a contradiction. So p; = 3 and
o(32p) 1 1.1 3" p 11
g=—" 22/ oy —_— = 3.3
g2 DD Dy 2 metl DD Dy 3P

If po > 83, then from (3.3), we get
o o@epy) 11 1
325" Dy Dy D
which is not possible.
S0 5 < ps < 79, that is ps € {5,7,11,13,17,19,23, 29, 31, 37, 41, 43, 47, 53,
59,61,67,71,73,79}.
For p, > 11, if Dy > 3, then from (3.3), we get

c(3epy 1 11311 1 1 1
9=—-2/ <. 44— - =18890...
322" " D, ' Dy ot T T ’

which is impossible. So Dy = 3.
For py > 23, if Dy > 9, then from (3.3), we get

c(3epy 1 1 1 323 1 1 1
_ S o =1.9820...
32002 " D, ' Dy D, rmt3Tm ’

which is also impossible. So Dy = 9.
Consider p,, we have the following eleven subcases.
Case 1. py € {47,53,59,61,67,71,73,79}.

We have Dy =3, Dy =9, and D3 € {27,p5,81,...}.



If D3 > py, then from (3.3), we get

o(3¢p) 1 1 1 3 47 1 1 1

9 _ e T 19983
s Dy Dy Dy 2 4639 @ |

we have a contradiction. So D3 = 27 implies 2o > 3. Then

a(n) = o(37p*)
(32a+1 _ 1) (p226+1 _ 1)

2 P2 — 1
32a+1p226+1 _ 32a+1 _ p22,8+1 + 1
2(P2 - 1)
81 - 3204—3 28+1 _ 32a+1 o 26+1 1
_ D2 D2 + (3.4)
2(292 - 1)
and
o(n) = o(3%p,*")
— 9. 32ap225 - 32a—lp226 X\ 32a—2p§5 4 32a—3p22ﬁ
= 32073,%0(2. 32 =32 L3 1)
=41 - 327%py%8 (3.5)

From (3.5) and (3.4), we get
81 . 3201—3p22ﬁ+1 A\ 32a+1 1] p226+1 _|_ 1 _ 82(p2 - 1)32&—3p22ﬁ
8]. . 32a—3p22ﬂ+1 N\ 32a+1 o p225+1 _|_ 1 L 82 . 320[—32722,34—1 [ 4 82 . 32&—3])225

D p22,3+1 —1

—82p% — pPH - 81

(3.6)

From (3.6), we obtain

47 -47%F 1 12 - 47%° + 80

=47 3 s ————— =1 —————
P2 =206 35479 —81 ' 35.4729 _81

53-53% — 1 _1+24-5325+80
205328 — 81 20 . 5326 — 81

U+
=14+ —81 - (1,2)
29 — £328

py =53; 377 =



which is not true.

by — 50; 323 — 5959 —1 __ 13-59%7 4161
2 ’ 23 - 5928 _ 81 23 . 5928 _ 81
161
13 + £o%
=2+ 31 € (2, 3)
23 — o7
by — 61 38 — 61-61 -1 19-61*° +161
2 ’ 216128 — 81 21-6128 — 81
161
19+ =55
=24+ —81 € (2, 3)
21— oo
L6728 — 1 6728 1 323
Py = 67; 32073 = w :4+&
15 - 6726 — 81 15 - 6728 — 81
- 323
2
2\ 45 —6213 € (4,5)
15 — =05
717128 -1 5-71%% 4 485
_ . Q200—3 __ —
p2 =171 3 117128 — 81 711 7128 — 81
A 485
—6+—T2" € (6,7)
11— e
737328 7328 1 647
9.7328 — 81 9.7326 — 81
) 647
2
=84+ 137 € (8,9)
G 7328
797928 — 1 79%% 4 2105
=79 820=3/ L i s L9gy ——  TT T
pz =793 307926 L 81 T3 7027 _g1
- 2105
=26+ —197 € (26,27).
7928
Thus this case cannot hold.
Case 2. py € {37,41,43}.
We have D; = 3, Dy =9, and D3 € {27,p,,81,...}.
If D3 > 81, then
20,28 1 1 1 1
g0 L L L 38T L L gosa
3252 " Dy Dy Dy 236 3 9 81
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So Dy =3,Dy=29,and D3 € {27,]?2}.
Case 2.1. D; =3, Dy, =9, and D3 = 27. Then 2« > 3. From (3.6),

we get
37-37% -1
— . 200—3 — 1
p2 =373 5375 g1 < (O
41-41% —1 80
_ 41 200—3 — — 1 e 1 2
p2 =4k 3 o —s T g €2
43.43%% 1 4.43%° + 80
— 4 . 2a—-3 - = _— ]_ 2 .
pz =433 30 437 81 " Tag g g <2
Thus this case cannot hold.
Case 2.2. D; =3, Dy =9, and D3 = ps.
For p; = 37, we get
o(n) = 0(320‘372'8)
|, (32a+1 o 1) (372,8+1 Y 1)
[ 2 36
32a+13725+1 — 3241 _ 37264-1 +1
7 72
36963 - 3272372071 — g2l _ 37 4 ]
= (3.7)
72
and
o(n) = o (3237%)
—9. 32043725 o 3204—1372ﬂ - 32&—23725 o 32(13725—1
— 3207237%6=1(2.3%.37 =3 .37 — 37— 3%
= 509 - 32072372071, (3.8)

From (3.7) and (3.8), we get

36963 - 32023720-1 _ 32a+1 _ 3720+ | | — 36648 - 322237201

q2a—z _ 1369 3721 -1
315 3728-1 27
109 - 37261 4107

=4 4 5
t S5 gy €40

which is a contradiction.
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For p; = 41, we get

o(n) = o(3%*41%)
(32041 — 1) (41%°F1 — 1)

2 40
32a+13725+1 _ 32a+1 _ 3726+1 +1
- 80
_ 4b387 - 322412071 — 2ol _ 4120 4] (3.9)
B 80 '
and
o(n) = 0 (3%*41%)
—9. 320{4125 V4 32a—1412ﬁ _ 32&72412/5 _ 32(1412571
= 32072412712 3% . 41 — 341 — 41 — 3?)
= 565 - 372241771, (3.10)

From (3.9) and (3.10), we get,

45387 - 3207241281 g2a+l_ 4128FT L — 45900 - 32 241%61

qtald L 1681~ 41261 — 1
187 -4128-1 — 27
185 - 412°-1 4+ 215

=8 8,10).
5, 187 - 4128=1 — 27 € (8,10)

We must have

185-41°771 4215
187 - 4128-1 — 927

185 - 412971 4 215 =187 - 412/~1 — 27

242
2 )

32 =8+4 9
41%71 =
which is impossible.
For py, = 43, we get

o(n) = o(3%*43%)
(32041 — 1) (43%°F1 — 1)

2 42
B 32a+14325+1 _ 32a+1 . 432B+1 +1
B 84

49923 - 32072432071 _ gadl _ 4326+L 4
- 84

(3.11)
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and

o(n) = o(3*43%)
—9. 32&4325 . 3204—1432,8 o 32&—2432ﬁ . 320{4326—1
= 3207243%071(2. 3% .43 — 343 — 43 — 3?)

= 593 - 3207243771, (3.12)
From (3.11) and (3.12), we get

49923 . 320724326-1 _ g0+l g328+1 | | _ 49819 . 32243261

jeaz _ 1849 - 43201 — 1

111 -4328-1 - 27
73432071 1431
111 -4328-1 — 27

%116 4 € (16,17),

which is a contradiction.
Case 3. p, = 31.

We have Dy = 3, Dy = 9; and D3 € {27,31,81,93,243,...}.
If D3 > 243, then

3203128 1 1 1 3 31 1 1
_of IS INGAL €3 ALY L ges.

1
90— v/ 2z
33e8i=¢ Dy Dy Dsg 2 30 3 9 243

which is not possible.
So Dy =3, Dy =9, and D3 € {27,31,81,93}
Case 3.1. D; =3, Dy =9, and D3 = 27.
313128 =1

From (3.6), we have 3273 = 51 31 8l © (0,1), which is false.

Case 3.2. D; =3, Dy =9 and D3 = 31. We have

o(n) = o(3%*31%)
(32041 — 1) (312°+1 — 1)

2 30
_ 32a+13125+1 o 32a+1 o 312,B+1 + 1
B 60

o 25947 . 320—23126—1 _ g2a+1 _ 3126+1 11

- (3.13)
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and

o(n) = o(3*31%)
—9. 32(13125 o 320471312B . 320(723125 - 3201312,371
= 3207231%71(2.3%.31 —3-31 — 31 — 3?)

= 425 - 327231%71, (3.14)
From (3.13) and (3.14), we get

25047 - 320—23120-1 _ g2a+1 _ 3128+ 4 1 = 25500 - 320231271

s2a-2 _ 961 - 3121 —1

447 - 3126-1 — 27
67 - 31281 + 53
473151 _97 ©

QYo (2,3),

which is a contradiction.

Case 3.3. D; =3, Dy =9, and D3 = 81. Then 2a > 4 and so

a(n) = o(3%31%)
(32041 — 1) (312PHL — 1)

2 30
3204—}—1312,8—}—1 . 32a+1 W, 312B+1 |
A 60
7533.. 320743120 32+ _3128+1 1
~ / (3.15)
60
and
o(n) = o(3*31%9)
9. 32043126 - 3204—1312ﬁ o 320&—2312ﬂ o 3204—4312,3
= 3207131%6(2.3* - 3% - 32 - 1)
= 125 - 3207129% (3.16)

From (3.15) and (3.16), we get

7533 - 320743120 _ g2atl _ 3128+1 4 1 — 7500 - 3249928

31.31%% _ 1
200—4 __
S = g oz € (01
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which is false.

Case 3.4. D; =3, Dy =9 and D3 = 93. We have

o(n) = o(3**31%)
(32041 — 1) (312°+1 — 1)

2 30
32a+13125+1 - 32a+1 . 312,B+1 41
- 60
25947 . 320172312671 o 32a+1 . 312B+1 1
_ + (3.17)
60
and
o(n) = o(3%231%)
—9. 32&312[‘3 N 320{-13125 -\ 320472312B - 320471312,871
= 3207231%°-1(2.3%. 31— 3.31 - 31 —3)
=431 - 320723127, (3.18)
From (3.17) and (3.18), we get
25947 - 32072312671 i g2a+l 312641 ] = 9586() - 3227231281
qeatz 961 - 31%- L —1
87-3126-1 — 27
4.31%-1 206
=11 11,12
+ g7 gt g7 € (1L 12)

which is not possible.

Case 4. py =29. We have D; = 3, Dy =9, and D3 € {27,29,81, 87,243,
261,729,...}.

If D3 > 729, then

o(320292%) 1 1 1 3 29 1

1 1
—+=—+=< -+ =——=1.9993...
3202928 +D1+D2+D3 2 28 3+9+729 ’

which is not true. So Dy =3, Dy =9, and D5 € {27,29,81,87,243,261}.

Case 4.1. Dy =3, Dy =9, and D3 = 27. Then 2a > 3.

29-29% — 1
From (3.6), we get 3%*73 = T3 .20 — 8] € (0, 1), which is a contradiction.



Case 4.2. D; =3, Dy =9, and D3 = 29. We have

o(n) = o(3%*29%)
_ (3 1) (207 1)

2 28
32a+12925+1 _ 32a+1 - 29254-1 11
- 56
22707 - 32072292071 _ 2o+l _ 9926+l 4
N 56

and

o(n) = 0(32*29%)
—9. 32042925 . 320441292& o 32&*2292/5 o 32(1292571
= 3297229%71(2. 3% .29 — 3.29 — 29— 3?)

= 307 3% 72297071,
From (3.19) and (3.20), we get

22707 - 3207299281 _g2a+l _9qg28+Ll 11— 99939 . 3207299261

= 841-29%1 —1
© 475.2928-1 _ 27
366+ 29%°71 + 26

=1+

47529261 — 27

which is false.

15

(3.19)

(3.20)

€(1,2),

Case 4.3. D; =3, Dy =9, and D3 = 81. We have 2a > 4. Then

o(n) = o(3%*29%)
_ (3 1) (207 1)

2 28
_ 32a+12926+1 _ 32a+1 _ 292ﬂ+1 + 1
B 56

7047 - 3207429%0 — gl _ 9920+ 4 ]
56

(3.21)
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and

o(n) = o(3%29%)
—9. 32(12925 o 320471292B . 320(722925 - 320174292ﬁ
= 3207129%0(2.31 — 3% 32 1)

= 125 - 327129% (3.22)
From (3.21) and (3.22), we get

7047 - 320719928 _ 32041 _ 9928+1 1 1 — 7000 - 32*~129%8

29.29%6 _ 1
s 0,1
47 - 2928 — 243 €(0.1),
which is a contradiction.
Case 4.4. D1 =3, D, =9, and D3 = 87. We have
o(n) = o(3%229%)
(32a+1 A 1) (2925—4—1 _ 1)
~ 2 28
32a+1292ﬁ+1 1 32a+1 — 2926—1—1 i 1
(( 56
22707 | 320:722926—1 = 32a+1 _ 29264—1 1
s " (3.23)
56
and
o(n) = o(32229%)
—9. 3201292,3 _ 320471292,3 _ 32&722925 o 320471292ﬁ71
= 320729926-1(2.32.29 — 3.29 — 29 — 3)
= 403 - 3207229771, (3.24)
From (3.23) and (3.24), we get
22707 - 32072992F—1 _ 32atl _ 9920+l | 1 — 99568 . 32*~229%F~1
9202 _ 841 -29%6-1 _ 1
139 . 2928-1 _ 27
729281 4 161
=6 6,7
+ 139 . 2928-1 _ 27 €(6.7),
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we have a contradiction.

Case 4.5. D; =3, Dy =9, and D3 = 243. Then 2a > 5. We have

o(n) = o(3%*29%)
(32041 1) (292941 — 1)

2 28
32a+12926+1 o 32a+1 o 292ﬁ+1 +1
B 56
21141 - 329752928 — 320+l _ 9920+ 4 ] (3.25)
— = .
and
o(n) = o(3%%29%9)
—9. 320{292ﬁ Q! 3204—1292,3 \ \ 32&-22925 . 320{75292[3
= 3P0 (2% = 1L 3/
= 377 - 56 - 3227729 (3.26)
From (3.25) and (3.26), we get
21141 - 320752928 _ 32a+l _ 9926414 1 = 91112 - 56 - 322752928
N 2926+1 _ 1
2925+1 _ 729
728
=14+ (1.2
1593t — 799 © (1,2),
which is false.
Case 4.6. D; =3, Dy =9, and D3 = 261. We have
o(n) = o(32*29%)
B (32a+1 o 1) (2925+1 . 1)
N 2 28
_ 3201—‘,—129254—1 o 32a+1 o 292,3+1 + 1
N 56
22707 - 320229701 — 32l _ 9920+ 4 (3.27)

56
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and

o(n) = o(3%*29%)
—9. 32&292[3 o 320{—12925 o 32&—2292B . 3204—2292,8—1
= 32072992071(2.3%.29 — 3.29 — 29 — 1)

= 405 - 56 - 32272292771, (3.28)
From (3.27) and (3.28), we get

22707 - 3207299201 _ 32a+1l _ 9g2A+l 1 1 — 99680 - 56 - 32*229%01

s2a2 _ 841 - 2926-1 _ 1
927.2926-1 _ 97
4.2920-1 4 836

=31 1
8L oragt — g7 € (BL33),

which is impossible.

Case 5. py = 23. We have D; =3 and Dy = 9. Recall that ds = 39323,

Then
o(n) = a(32*23%*)
S (32a+1 Va 1) (2325—1—1 - 1)
\| 2 292
32a+12326—|—1 \ 32a+1 . 232ﬁ+1 41
S 14
621 - 320=29328-—_ 32041 932641 4
J i (3.29)
44
and

o(n) = o(3*23%9)
= 2.3%023% — 3%7123%0 _ 3229320 _ 3eagghs
=3%7%23%7(2.3° =3 — 1) — 44 - 3%23"

= 14320729320 _ 44 . 39393b3, (3.30)
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From (3.29) and (3.30), we get

621 - 320729320 _ 32+l _ 932041 4 1 — 616 - 322722328 _ 44 . 323"

5-3207293% — 3Pl _ 9320l — 1 — 44 3%23%

2 2
(5-3%72 - 23) <2325 — g) = 23'37 —1—44-3% .23

(53272 —123) (5-23% — 27) = 616 — 220 - 3% - 23", (3.31)

If @« > 2, then the left-hand side of (3.31) is more than 616, we get a
contradiction.

So a =1, and so =18 (5 232 — 27) =616 — 220 - 3% - 23> We see that
3|18 and 31616, so az = 0. That is =18 (5 - 23% — 27) = 616 — 220 - 23%. We see
that —18 (5232 — 27) = 5(0 —4) = 3 (mod 23) but

18 — 0 = 18 (mod 23), if by > 1
396 = 5 (mod 23), if by = 0.

616 — 220 - 23% =

Thus this case cannot hold.
Case 6. p» = 19. We have D; = 3 and {Ds, D3} C {9,19,27,57,...}.
If Dy > 19 and D3 > 57, then from (3.3) implies that

o(32019%%) 1 1 1319 1 1. 1
=" 2 Dy Sl et s iy - 1.9868...
321029 "D, "D, Dy 2 18 37197 &7 ’

which is not true.
So (D2 = 9) or (DQ =19 and D3 = 27)
Case 6.1. D; =3 and Dy = 9. Recall that ds = 3% - 19%. Then

o(n) = 0(3*19%)
(32041 — 1) (19%°F1 — 1)

2 18
B 320{—‘,—11925—1—1 _ 32cx—|—1 _ 1926—}—1 + 1
B 36

_57.3%19%0 — 32l — 192+ 4]

= (3.32)
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and

o(n) = o(3**19%)
= 2. 3219% — 3% 1197 — g2a21920 _ 3esqgn
= 3207219%0(2.32 — 3 — 1) — 319"

= 14 - 320721920 _ 39319%, (3.33)
From (3.32) and (3.33), we get

57 - 3201920 — 32+l _1926+L 4 1 = 56 . 3219%8 — 36 - 3%319%
3 19°A\3*) ZAREN = ol 36 - 3%19%

(3%* = 19) (19% —3) = 56 — 36 - 3“3 - 23", (3.34)

If @« > 2, then the left-hand side of (3.34) is more than 56, which is

impossible. So a = 1, we get,

—10(19* —3) = 56— 36+ 3%* - 19"
—5-19%% 415 =28 — 18 -3%. 19»

—5-19% =13 — 18+3% .19,

Observe that 19/19%% but 19 £ 13, thus b3 = 0, hence —5-19%% = 13 — 18 - 3%, As
az < 2a, so az = 0, 1 or 2. But this equation has no solution for a3 = 0, 1 or 2
and > 1.

Case 6.2. D; =3, Dy =19, and D3 = 27. We have

o(n) = o(3%*19%)
(32041 — 1) (19%°F1 — 1)

2 18
B 32a+1192ﬁ+1 _ 32a+1 _ 1926—}—1 +1
B 36

29241 - 320731971 _ gadl _1920+L 4

% (3.35)
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and

o(n) = o(3**19%9)
—9. 32&1925 . 3204—1192,8 _ 32&1925—1 - 320{—31925
= 3207319%71(2.3% .19 — 32 . 19 — 3° — 19)

= 809 - 327319%71, (3.36)

From (3.35) and (3.36), we get

20241 . 320731920-1 _ g2a+l _ 192841 1 1 — 997194 . 320319261

g2a-3 _ 361 192671 —1
11719271 — 81
10 - 19%5-1 4 242

w3 4 € (3,4),
117-19%-1 — 81 (3.4)

which is a contradiction.
Case 7. py = 17. We have Dy =3 and {D,, D3} C {9,17,27,51,81,...}.
If Dy > 27, then from (3.3) we obtain

201 206 1 < 1 1 1 1 1
,_ (3177 ST B L ossr..

—_———t et — + — + — <
321728 il Dy Ay Dy % Dy 216 3 27 51
we get a contradiction.

If Dy > 17 and D5 > 81, then from (3.3) we obtain

3201728 1 1 1 o] "\ 1 1
_a( ) L4 o 4 — 4 =10082...,

=4 =+ =+ =<
321728 +D1+D2+D3 216 3 17 81

which is not true.
So (Dy =9) or (Dy = 17 and D3 € {27, 51}).
Case 7.1. D; =3 and Dy = 9. Recall that ds = 39317 We have

o(n) = o(3%17%)
_ @B - arett—1)

2 16
B 32a+1172ﬂ+1 _ 32a+1 _ 1726—}—1 +1
B 32

459 - 320721770 — et 72t 4 g

> (3.37)
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and
o(n) = o(3*17%9)
= 2.3%017%0 — 370 — 3P T 3
=3 217P(2.3° =3 — 1) — 3%17™
= 14 - 320721720 — 39317, (3.38)

From (3.37) and (3.38), we get

459 - 320721720 _ g2a+l _ 7201 4 1 = 448 - 320721720 — 39 . 317

11 - 3272177 4 328 2 A7 = 21— 32 39817

27 27
11-3%72 —17) (170 = = ) =17- 7~ —1—32-3% . 17"
(11-3 7)<7 0 T 32-3% .17
(113272 —17)(11-17%7 = 27) =448 — 11-32- 3% - 17", (3.39)

If & > 2, then the left-hand side of (3.39) is more than 448. Thus a = 1,
and so (3.39) becomes

=6 (11-17%7 —27) = 448 — 1132 3% . 17"
—33.17% 4+ 81 =224 — 11 -16-3% . 17"
~33.17% =143 =~ 1116+ 3% 17"

~3.17 =13 —-16 -3% . 17%.

Observe that 17|17%° but 17413, 80 b3 = 0. That is —3 - 17% = 13 — 16 - 3%. As
3] —3 and 3113, so az = 0. Now, we have that —3 - 17%’ = 13 — 16, so 17%/ = 1.
That is 8 = 0, we get a contradiction.

Case 7.2. D; =3, Dy =17, and D3 = 27. Then 2a > 3 and we have

o(n) = o(3*17%)
(32041 — 1) (17?1 — 1)

2 16
B 32a+1 172B+1 _ 32a+1 . 172B+1 +1
B 32

23409 - 32073172071 g2atl 7204l 4
N 32

(3.40)



and

o(n) = o(3*17%9)

23

—9. 3204172ﬁ . 320471172,3 o 32&172571 - 320{731725

= 32731771283 17 - 32 17— 3% — 17)
— 721 - 3273172571
From (3.40) and (3.41), we get
23409 - 3203172671 _ 320l _ 172641 1 — 23072 . 323172

3373207317271 g1 32078 = 172
qra-3(LL 289 - 17291 —1

©337-1728-1 - 81

which is not true.

Case 7.3. D; =3, Dy =17, and D3 = 51. We have

o(n) = a(3*17%)
(32l 1) (172711 — 1)

2 16
32a+1172,8+1 | 32a+1 _ 172[34—1 1
(( 32
2601 - 32&—11725—1 . 32a+1 - 172ﬂ+1 +1
- 32

and

o(n) =o(3%17%)

(3.41)

-1

€ (0,1),

(3.42)

—9. 32041725 o 3204—1172,3 . 3204172,3—1 - 32a—1172ﬂ—1

=32 72317 - 17 -3 - 1)
= 81 - 32117281
From (3.42) and (3.43), we get
2601 - 3207117261 _ g2a+l _ 726+ 4 1 = 9599 . 320117261

9 . 32&71172{371 . 32a+1 — 172[3+1 . 1

289 - 1726-1 _ 1
9.1726-1_9
17261 4 287

3204—1 _

=324

(3.43)

€ (32,35),
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which is false.

Case 8. py = 13. We have Dy = 3 and {D,, D3} C {9,13,27,39,81, 117,
169, 243,...}.

If Dy > 39, then from (3.3) we obtain

o(32132%) 1 1 1 3 13 1 1 1
2= b <44 —+—=1993...
3201328 +D1+D2+D3 > 12 3 3 al ’

which is impossible.

If Dy > 27 and D5 > 243, then from (3.3) we obtain

o(3°13%%) 1 1 1 .3 13 1 1 1
5 L ST . - BT ST LI
521358 D, D, Dy 2 1273 97 T 23 )

we get a contradiction. So (Dy € {9,13}) or (Dy = 27 and D3 € {39,81,117,169}).
Case 8.1. D; =3 and Dy = 9. Recall that d; = 39313%. We have

o(n) = a(3**13%)
(B2l (13% 1 ~1)

2 12
32a+1 1325—4—1 . 32014—1 Ly 1326—1—1 1
~ 24
117 - 32a—1132,8 - 32a+1 [ | 132,B+1 1
S i (3.44)
24
and
o(n) = o(3**13%)
= 2. 3%13% = 3211320 — 377137 _ 3 3hs
= 3207213%0(2.32 —3 — 1) — 313"
— 14 -3%07213%° — 39313%, (3.45)

From (3.44) and (3.45), we get
117 - 320711328 _ 3241 _ 132641 1 1 =112.3%27113%0 —94.3%13%
5-3207113% — 3Pt 1320 — 1 — 94 3%13%

112
(53271 —13) (1325 — %) =243 13%. (3.46)
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As a@ > 1 and > 1, then the left-hand side of (3.46) is more than zero
but the right-hand side of (3.46) can only be negative.
Case 8.2. D; = 3 and D, = 13. Recall that d; = 3%313%. We have

o(n) = 0(3**13%)
(32041 — 1) (13%°F1 — 1)

2 12
320+11320+1 _ 32041 _ 1326+1 +1
- 24
507 - 32&132571 o 3204+1 o 132ﬁ+1 1
- i (3.47)
24
and
o(n) = o(3*13%)
= 2-82013% = 3% 113% — g2 3%t — 313
= 320-113%0-1(2.3.13 = 13 — 3) — 3%¢13%
=62 - 3207113271 30s13bs, (3.48)
From (3.47) and (3.48), we get
507 - 32013771 32l L1320t L 1 = 496 - 3213271 — 24 . 3%313%
L1 (3% 182P°L 3207 3L -2 o4 . 363137
(11- 3% —169) ( 1320=! — S5 ) 2169 0 1 243013k
11 11
(11-3%* —169) (11-13%"1 —3) =496 — 264 - 3" - 13", (3.49)

If « > 2, then the left-hand side of (3.49) is more than 496, which is a

contradiction. So av = 1, and so (3.49) becomes
—70 (11-13*"71 — 3) = 496 — 264 - 3% - 13"
—35-11-13%71 4105 = 248 — 132 - 3% . 13"
—35-11-13%71 =143 — 132- 3% . 13"

—35.13%"1 =13 -12.3% .13%.

As a3 < 2a, we have az =0, 1 or 2.
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If ag = 0, then —35-13%~1 = 13 — 12-13%. We have that —35 - 13261
0 (mod 7) but 13 —12-13% =1 or 4 (mod 7), which is a contradiction.

If a3 = 2, then —35-13%/~1 = 13—12-9-13%. We have that —35-132°~1
0 (mod 7) but 13 —12-9-13% =2 or 3 (mod 7), which is false.

Hence a3 = 1. That is

—35-13%71 =13 - 12.3-13%, (3.50)

Since 13|13%~! and 13|13, so bg > 1.

If b3 > 1, if 3 = 1, then from (3.50) we get —35-13 = 13 — 36 - 13", that
is b3 = 1, which is false. So 3 > 1, we get 13?]132°~! and 132|13% but 1321 13, a
contradiction.

If b3 = 1, then from (3.50) we get —35-13%~1 =13 —12-3 13, and so
13261 = 13, which implies that 3 = 1. We obtain @ = 1, 3 = 1, a3 = 1 and
by = 1. Therefore, n = 1521 = 32132 is an exactly 3-deficient-perfect number with
three deficient divisors d; = 507 = 3132, dy = 117 = 3213, and d3 = 39 = 3 - 13.

Case 8.3. D =3, Dy = 27, and D3 = 39. We have

o(n) = a(3*13%)
(3% 1) (132 — 1)

2 12
32a+1132ﬁ+1 . 32a+1 ) ) 132,B+1 a4 1
N 24
13689+ 322313281 — 32af1 __326+1 4
= 5 (3.51)
and
o(n) = o(3%*13%)
—9. 3204132,3 o 3204—1 1325 o 3204—31326 o 3204—1132/3—1
= 3%73132671(2.3%. 13 - 3. 13 — 13 — 3%
= 563 - 32731371, (3.52)
From (3.51) and (3.52), we get
13689 - 320731328-1 _ 32a+1 _ 1320+ | 1 = 13512 - 3227313201
169 - 13261 — 1
323 — € (0,1),

C177-1326-1 - 81
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which is false.
Case 8.4. D, =3, Dy =27, and D3 = 81. We have
o(n) = o(3%*13%)
(32a+1 _ 1) (13254-1 _ 1)

2 12
32a+1132ﬁ+1 - 32a+1 o 132ﬂ+1 +1
- 24
3159 - 32a—41325 _ 32a+1 _ 1325—1—1 1
_ + (3.53)
24
and
o(n) = o(3*13%)
9. 32&132ﬁ /. 32a—1 132ﬂ - 32&—3132,3 o 32(1—4132,3
= 32 BIA N EF B8] RN
= 131- 3% *13%, (3.54)
From (3.53) and (3.54), we get
3159 - 320741320 — gZa+l_ 132641 L ] = 3144 . 320413%8
13-13%% — 1
2a—4
\ A 0,1
A 15-1325—2436(’)’
which is a contradiction.
Case 8.5. Dy =3, Dy = 27, and D3 = 117. We have
o(n) = 0(320‘13%)
B (32a+1 ' | 1) (132B+1 A 1)
N 2 12
32a+1 1325—4—1 _ 32a+1 _ 13264—1 +1
- 24
1 . 2a—31 26—1 _ 92a+1 _ 1326+1 1
_ 3689 - 3 3 - 3 + (3.55)

and
o(n) = o(3**13%)
—9. 32&132[3 - 320{—1 1326 . 32&—3132ﬁ o 3204—2132,8—1
= 3%07313%-1(2.3%. 13 - 3% . 13 — 13 — 3)

= 569 - 327313%71, (3.56)
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From (3.55) and (3.56), we get

13689 - 329731326—1 _ 3241 _ 132641 4 1 — 13656 - 3227313261

g20-3 _ 169 - 132771 — 1
©33.1326-1_-81
4.13%-1 4+ 404

=5 5,7
g €7

which is not true.

Case 8.6. D; = 3, Dy, = 27, and D3 = 169. We have

o(n) = 0(3°*13%)

B (32a+1 o 1) (132B+1 . 1)
- Er2 12
320:+11328+1 _ 9201 1 328+1 1
24
177957 - 8207313282 L 32a+l — 1326+1 4 |

- 7 (3.57)

and

o(n) = o(3**13%)
Ay f 320&1326 < 320&—1132/3 N\ 32&—3132ﬁ 4 32@132,3—2
= 32073132722 .3% . 13 — 32 13% — 132 3%)

= 7409 - 3203132072, (3.58)
From (3.57) and (3.58), we get

177957 - 329731326-2 _ 3241 _ 132841 4+ 1 — 177816 - 3% 313282

s20-3 _ 2197 - 13%0-2 _ 1
141 - 1326-2 — 81
8213272 11,214
141 - 1326-2 — 81

— 15+

€ (15,37).

We must have

82-13%72+1,214 o
141-1328-2 - 81
82.13%72 4+ 1214 = 1692 - 13%°-2 — 972

25 2186
1610°

320173 — 15 +

13
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which is a contradiction.

Case 9. py = 11. We have D; = 3 and {D,, D3} C {9,11,27,33,81,99,
121,243,.. .}

If Dy > 81 and D3 > 243, then from (3.3), we have

o) L L L 3 L g
3201128 D, Dy Dy 2 10 3 81 243

we get a contradiction. So Dy =9, 11, 27, 33 or Dy = 81 and D3 € {99,121} or
Dy =99 and D3 = 121.

Now we consider the following seven cases.

Case 9.1. D; =3 and Dy = 9. Recall that d; = 3%311%. We have

o(n) = o(3**11%)
(3% - 1) (110 — 1)

2 10
32a+11125+1 ] 32a—|—1 " 11264—1 +1
y, 20
29732921128 324l _1126+1 4
= . i (3.59)

and

o(n) = o(32*11%7)
— 2.3%1128 - 3%=11126 _ 32021128 _3e311bs
D3TTNE 2935 ¢ Q1 O 3541

=14 .3%7211%% — 3%311%s,

(3.60)
From (3.59) and (3.60), we get
297 - 320721120 — g2l _ 11281 11 =280 - 3227211% — 20 - 3%211%
17.3%7211%0 _ g2+l _ 112601 — _1 _20.3%11b
(173272 —11) (11% — i—;) = % —20-3%.11%. (3.61)

280
As a>1and 8 > 1, so the left-hand side of (3.61) is more than T which is a

contradiction.
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Case 9.2. D; =3 and D, = 11. Recall that d5 = 3%311%. We have

o(n) = o(3**11%)
_ (3t -t 1)

2 10
32a+1112ﬁ+1 _ 32a+1 _ 1126—4—1 +1
B 20
1089 - 3227111271 — 32a+1 _ 1126+1 4 9
— T (3.62)
20
and
o(n) = 0(32*11%)
= 232117 — g1 - P11t - 3w
= 32711277123 11 = 11 — 3) =311
=bZSK YR E A 11 (3.63)

From (3.62) and (3.63), we get

1089 - 3201112871 _ 3204l _1920+1 4 1 — 1040 - 3%9=1112°-1 — 20 . 3931103

49 . 320(—1112,8—1 -~) 32a+1 d 11254—1 Dl 20 4 3!1311b3

104
(49 - 327! —121) (11%—1 - %) = 2—90 —20-3%.-11%. (3.64)

As a > 1 and 8 > 1, so the left-hand side of (3.64) is more than %;10, which is
false.

Case 9.3. D; =3 and D, = 27. Recall that ds = 3%311%. Then 2o > 3.
We get

o(n) = o(3**11%)
(320+1 _ 1) (112641 — 1)

2 10
- 32a+1112ﬁ+1 _ 32a+1 _ 11264—1 +1
a 20

B 891 - 3204—3112,6’ _ 32a+1 _ 112,3+1 +1
B 20

(3.65)
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and

o(n) = o(3*11%9)
=2.3%11%0 _ 32711128 _ 32a-31126 _ 3es11bs
= 320731129233 — 32 — 1) — 311"

= 44 - 320731128 — 39311%, (3.66)
From (3.65) and (3.66), we get

891 - 320731120 _ g2+l _ 112041 1 1 — 880 - 327311%% — 20 .3%11%
11 - 320731128 - 320+l _ 1126+l — 1 _90.3%711%

32&—3112ﬂ+1 d 32a+1 . 11254—1 A Al 20 X 3a311b3

(32a—3 e 1) (112ﬁ+1 P 81) — 80— 20:3%. ]_1173' (367)

As Dy = 27, so 2ac > 3 implies 2ac > 3. So the left-hand side of (3.67) is more
than 80, we get a contradiction.

Case 9.4. D; =3 and D, = 33. Recall that ds = 3%311%. We have

o(n) = o(3**11%7)
(32a+1 yJ] | 1) (112ﬂ+1 § 1)

2 10
32a+1112ﬁ+1 N 32a+1 - 112,8+1 +1

B 20
121 - 320111201 = 32t 11201 4 ]

— = il (3.68)

and

o(n) = o(3**11%)
= 2. 32112 — g2-11]2% _ gla-1]26-1 _ gesyhs
=322 (2.3 11 — 11— 1) — 3% 11%

=6-32T111271 6. 39115, (3.69)
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From (3.68) and (3.69), we get

121 - 3211261 _ g2e+1 _ 1128+ 4 1 — 190 - 320111261 — 920 . 3%11%
32a+11125—1 . 32a+1 - 11254-1 - —1-2920- 3(1311173

(32a+1 . 121) (112571 _ 1) — 120 - 20 . 3(13 . 1153. (370)

If & > 2, then the left-hand side of (3.70) is more than 120, which is a contradiction.

So a =1, we get

—94(11% 2 1) =120 — 20 - 3%311%
—47- 1127 4 47 = 60 — 10 - 3211%

4711 =13 10 - 3931158,

Observe that 11|11%#*1 but 11113, so b3 = 0. That is —47- 11?71 = 13 — 10 - 3%,
Since az < 2o, we have as = 0, 1 or 2. We know that —47 - 1126+ =13 — 10 - 3%
has no solution.

Case 9.5. Dy, =3, Dy =81, and D3 = 99. We have

o(n) = o(3**11%)
(32a+1 1 1) (11254-1 — 1)

2 10
32a+11126+1 AN 32a+1 . 112ﬁ+1 41
p 20
29403 32a—4112ﬂ—1 o 32a+1 4 1126-1—1 1
> - i (3.71)

and

o(n) = o(3**11%)
— 2 . 320[1125 _ 3204—1112,3 _ 320&—41125 . 3204—2112ﬁ—1
=327 41230 11— 3% 11— 11 - 3%)

= 1465 - 3274112971, (3.72)
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From (3.71) and (3.72), we get

20403 - 320741128-1 _ g2a+1 _ 112641 1 1 = 29300 - 320411281

ot _ 121 1121 —1
T 103 - 11281 — 243
18 - 1128-1 1 2492

1,2
103 1121 — 243 © (1,2),
which is not true.
Case 9.6. D; =3, Dy =81, and D3 = 121. We have
) ) 3
o(n) = o(3**11%)
(32a+1 4 1) (112,3+1 . 1)
N 2 10
32a+1112ﬁ+1 —32atl 112B+1 41
y 20
323433 - 320747126-2 _ 32atl _1126+1 4 |
{ + (3.73)
20
and
o(n) = a(3**11%%)
=0\ 32041126 o 3204—1112ﬁ o 32&—4112B J_ 3201112,3—2
= 324126722, 3 112 = 33117 = 117 = 3%)
= 16133 3241172, (3.74)
From (3.73) and (3.74), we get
323433 . 3204112672 _ g2a+l _ 1126+ 4 1 — 322660 - 327411272
qra—s _ 1331 1126-2 -1
773 - 1126-2 — 243
558 - 11282 4 242
—1 1
t o e —oa3 € (13

which is a contradiction.
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Case 9.7. D; =3, Dy =99, and D3 = 121. We have

o(n) = o(3**11%)
_ (B -t —1)

2 10
_ 32a+11125+1 _ 32a+1 _ 112,3+1 |
N 20
35937 - 320-21126-2 _ 32a+1 _ 112641 4 |
= - il (3.75)

and

o(n) = o(3%11%)
—9. 3204112[‘3 y 4 320{—1112,3 \__ 320&—21126—1 _ 3204112ﬁ—2
= 322117722 3% 112 = 3112 — 11 — 3%)

= 1795 - 327211272, (3.76)

From (3.75) and (3.76), we get

35937 . 320472112,372 a 32a+1 4 112B+1 4 1 A 35900 . 320172112ﬁ72

Jons _ 1331 11221
371128297
36 1128-2 4+ 944
1
S i 157 © (35,37) U {133},

=35+

which is not true.

Case 10. po = 7. Then {Dy, Do, D3} C {3,7,9,21,27,...}.
If Dy > 7 and Dy > 21, then from(3.3) we get

o3 1 1 1 3

1
9 —

71 |
. BRI LI v S
378 D, D, Dy 26 7t oty ’

we get a contradiction.
So (Dy =3)or (D; =7and Dy =9).
Case 10.1. D; = 3. We have
32041 _ 1) (72641 _ 1)
2 6
21 - 32720 _ g2+l _ 7201 1 — 94 320728 _ 19(327172 4y + d)

O_(32a72ﬁ) — (

—9. 3201725 o 32a7172ﬁ . d2 . d3

12(3%2°717%° - dy + d3) = 3 - 327?432 L 72
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We obtain that
12(3°717% - dy + dy) < F2HITH 4 et L L

We divide both side by 320728,

12
32 725

o 3 7
(32 1726+d2+d3)<3+77ﬁ+3ﬂ

1 d s 3 7
4 <12 (§+32a726+32ﬁ725> <3+ﬁ+§—3.8390...,

we have a contradiction.

Case 10.2. D; =7 and Dy = 9. Recall thet ds = 3%37% we have

32a+1 _ 1) (72ﬁ+1 f 1)
2 6
32a+1725+1 - 32a+1 . 72,3+1 T 1 — 12 . 3204—272,3—1(2 . 32 . 7 o 32 o 7) o 12 . 3(137b3

= 320(72,3 ) 32&726—1 . 32&—2725 . 30,371)3

0_(32a725) — (

441 - 32&7172571 o 32a+1 4 72,3+1 4 R= 440 . 32(17172,371 —192. 3(13763

3201—1726—1 N | 32a+1 _\ 72,3+1 - 1-192. 3(137173

(32071 4Y(TP L= 9) =440 — 12-3%7%, (3.77)
If « =1, then a3 =0, 1, 2 and from (3.77) we get

—~46(7%P71 —9) =440 — 12 - 3%7"
—93. 726=L 1 907 = 220 — 6.- 337™

98+l =13 26 3970,

Observe that 7|7%°~! but 71 13, so b3 = 0 that is —23 - 7?71 = 13 — 6 - 3%3. We
know that —23 - 726~1 = 13 — 6 - 3% has no solution for a3 = 0, 1 or 2.

If & = 2, then from (3.77) we get

—22(7%71 — 9) = 440 — 12 - 37"
—11-7?"1 499 =220 — 6 - 337"

—11-7%"1 =121 — 6. 3%7b,

As 11| — 11 and 11|121 but 1116 - 3%37% which is impossible. Hene o > 2.
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If 3 =1, then

(3271 — 49)(—2) = 440 — 12 - 37"
3071 — 49 = —220 4 6 - 37"

3 4171 =6 307",
We have v3(32*~! +171) = 2, so a3 = 1, thus

3l 4 171=6-3-7

373419 =27,

We have 3273 + 19 = 1 (mod 3) but 2 - 7% = 2 (mod 3), which is impossible.
Now we assume « > 2 and § > 1. Then the left-hand side of (3.77) is
more than 440, which is a contradiction.
Case 11. p, = 5. Recall that dj = 3M15% dy = 39252 and dy = 3%35%.
Suppose by = by = b3 = 0. That is d; = 3, dy = 3?2, and d3 = 3% where
ay > ag > asz > 0. Then

(32a+1 4 1) (52B+1 o 1)
2 4

(37 —1)(BMH 1) = 16 - 325 ~8/3%(31 7% 43079 4 1),
(3.78)

0_(32a52ﬂ) = =9 32528 L g4 302 _ ga3

Consider LH S and RH S of (3.78).
We have v3(LHS) = v3((32°+ — 1)) + v3((5*"1'— 1)) =0+ 0 = 0 and
v3(RHS) = a3. So a3 =0. Then

(3% _1)(52PF1 — 1) = 16 - 3252 — 8. (3™ 4 3%2) — 8.

We see that (320t — 1)(52%+! — 1) = (=1)(2 — 1) = 2 (mod 3) but 16 - 32*5%% —
8- (3" 4+ 3%2) —8 =1 (mod 3), a contradiction. Therefore by + by + b3 > 1.

Suppose a; = as = ag = 0. That is d; = 5, dy = 52, and d3 = 5% where
by > by > b3 > 0. Then

(32a+1 _ 1) (526—4—1 _ 1)
2 4

(3% — 1)(5*7H —1) = 16 - 3%*5%7 — 8- 5 (5" % - 52 4 1),
(3.79)

0(3205%) = =2.3%520 _5b1 _5b2 _ 5bs
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Consider LHS and RHS of (3.79).
We have vs(LHS) = vs((3%22+1 — 1)) + v5((5%**!1 = 1)) =0+ 0 = 0 and
’U5<RHS) = bg. So bg = 0. Then

(3% — 1) (5% —1) = 16 - 3%05%7 — 8- (5" 4 57) — 8.

We see that (32971 —1)(5%+1—1) = 3 or 4 (mod 5) but 16-32952° —8. (51 4+5%) -8 =
2 (mod 5), which is false. Therefore a; + as + az > 1.

Now we have
(32a+1 N 1)(52,6’+1 . 1) — 16~ 32&52/3 _ 8(3(115171 + 3a25b2 4 3a35b3)’ (380)

where a; + as + a3 > 1 and by + by + b3 > 1.

Consider LHS and RHS of (3.80).

We have v3(RHS) = min{a;,as, az} ormin{ay, as, a3} +1. Asv3(LHS) =
0, so v3(RHS) = min{ay,as, a3} = 0.

We have vs(RHS) = min{b1, ba, b3} or min{by, by, b3} + 1. As v5(LHS) =
0, so v5(RHS) = min{by, by, b3} =0.

We have LHS = 2 (mod 3) and

(

(0.+0+5%) (mod 3), —ifa; #0, ay #0, az = 0;
(0 + 5% +.0) (mod 3), ~ ifa; #0, ay =0, az # 0;
(5% + 0 +0) (mod 3), if a; =0, ay # 0, az # 0;
(5% 5% +°0) (mod 3), if a; = 0, ay = 0, as # 0;
(5% 40+ 5%) (mod 3), ifa; =0, ay # 0, az = 0;
(0 + 5% +5%) (mod 3), ifa; #0, ay =0, az = 0.

RHS =0+

\
We can conclude that

if only one a; = 0, then b; is odd for ¢« = 1, 2, 3 and we write b; = 2b; + 1, where
b; >0

if exactly two a; = a; = 0, then b; and b; are even for 1 <17 < j < 3 and we write
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b; = 2b; where b; > 0. Thus (32271 — 1)(5%%+! — 1) is equal to

(

8(3a15b1 4 Zaz2gb2 52b3+1> if a4 7§ 0, as 7§ 0, ag = 0;
8(3a15b1 4 522+l 3assbs) if gy £ 0, ay = 0, ag # 0;
8(521H1  3a25b2 4 3as50s) - if gy = 0, ag # 0, ag # 0;
165252 ) 8 ) it 270, 03 7 (3.81)
8(5%1 + 522 4 39s5bs), if a1 =0, az =0, ag # 0;
8(5%1 + 4+3925% 4+ 5203)  if a; =0, ap # 0, ag = 0;
(

8(3u15b1 4 5202 4 5203 if a; #0, az =0, az = 0.

We have

3 (mod 5), if « =0 (mod 2);
(3ot _ 7)oty £ 473 mod 8) if o =0 (mod 2) (3.82)

4-(mod ), if « =1 (mod 2).
Noting that

(32a+1 ) 1) (525+1 n 1)
2 4

(3%°FL — 1)(5%F — 1) = 16 -3%5% — 8(dy + dz + ds)

o(3%5%7) = =2.3%5% —d, —dy —ds

1637952 = 8(dy +dy + d3) < 320152011
329570 < 8(dy +dy + d3),

8
LS fgaegs (A dy 4 da). (3.83)

Noting that

(32a+1 ) A 1) (52,6’+1 &
2 4
15 - 32520 — 32l _ 520+ 4 — 16 - 32°5% — 8(d, + dy + d3)

1
0_(3204525) = ) =2- 3204525 — d1 — dg — d3

8(dy + dy + d3) = 3°5%7 4 32 4 52—,

We obtain that

8(dy + dy + d3) < 32052 4 320+1 | 5261 (3.84)
and
8 3 5 3 5
gragzr (i T da+ds) <1+ o5+ o0 <1t 4 o5 = 1675 (3.85)
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Consider (3.81), we have the following six cases.
Case 11.1. (3%t —1)(52°+1 — 1) = 16 - 32252 — 8(3u5b1 4 392502 + 5255+1) where
a1 # 0, ag # 0.

If by # 0 and by # 0, that is

16 - 320527 — 8(3%5b 4 392502 4 5231y =0 — 3(0+ 0+ 0) =0 (mod 5),

which contradicts with (3.82).
If by = 0 and by = 0, then from (3.83) we get that

1<

g 8 5

4 8
T 32a52,8

IR 1 1
—°S\g g g g

gk 1+ 1 £ 1
>~ 52 © 3:52 32.5

= 0.6044 . .

(32a +320¢—1 + 526—1)

we get a contradiction.

If by = 0 and by # 0, then from (3.83) we get that

1 311357 52 )

< 32a 52ﬂ (

8
32a52ﬂ (32a 4 32a 4 525—1)

o] 1 1
=\t e
<g(ii Lt
- 52 52 32.5

=0.8177...,

<

which is false.

So by # 0 and by = 0, that is d; = 345", dy = 3%, and ds = 52+



Suppose that a; < 2a — 3. From (3.83), it follows that

1<

g (150 3%

8

20—3=28 201 26—1
< —32a525(3 5" 4+ 3% +5 )

sl ! 1
o\ F T T3 s
<g(Ly Ll ]

- 33 52 32.5

=0.7940. . .,

which is not true. So a1 = 2a — 2, 2a¢ — 1 or 2¢.

Suppose that by < 28 — 2. From (3.83), it follows that

1<

e LR

8 20=23—2 2a 28—1
< W(3 57T S 43 5

N 1
S\ 5% T gas
<3 1+1+ 1

— o \52 52 325

= 0.81774 -,

we have a contradiction. So by = 26 — 1 or 20.
Now we consider the following six cases.

Case 11.1.1. a; =2a — 2 and b; =26 — 1. From (3.83), we get that

8
320(52[3

8 20—2£28—1 2a 28—1
< 320525 (3 ) +3“+5 )

32.5 ' 5% ' 3.5
<8( S )
=o\32.5 5235

= 0.6755.. .,

1<

(32047252/571 +3a2 _'_52b3+1)

which is false.

Case 11.1.2. a; = 2a — 2 and b; = 26. Since a; # 0, so a > 2.

40
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If > 2, then from (3.83) we get that

1<

200—2208 a 2b3+1
oy (3775 430 4 5

8 200—2 28 200 28—1
SWC& 57 + 3% +5777)

(L] 1
=S\ 3T ey
<3 1+1+ 1

- 32 54 34.5

=0.9214. ..,

which is not true. So = 1 and we get

3%+ _1)(5% = 1) =16 - 32* - 52 ~ §(3%2 2. 52 4 392 4 5%t
(3221 — 1) . 124 = 400 - 3°* — 8(3%*2. 25 + 3" 4 5)
(32971 = 1) 31 =100+ 3%% — 2(8%47%- 25 + 3% 4 5)
8373242 ~ 31 =900-3%*2 - 50.3*"2 2.3 — 10

—13-3%072492.3%2 =91,

If ay < 200 — 1, then —13-3%2 12.392 < —13-.3%2272 4 92.3%71 = _13.3%72 ¢
6 - 32072 < 0, we have a contradiction.
If ay = 2a, then —13-3%%724+2-3%2 = —13.3%9724+ 2.32@ = 5.322"2 = ( (mod 5)
but 21 # 0 (mod 5), we get a contradiction.

Case 11.1.3. a; =2a—1and by =28 —1. If « > 2 or § > 2 then from
(3.83) we get that

1 < (32&—152,8—1+3a2+52b3+1)

32a52,8

S (32047152,371 _|_32a _{_52571)

32a526
S p
- \3:5 5% 3.5

<8+t
- 3-5 5% 3*.5

= 0.8730.. .,




which is not possible. Hence « =1 and =1, so a; =1 and b; = 1. Then

(32D _ )52+ _ 1) =16 - 3% - 5% — 8(3 - 5 + 392 4 52+
26 x 124 = 3600 — 8(3 - 5 + 3% + 5)

3224 = 3368,

which is a contradiction.

Case 11.1.4. a1 = 2a— 1 and b; = 25. We have

8
—<d1 + dQ -+ dg) =# (320‘_1526 + 302 + 52b3+1)

320528 32a528

200—1 =28 2
2 —320(5%(3 5 +3°+5)

el
~°\37 355

> 2,

which is contradicts with (3.85).
Case 11.1.5. a; = 2a.and b; = 28 — 1. We have

8(3204525—1 _|_ 3a2 _|_ 52b3+1) > 8(320452ﬂ—1 + 32 e 5) Y | 8 . 320152ﬁ—1 + 112

From (3.84), we get

8.3%5% 1 4+ 112 < 320577 4- 327! 4 52771
3 X 32&52,3—1 2 320&4—1 = 5254-1 < _112
3.3%520-1 _ g2a+l _ 520+ 4 o5 1124+ 25

(320+ — 25)(5%1 — 1) < —8T.

As a, B> 1,50 (3201 — 25)(5%%~1 — 1) > 0, which is not possible.
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Case 11.1.6. a; = 2a and b; = 2. Then d; = n, which is impossible.
Case 11.2. (3201 —1)(5%*1 —1) = 16- 3252 —§(3215%1 4 52b2+1 4 3as5bs)

where a; # 0, ag # 0.
If by # 0 and bs # 0, that is

16 - 320528 — g(3u5b 4 522+l 4 3as5bs) = ) — 3(0+ 0+ 0) =0 (mod 5),



which contradicts with (3.82).
If by = 0 and b3 = 0, then from (3.83) we get that

1 3% 4 5% 4 399)

< 32a52ﬁ (

S (3204 + 52ﬁ—1 +320¢—1>

32&525

(! 1 1
=952 T30 .53 5

<3 1+ 1 n 1
- 52 32.5  3-52

= 0.6044. . .,

we get a contradiction.

If by = 0 and b3 # 0, then from (3.83) we get that

1 < (3a1 + 52b2+1 _I_ 3a3 . 5b3)

32a52,3
8
32a52ﬁ

2R
ZS\526| 3215 325

D 1+ 1 = 1
~ 52.-32.5 325

= 0.6755 .. .,

<

(32a +52B—1 +526—1)

which is false.
So by # 0 and b = 0, that is di = 35, dy = 5%2*! and d3 = 3%.
Suppose that a; < 2« — 3. From (3.83), it follows that

1< (371501 4 522l 4 3es)

32a525
< 8
- 32&525

(2 1 1
BRI A
<s(L4 41
=°\33 "32.5 " 52

= 0.7940. . .,

(32&73525 +52,371 +32a)

which is impossible. So a; = 2a — 2, 2a — 1 or 2a.
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Suppose that by < 25 — 2. From (3.83), it follows that

1 < (3&151)1 +52b2+1+3a3)

32a52,8
< —32a852 5 (3205272 4 52071 4 g2a)
1 1 1
=8 (5— T3t 57>
<s (i L i)
- 52 32.5 52

= 0.8177...,

we get a contradiction. So by = 2/ —1 or 2.
Now we consider the following six subsubcases.
Case 11.2.1. g1 =2a— 2 and by =26 — 1.
From (3.83), it follows that

1 < (32&—2526—1+52b2+1+3a3)

32a52ﬁ

8 200—2208—1 28—1 200
332%26(3 55T 57T 437Y)

L)) S
Qw7 | 3y

<3 1 % 1 +1
S 325 325 B2

= 0.6755../.

which is not true.
Case 11.2.2. a1 = 2a — 2 and b; = 26. Since a; # 0, so o > 2.
If > 2, then from (3.83) we get that

1< (32&—252B+52b2+1+3a3)

32a525

8 200—21208 28-1 2a
SW(B 5% + 570 +37)

_ (! 1 1
=% 3T 305 5
<3 1+ 1 +1
- 32 34.5 54

=0.9214. ..,
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we get a contradiction. So f =1 and we get

(3%HL _1)(53 — 1) = 16 - 32* . 52 — §(3%*72 . 52 4 5Pl | 3a3)
(3221 — 1) - 124 = 400 - 3> — 8(3**72.25 + 5+ 3)
(3201 —1).31 = 100 - 32> — 2(32*72. 25 + 8)
8373272 -31=900-3"2—-50-3"2 - 16

—13-3%972 = 15,

which is false.
Subsubcase 11.2.3. a; =2a — 1 and b; =25 — 1.
If « > 2 or > 2 then from (3.83) we get that

8
32a52B

= 8
— 3204526

1 (WML
—\3:5 3.5 528

<3 1 N 1 +1
= 6| BLEF” 5%

~ 0.8730 ./,

1<

(320(—152[3—1 +52b2+1 +3a3)

(3204—152/3—1 + 52[‘3—1 R 320{)

we get a contradiction. Hence @« =1 and 8 =1, soa; =1 and b; = 1. Then

(32 )52 1) = 16.- 3252 —8(3 - 5.4 52! | 392)
26 x 124 = 3600 — 8(3+5 + 5+ 3)
3224 = 3416,

which is not true.

Case 11.2.4. a; = 2a— 1 and b; = 23. We have

8 8 ) )
32(1_52[3 (dl + dg + dg) = 20528 (3201 152,3 + 52b2+1 +3 3)
8

> app (35 4543

(L, 8
—°\3 " 35

> 2,

45
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which contradicts with (3.85).
Case 11.2.5. a1 = 2« and by = 28 — 1. We have

B(3275%0 7 + 5% 4 3%) > 8(325%7 1 + 54 3) = 8- 375! 4 64.
From (3.84), we get

8. 320452,371 + 64 < 320452,3 T 32a+1 + 52ﬁ+1
3. 320452,3—1 o 320&+1 o 52,3+1 < —64
3. 32052071 _ getl _ 52H 4 95 < 64+ 25

(3241 — 25)(5%71 — 1) < ~309.

As a, B> 1,50 (3%t —25)(52671 — 1) > 0, which is a contradiction.
Case 11.2.6. a; = 2a and by = 26. Then d; = n, which is impossible.
Case 11.3. (320 —1)(5%tL 1) = 1632252 —8(520r1+1 4 3az5b2 4 3asfbs)
where ay # 0, ag # 0.
Case 11.3.1. by # 0 and b3 # 0. Then

16 - 320528 (521 HL 4 3azsb2 4 3a35b) =0~ 3(04 04 0) = 0 (mod 5),

which contradicts with (3.82).
Case 11.3.2. by = 0.and bs = 0. From (3:83) we get that

1 (52t 1392 Ty 39s)

< 32&526
8 28-1 2a 2a—1

< —32(1525(5 + 3% +3%7)

o 1 1 1

~ o35 5 T3

e Lo 1,1

- 3.5 52 3.52

= 0.6044. . .,

which is a contradiction.



Case 11.3.3. by = 0 and b3 # 0. From (3.83) we get that

1<

32a5218 (52b1+1 + 3(12 + 3a35b3)

8
32a526 (52571 + 32a 4 3201)

_of ! 11
=%\ 305 T55 T 5

<3 1+1+1
- 32-5 52 52

= 0.8177...,

<

which is not possible.

Case 11.3.4. by # 0 and b3 = 0. From (3.83) we get that

8
1< 32a52,8(

8
32a52ﬂ (526—1 + 52,3—1 + 32&)

2 N/ N/
-\ 325 320.5 52

) 1 A 1 +1
N\ 32.5 3.5 52

= 0.6755 ..,

52b1+1 + 3&25172 + 3a3)

<

we get a contradiction.
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Case 11.4. (3%F1 —1)(5%9+! — 1) =16 3295 — 8(5%1 4 5202 4 3as5bs)

where a3 # 0. As dy > dy > d3, so by > by > 1. Since min{b;, by, b3} = 0, so

bg - 0
If @ > 2, then from (3.83) we get that

1<

32a526 (52b1 + 52b2 + 3(13)

(520 4 5272 4 3%

S3204525
_3 1 1 1
~o\3m T3 T
1 1 1
<8 g—Fmﬁ-?

= 0.4227. ..,
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which is not true. So aa = 1. As a3 # 0, thus ag = 1 or 2.
If a3 = 1, then

16 - 32520 — (5% 4522 1 3)=0—-3(0+0+3) =1 (mod 5),

which contradicts with (3.82).
If a3 = 2, then

16 - 3205%% — 8(5%1 4522 £ 32) =0 — 3(0+ 0+ 4) = 3 (mod 5),

which contradicts with (3.82).

Case 11.5. (3201 — 1)(52+1 = 1) = 16 320520 — §(5201 4 302502 4 52s)
where ay # 0.

Case 11.5.1. by # 0 and b3 # 0. Then from d; > dy > d3 we get that
min{by, by, b3} > 0, a contradiction.

Case 11.5.2. by =0 and b3 = 0. If @ > 2, then from (3.83)

1< (5*” +3%2 4 1)

32a52B

S (52B+32a+1)

32a52ﬁ

NY)RSze 1

TN AT g g
1 1 1

= 0.4227. ..,

which is false. So a =1. As ay # 0, thus as =1 or 2.
If ap = 1, then

16 - 3%5%0 — (5% 432 4+ 1) =0 —3(0+ 3+ 1) = 3 (mod 5),

which contradicts with (3.82).
If ay = 2, then

16 - 325%°0 — (5% 4392 4+ 1) =0—3(0+4+ 1) =0 (mod 5),

which contradicts with (3.82).
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Case 11.5.3. by = 0 and b3 # 0. Then d; = 5?1, dy = 392, d3 = 5%, As

dy > dy > ds, so a; > 3, i.e., a« > 2. From (3.83), we get that

2b1 az 2b
<32a525(5 + 3% 4+ 57%)

23 20 28—2
§32a526(5 + 37 +5777°)

_g 1 1 1
320 + 528 + 32052

<3 1+1+ 1
3t T 52 3152

—=0.4227. ...
Case 11.5.4. by # 0 and b3 = 0. Then
16 - 320527 — 8(5%1 4 3%25%2 4 52%5) =) ~3(0 4+ 0+ 1) = 2 (mod 5),

which contradicts with (3.82).

Case 11.6. (3%t1 — 1)(52F1 — 1) = 16+ 320520 — §(315b1 + 522 4 52bs)
where a; # 0.

Case 11.6.1. b; # 0-and b3 # 0. Since d; > dy > d3, we get that
min{by, bg, b3} > 0, which is a contradiction.

Case 11.6.2. by = 0 and by = 0. Then d; = 3%, dy = 5?2, d3 = 1. As

dy > dy > ds, s0 by > 1 and ay; > 3,i.e;; > 2. From (3.83), we get that

ai 2bs
< g BU A £ D)

2c 23
§32a526(3 + 57 +1)

oL 1 1
526 T 320 T 320528

1 1 1
=8 52+34+34 52

= 0.4227...,

which is false.

Case 11.6.3. by = 0 and b3 # 0. Then d; = 3%, dy = 522, d3 = 523, As



dy > dy > ds, s0 by > 2 and a; > 6, i.e., & > 3. From (3.83), we get that

8 a 2b 2b.
1< s (8 + 5% 4 5%)

200 23 28—2
§32a5%(3 + 5% +5777)

(L2 1
5% |3 | 3

<8 1+1+ 1
52 36 36.52

=0.3314.. .,

which is impossible.

Case 11.6.4. by # 0 and b3 = 0. Then

16 - 320527 — 8(3%5% 4 5224 1) = 0~ 3(0+0+1) =2 (mod 5),

which contradicts with (3.82).
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]

Remark 3.4. In addition, we determine all odd exactly 2-near-perfect number

with at most three distinct prime factors. To better understand, let n be a positive

integer with at most three distinct prime factors. Then n is an odd exactly 2-near-

perfect number-if and only if n is one of the following numbers:

(i) n = 2205 = 32 - 5. 7% with two redundant divisors d; = 35 and dy = 1 or

dl = 21 and d2 = 157

(i) n = 15435 = 32 -5 - 7% with two redundant divisors d; = 315 and dy = 15;

(iii) n = 945 = 3% -5 - 7 with two redundant divisors d; = 27 and dy = 3 or

di =21 and dy = 9;

(iv) n = 6615 = 3% -5 - 7% with two redundant divisors d; = 441 and dy = 9 or

di = 315 and dy = 135;

(v) m = 23625 = 3353 .7 with two redundant divisors d; = 2625 and dy = 45;

(vi) n=2835=3%.5-7 with two redundant divisors d; = 135 and dy = 3;
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(vii) n = 7425 = 3% - 52 - 11 with two redundant divisors d; = 27 and dy = 3 or
dl = 25 and d2 = 5;

(viii) n = 37125 = 3% 53 11 with two redundant divisors d; = 495 and dy = 135;
(ix) n = 22275 =3*.52. 11 with two redundant divisors d; = 297 and dy = 165;

(x) n = 2695275 = 3*-5% - 113 with two redundant divisors d; = 99825 and
dy = 1089;

(xi) n = 570375 = 3*-5%-13% with two redundant divisors d; = 1125 and dy = 45
or diy = 975 and dy = 195 or dy = 845 and dy = 325;

(xii) n = 7414875 = 33 - 53 - 13® with two redundant divisors d; = 21125 and
dy = 325 or d; = 12675 and dy = 8775;

(xiii) n = 14259375 = 3% 5° - 13% with two redundant divisors d; = 73125 and
dQ = 45,

(xiv) n = 131625 = 3*-5%- 13 with two redundant divisors d; = 975 and dy = 39;
(xv) n = 78975 = 3% - 5213 with two redundant divisors d; = 25 and dy = 1;

(xvi) n = 394875 = 3°-5-13 with two redundant divisors d; = 4875 and dy = 351.
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ON EXACTLY 3-DEFICIENT-PERFECT NUMBERS

SARALEE AURSUKAREE AND PRAPANPONG PONGSRITAM

ABSTRACT. Let n and k be positive integers and o(n) the sum of all positive divisors of
n. We call n an exactly k-deficient-perfect number with deficient divisors di,da, ..., dy if
di,da,...,dy are distinct proper divisors of n and o(n) = 2n — (di +d2 + -+ + di). In
this article, we show that the only odd exactly 3-deficient-perfect number with at most two
distinct prime factors is 1521 = 3% - 132

1. INTRODUCTION

Throughout this article, let n be a positive integer, o(n) the sum of all positive divisors of
n, and w(n) the number of distinct prime factors of n. We say that n is perfect if o(n) = 2n.
It is well-known that n is even and perfect if and only if n = 2P~1 (2P — 1), where p and 27 — 1
are primes. It has also been a longstanding conjecture that there are infinitely many even
perfect numbers and that an odd perfect number does not exist. Attempting to understand
perfect numbers, mathematicians have studied other closely related concepts. Recall that if
o(n) < 2n, then n is said to be deficient; if o(n) > 2n, then n is abundant; if o(n) = 2n + 1,
then n is quasiperfect; if o(n) = 2n— 1, then n is almost perfect. For more information on this
topic, see for example the work of Cohen [5, 6], Hagis and Cohen [11], Kishore [14], Ochem
and Rao [18], Yamada [36], and the online databases GIMPS [10]-and OEIS [30].

Sierpiniski [29] called n pseudoperfect if n can be written as a sum of some of its proper
divisors. Pollack and Shevelev [21] have recently initiated the study of a subclass of pseudop-
erfect numbers leading to an active investigation. We summarize this work in the following
definition.

Definition 1.1. Let n and k be positive integers.” We say that n is near-perfect if n is the
sum of all of its proper divisors except one of them. In addition, n is k-near-perfect if n can
be written as a sum of all of its proper divisors with at most k exceptions. Moreover, n is
exactly k-near-perfect if n is expressible as a sum of all of its proper divisors with exactly k
exceptions. The exceptional divisors are said to be redundant. In other words,

n is near-perfect with a redundant divisor d<=1<d <mn, d|n, and oc(n) =2n+d;
n 1s l-near-perfect < n is perfect or n is near-perfect;

n is exactly k-near-perfect with redundant divisors dy,ds,...,d <

dy,dsg, ..., dy are distinct proper divisors of n and o(n) =2n+dy +dg + - - - + d.

Motivated by the concept of near-perfect numbers, Tang, Ren, and Li [35] define the notion
of deficient-perfect numbers, which also leads to an interesting research problem.

Definition 1.2. Let n,k € N. Then, n is called a deficient-perfect number with a deficient
divisor d if d is a proper divisor of n and o(n) = 2n—d. Furthermore, n is exactly k-deficient-
perfect with deficient divisors dy,ds,...,dy if di,ds,...,d; are distinct proper divisors of n

*Prapanpong Pongsriiam is the corresponding author.
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and o(n) =2n — (dy +da + - - - + di). In addition, n is k-deficient-perfect if n is perfect or n
is exactly £-deficient-perfect for some £ =1,2,... k.

In 2012, Pollack and Shevelev [21] showed that the number of near-perfect numbers not
exceeding z is < 2°/61°(1) as 1 — 0o, and that if & is fixed and is large enough, then there are
infinitely many exactly k-near-perfect numbers. A year later, Ren and Chen [27] determined all
near-perfect numbers n that have w(n) = 2, and we can see from this classification that all such
n are even. In the same year, Tang, Ren, and Li [35] proved that there is no odd near-perfect
number n with w(n) = 3 and found all deficient-perfect numbers m with w(m) < 2. After
that, Tang and Feng [33] extended this result by showing that there is no odd deficient-perfect
number n with w(n) = 3. In 2016, Tang, Ma, and Feng [34] found the only odd near-perfect
number with w(n) = 4, namely, n = 34.72.112.19%, whereas in 2019, Sun and He [32] asserted
that the only odd deficient-perfect number n with w(n) = 4 is n = 3% - 72 . 112 - 132, Cohen,
et al. [7] have recently improved the estimate of Pollack and Shevelev [21] on the number of
near-perfect numbers < x. Hence, most results in the literature are devoted to characterizing,
only when k& = 1, the exactly k-near-perfect or exactly k-deficient-perfect numbers. Chen [4]
started a slightly new direction by determining all 2-deficient-perfect numbers n with w(n) < 2.

In this article, we continue the investigation on odd 3-deficient-perfect numbers n with
w(n) < 2. We found that the only such n is n-=1521 = 3? - 132. For other articles related to
the divisor functions or divisibility problems, see examples'in [1, 2, 3, 8, 9, 12, 13, 15, 16, 17,
19, 20, 22, 23, 24, 25, 26, 28, 31, 36].

2. MAIN RESULTS

By the definition, n is deficient-perfect if and only if n is exactly 1-deficient-perfect. Tang
and Feng [33, Lemma 2.1] showed that if n is deficient-perfect and n is odd, then n is a square.
We can extend their result to the following form.

Lemma 2.1. Let n and k be positive integers. Suppose that mis exactly k-deficient-perfect
and n is odd. Then, n is a square if and only.if k is odd. In particular, if n is odd and exactly
3-deficient-perfect, thenn is a square.

Proof. Because 1 has no proper divisor, we can assume that n> land write n = p{*p5? - - - p27,
where p1, ..., p, are distinct odd primes and a4, g, . .y are positive integers. Let dy,ds, ..., dx

be distinct proper divisors of n such that
2n—dy —dy— - —dp=o(n) = Ha(pf”) = H(l +pi+ -+ ). (2.1)
i=1 i=1
Because n is odd, d; and p; are odd for every i = 1,2,...,k and j = 1,2,...,r. Reducing
(2.1) mod 2, we obtain k = [[;_,(a; + 1) (mod 2). From this, we have the equivalence k is
odd < «; is even for all ¢ < n is a square, which proves our lemma. O

Tang, Ren, and Li [35] determine all deficient-perfect numbers n with w(n) < 2. In partic-
ular, they show that if w(n) = 1 and n is deficient-perfect, then n is a power of 2. We can
extend this for exactly k-deficient-perfect numbers as follows.

Lemma 2.2. Letn > 2, k > 1 be integers. If n is exactly k-deficient-perfect and w(n) = 1,
then k =1 and n s a power of 2. Consequently, if n is exactly k-deficient-perfect and k > 2,
then n has at least two distinct prime divisors. In particular, every exactly 3-deficient-perfect
number n has w(n) > 2.

34 VOLUME 59, NUMBER 1



ON EXACTLY 3-DEFICIENT-PERFECT NUMBERS

Proof. Suppose n = p® and the deficient divisors of n are d; = p°', dy = p”2, ..., dj, = p°*,
where a > 1 > Bo > --- > B, > 0. Because (p™1 —1)/(p — 1) =o(n) =2n—dy — --- — dy,
we obtain

(di+dy+-- +dp)(p—1) —1=p"(p—2). (2.2)
If p > 3, then

afpa(p*Q)I(d1+d2+"'+dk)(p*1)*1
<P 4P P4+ -1 -1 =p* —p*F -1,

which is impossible. Therefore, p = 2 and n is a power of 2. By (2.2), we also obtain
di + -+ di =1, which implies £k = 1 and 5, = 0. O

p

We now give the main result of this paper.

Theorem 2.3. The only odd exactly 3-deficient-perfect number that has w(n) = 2 is 1521 =
32 .132, with three deficient divisors di = 507, d» = 117, and dz = 39.

Proof. 1t is easy to check that if n = 1521 and d;, do, ds are as above, then w(n) = 2,
n is odd, dy, dg, ds are proper divisors of n, o(n) = 2n — d; — dy — ds, and so n is exactly
3-deficient-perfect. For the other direction, assume that 7 is odd, w(n) = 2, and n is exactly 3-
deficient-perfect. By Lemma 2.1, n is a square, so we can write n = p%apgﬁ , where 2 < p; < p2
and a, 8 > 1. In addition, let d; > dy > d3 be the deficient divisors of n, and let D; = n/dy,
Dy =n/dy, D3 =n/ds. Then p;1 < Dy < Dy < D3 < n. Because a(n) = 2n —d; — ds — ds, we
obtain
O'(TL) d1 d2 d3

9= N
n n n n
_ (p12°‘+1—1)(1722ﬁ+1—1)+ 2 M.
(1 —1)(po = V)plopy> ~ D1 Dy Dy
1A
A\FHERS /) |- LN (2.3)

(p1 —=1)(p2 —1) ~ D1 D> Ds
prl Z 57 then pl/(pl - 1) S 5/47 D2 2 77 p2/(p2 N 1) S 7/67 Dl Z 57 D2 2 77 D3 Z 257 and
(2.3) implies that
5.7 -1 1 1
2<— - —+ -+ -+ —=18411...
4.6 N 5 = 7 * 25 Y
which is a contradiction. So, p; = 3. For convenience, let ps = p. Then, n = 32*p?* and (2.3)

becomes
3p 1 1 1

2(p—1) +D1 +D2 N D3
If p > 83, then (2.4) leads to 2 < (3/2)(83/82) + 1/3 + 1/9 + 1/27 = 1.9997. .., which is
impossible. So, 5 < p < 79. Recall that the primes in [5,79] are 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79. If p > 11 and Dy > 3, then Dy > 9, Dy > 11,
D3 > 27, and (2.4) gives 2 < (3/2)(11/10) +1/9 4+ 1/11 + 1/27 = 1.8890.. ., which is false.
Therefore,

2< (2.4)

it p > 11, then Dy = 3. (2.5)
Similarly, if p > 23 and Dy > 9, then 2 < (3/2)(23/22)+1/3+1/23+1/27 = 1.9820.. ., which
is not true. Thus,

if p > 23, then Dy = 9. (2.6)
Next, we divide our calculations into 11 cases according to the value of p. In addition, we
write the possible values of Dy, Dy, D3 in increasing order.
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Case 1. 47 < p < 79. By (2.5) and (2.6), we have D; = 3, Dy = 9, and the possible
values of D3 in increasing order are D3 = 27,p,81,.... If D3 > p, then (2.4) implies 2 <
(3/2)(47/46) +1/3 +1/9 + 1/47 = 1.9983..., which is false. So, D3 = 27. Then, 2a > 3,
dl — n/D1 — 3201—127257 d2 — 320(—2])2[37 d3 —_ 32(1—31)2[37 and

(32a+1 _ 1) (p%“ o 1)

_ 2ce, 23 —_9. 2a, 28 _ _
2(]?—1) 0(3 P ) 2.3 P d1 d2 d3

=3%073p?(2.3% — 32 3 — 1) =41 3% 3p*’.

This leads to
gas _ P 1 (2.7)
(82 —p)p?B — 81 '

The left side of (2.7) is an integer, and we get a contradiction by showing that the right side

of (2.7) is not an integer. From this point on, let A be the number on the right side of (2.7).
If p =47, then A is equal to

4747 -1 (1 12-47%0 480 . 12 + (80/47%9)
35-4726 —81 7 1 35-4725—81 ' 35— (81/4725)
and so A ¢ Z. Similarly,

€ (1,2),

, 24p?? 4 80

if p=>53, then A = 1+m ' (1,2),
, 13p%% 4161

if p = 509, thenA:2+m € (2,3);
, 19p%8 4 161

if p=~61, then A =2+ 5157 281 €1(2,3);

7p?8 + 323
if p=67, then A =4+ F=s € (4,5).

15p28 — 81

The remaining cases p =71, 73,79 lead to A € (6,7), A € (8,9), and A € (26,27), respectively.
In any case, A ¢ Z and we have a contradiction. Hence, this case does not lead to a solution.

Case 2. p € {37,41,43}. By (2.5) and (2.6), we have D; = 3, Dy = 9, and D3 =
27,p,81,.... If D3 > 81, then (2.4) implies 2 < (3/2)(37/36) +1/3+1/9+1/81 =1.9984.. .,
which is not possible. So, D3 = {27,p}.

Case 2.1. Dy =3, Dy = 9, and D3 = 27. Then 2« > 3, (2.7) holds, and the calculations
in Case 1 work in this case too. Because (2.7) holds, we still let A be the right side of
(2.7). Therefore, if p = 37, then A € (0,1) and if p € {41,43}, then A € (1,2), which is a
contradiction.

Case 2.2. Dy =3, Dy =9, and D3 = p. Then,

(32a+1 _ 1) (p25+1 _ 1)
2(p—1)

=0 (3%2p®) = o(n) = 2n — dy — dy — d3
—9.3%028 _ 320128 _ g2a-2,25 _ 3%a,26-1
= 32 (14p - 9),

which implies

280+1 _ 1

322 = D . 2.8
(46p — p? — 18)p2A-1 — 27 (28)
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Equality (2.8) can be used in the same way as (2.7). So, let B be the number on the right
side of (2.8). Similar to the previous computation, we see that if p = 37, then B € (4,5) and
if p = 43, then B € (16,17), which contradicts that B = 3?%~2 € Z. Suppose p = 41. Then,
B € (8,10), which implies B = 9. Equating the right side of (2.8) with B = 9, substituting
p = 41, and performing a straightforward manipulation leads to 4126~! = 121, which is not
possible. Hence, there is no solution in this case.

Remark 2.4. Before going further, we note that the calculations similar to (2.7) and (2.8)
and their applications occur throughout the proof, and we give less details than those in (2.7)
and (2.8).

Case 3. p € {29,31}. Then by (2.5) and (2.6), D1 = 3, Dy =9, and D3 = 27, p, 81, 3p, 243,
9p, 729, .... If p =31 and D3 > 243, then (2.4) implies 2 < (3/2)(31/30)+1/3+1/9+41/243 =
1.9985. .., which is false. Similarly, assuming p = 29 and D3 > 729 leads to a false inequality.
Therefore,

if p = 31, then D3 € {27,31,81,93}, (2.9)
if p =29, then D3 € {27,29,81,87,243,261}. (2.10)

Next, we divide our calculations according to the value of Dj3.
Case 3.1. D3 = 27. Then, (2.7) holds and the same method still works. We obtain

if p =29, then 4 = (29p2ﬂ - 1) / (53p25 Q 81) e (0,1);
if p = 31, then A = (31p25 :, 1) / (51;;25 y 81) e (0,1).

So, A ¢ 7Z and we get a contradiction.
Case 3.2. D3 =p € {29,31}. Then, (2.8) holds and

if p= 29, then B = (841p25—1 [ 1) / (475p2ﬂ—1 2 27) e (1,2);
if p =31, then B = (961;925—1 = 1) / (447])2’8_1 - 27) e(1,2),

which is a contradiction.

Case 3.3. D3 = 81. Similar to the calculations for (2.7) and (2.8), we write o(n) =
2n — dy — dy — d3, where dy, do are the same as before, but dg = n/Ds = 320‘_4p25 and 2« > 4.
After a similar algebraic manipulation; we get

320(—4 — p25+1 — 1
(250 — Tp)p2P — 243"

When p = 29 or 31, the right side of (2.11) is in the interval (0,1), which is impossible.

Case 3.4. D3 = 93. By (2.9) and (2.10), we know that p = 31. Similar to Case 3.3 but
with d3 = n/D3 = 32 1p?8~1 we start with o(n) = 2n—d; —dy — d3 and perform an algebraic
manipulation to obtain

(2.11)

g2a—2 _ pPtl —1 _961p* Tt —1
(34p — p2 — 6)p2B—1 —27  87Tp2F-1 27

€ (11,12),
which is false.

Case 3.5. D3 € {87,243,261}. By (2.9) and (2.10), we have p = 29. Similar to Case 3.3
but with different values of d3 = n/Ds = 32a-1p28-1320=57,28 1 320-2028-1 when Dy = 87,
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243, or 261, respectively. These lead to

26+1 _ 1 841p2,6’71 -1
20> 2 and 3202 = P — £ D — 8T
o= 2zand3 Bip 2 0P 1 1 130,71 —g7 < (&7 i Da =87
26+1 _q 2928+1 _
2a > 5 and 327° = P - 1,2), if D3 = 243
az25and3 (754 — 25p)p2F — 729 207741 —729 © (1,2), if Ds = 243;
p?PHl -1 _ 841p?Tt -1

2 > 2 d 200—2 — —
@z 2and3 (30p — p? — 2)p2—1 — 27 _ 27pPP—1 _ 27

In any case, we get a contradiction.
Case 4. p = 23. By (2.5) and (2.6), we have D; = 3 and Dy = 9. We start from

(B —1)P* T —1) =2(p — Do(n) = 2(p — 1)(2n — dy — dz — d3)
= 28(p — 1)3***p* = 2(p — 1)ds.
Writing (320+1 — 1)(p?#+! — 1) = 27p320—2p?8 — 32a+1 _ p26+1 1 1 the above leads to

€ (31,33), if D3 = 261.

(28 — p)32072p?B 320t 28 L 4 9(p — 1)d3 = 0. (2.12)
Multiplying both sides of (2.12) by 28 — p and factoring a part of it gives us
((28 = p)3**2 - p) ((28 - — 27) =28(p— 1) = 2(28 = p)(p — 1)d5. (2.13)
Substituting p = 23, the equation (2.13) becomes
(532972 = 23)(5 - 2328 = 27) = 616 — 220d3. (2.14)

Let A; and A be the expressions on the left-and the right side of (2.14), respectively. If o > 2,
then A; > 616, while Ay < 616, which is not the case. So, @« =1 and 47 = —18(5- 2326 _ 27).
Because 3 | A} and 3 1 616, we see that 3 { ds.- Because ds | n and n = 32%23%3 we obtain
ds = 23% for some b3 > 0. If b3 = 0, then Ay = 616 — 220 = 5 (mod 23); if b3 > 1, then
A = 18 (mod 23). But, A3 = 3 (mod 23), and so Ay = Ay and A # Az (mod 23), which is
not possible.

Case 5. p = 19. By (2.5), Di = 3. So, {Dy, D3} C {9,19,27,57,...}. If Dy > 19 and
D3 > 57, then (2.4) implies that 2 < (3/2)(19/18) +1/3 +1/19+1/57 = 1.9868. .., which is
not true. Therefore, (D3 = 9) or (Dg =19 and D3 = 27).

Case 5.1. Dy = 9. Then, the computation in Case 4 still works and (2.13) holds. Substi-
tuting p = 19 in (2.13) and dividing both sides by 9, we obtain

(3% —19)(19% — 3) = 56 — 36ds. (2.15)

Let A3, A4 be the expressions on the left and the right side of (2.15), respectively. If oo > 2,
then As > 56, while A4 < 56, which is not true. Therefore, & = 1. Then, 11 = A3 = A4 =
—1+ 2d3 (mod 19), and so 19 { d3. Because d3 | n and n = 32°p?® = 32.19%% we see that
ds = 1,3,9. Substituting d3 = 1,3,9 in (2.15) leads to 5-19%% = 5,41, 149, respectively, which
has no solution.

Case 5.2. Dy =19 and D3 = 27. Similar to the calculations for (2.7) and (2.14) but with
different values of do and ds3, we obtain, after an algebraic manipulation, that

361-192-1 1

32073 — T €(34),

C117-1928-1 -8

which is not possible.
Case 6. p € {11,13,17}. Then by (2.5), we have Dy = 3. The possible values of Dy and
Ds listed in increasing order are 9, p, 27, 3p, 81, 9p, min{p?, 243}, max{p?, 243}, .... We
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can eliminate some cases by using (2.4) as before. If p = 17 and D > 27, then (2.4) implies
2<(3/2)(17/16)+1/3+1/274+1/51 < 2; if p =17, Dy > 17, and D3 > 81, then (2.4) leads to
2 < (3/2)(17/16) +1/3+1/17+1/81 < 2. Similarly, if p = 13, then we must have Dy < 39; if
p =13 and Dy > 27, then it forces D3 < 243; if p = 11, then Dy < 81 or D3 < 243. Therefore,
we obtain

if p=17, then (D3 =9) or (Dy = 17 and D3 € {27,51}); (2.16)
if p = 13, then (D € {9,13}) or (Dy = 27 and D5 € {39,81,117,169}); (2.17)
if p =11, then (D9 € {9,11,27,33}) or (D3 = 81 and D3 € {99,121}) or

(Dy =99 and D5 = 121). (2.18)

We divide our calculations according to the values of Dy and Ds listed in (2.16), (2.17), and
(2.18).

Case 6.1. Dy =9 (so p can be any of 11, 13, or 17). Because D1 = 3 and Dy = 9, equation
(2.13) holds. Substituting p = 11,13,17 in (2.13), we obtain, respectively

(17-3%72 _ 11)(17 - 1175 = 27) = 280 < 340d3 (if p = 11), (2.19)
(15 - 3272 _ 13)(15 - 13%% — 27) = 336 — 360d3 (if p = 13), (2.20)
(11-3%72 — 17)(11 - 1728 = 27) = 448 — 352d3 (if p = 17), (2.21)

where d3 in (2.19) is a proper divisor of 3221127 d3 in (2.20) is a proper divisor of 321327,
and d3 in (2.21) is a proper divisor of 32*17%%. Because a, > 1, the left side of (2.19) and
(2.20) are positive, whereas the right side of (2.19) and (2.20) are negative. So, (2.19) and
(2.20) do not lead to a solution. For (2.21), we have 448 — 352ds < 96, which implies o = 1.
Then, (2.21) reduces to 3 - 1729 +113 — 16d3 = 0. Reducing this mod 3 and mod 17, we see
that d3 = 1 (mod 3) and d3 =4 (mod 17). Because ds | 32217%#, 31 d3, and 17 { d3, we obtain
d3 = 1, which contradicts that d3 =4 (mod 17). Thus, there is no solution in this case.
Case 6.2. Dy = p, where p € {11,13}. Similar to the calculation for (2.13), we have

(3% — 1) (¥ = 1) = 2(p — 1)o(n) = 2(p = 1)(2n —di — dy — d3)
- 2(p <% 1)(2 \ 32ap2ﬁ \ 32&—1p2ﬂ 4 32ap2ﬁ—1 _ d3)

Let B, = 16p — p? — 6. Following a straightforward algebraic manipulation and multiplying
both sides by B, the above leads to

(Bp32t —p?)(Byp* 1= 9) = 9> — B, — 2B,(p — 1)ds. (2.22)
Substituting p = 11 in (2.22), we obtain
(49 - 32971 —121)(49 - 112571 — 9) = 1040 — 980d3. (2.23)

Because a, § > 1, the left side of (2.23) is larger than 60, whereas the right side of (2.23) is at
most 60, so (2.23) does not give a solution. Next, substituting p = 13 in (2.22) and dividing
both sides by 3, we obtain

(33- 3271 —169)(11 - 13%°71 — 3) = 496 — 264ds. (2.24)
Because the right side of (2.24) is at most 232, we obtain o = 1 and (2.24) reduces to
35-13%971 —12d5 +13 = 0. (2.25)

Recall that d3 | n and n = 32%p?% = 32.13%%. So, d3 = 3%313% for some a3 € {0,1,2} and
bs > 0. Reducing (2.25) modulo 7, we see that 2d3 = 1 (mod 7). If a3 = 0, then 2d3 = 2-13% =
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2(-1)» =2,-2#1 (mod 7). If a3 = 2, then 2d3 = 18 - 13" = 4(—1)» =4, -4 # 1 (mod 7).
Therefore, ag = 1 and (2.25) becomes

35-13%71 —36.13% + 13 = 0. (2.26)

Suppose, for a contradiction, that 8 > 2. Reducing (2.26) modulo 132, we obtain 36 - 13 =
13 (mod 132). If b3 > 2, then 36 - 13% = 0 # 13 (mod 13%). If b3 = 1, then 36 - 13% — 13 =
35-13 # 0 (mod 13%). If b3 = 0, then 36 - 13 = 36 # 13 (mod 13%). In any case, we
reach a contradiction. Therefore, 5 = 1. Substituting § = 1 in (2.26), we obtain b3 = 1,
and so dg = 3%13% = 39. This leads to n = 32*p?# = 32 . 132 with the deficient divisors
di =n/D; =3-132 =507, dy = n/Dy = 3%-13 = 117, and d3 = 39, which we already verified
at the beginning of the proof that this is indeed a solution to our problem. The elimination
for the other cases can be done in a similar way to the previous cases, so we give less details.
Recall that Dy = 3. The other cases are as follows:
(i) p=17, Dy = 17, and D3 € {27,51} (this is the remaining case from (2.16)).

(ii) p =13, Dy =27, and D3 € {39,81,117,169} (this is the remaining case from (2.17)).

(iii) p =11, Dy € {27,33}.

(iv) p=11, Dy =81, and D3 € {99,121}.

(v) p=11, Dy =99, and D3 = 121.
In (i), (ii), (iv), and (v), we know the values of D;, Dy, D3, and so we have the values of
dy, dg, d3. We start from the equality o(n) = 2n —d; — do — d3, perform the usual algebraic
manipulation, and try to write the minimum nonnegative power of 3 appearing among dy, do,

ds in terms of the other variables. We obtain the following results. For (i), we have p = 17,
Dl = 3, D2 = 17, and

289-1720-1 — 1
. _ 20—3 __ .
if D3 =27, then 2o > 3 and 3°“7° = LE AP € (0,1);
289 - 172671
: _ 2a—1 __
if D3 = 51, then 3 =9/ 1y € (32,35),
which is a contradiction. For (ii), we have p =13, Dy =3, Dy = 27, 2av > 3, and
169-13%-1 1
if D3 = 39, then 3°%7% = 1);
if D3 = 39, then 3 AT s € (0,1);
13-13% —1
: N 20—4 .
if D3 =81, then 2> 4 and 3 *—15.1323_2436(()’1)’
169 - 13261 1
. _ 200—3 __ .
if D3 =117, then 3 = 33 1397 1_g] € (5,7);
2197 -13%9-2 — 1
if D3 = 169, then 32073 = o713 € (15,37).

©141-13%-2 81
The first three cases above give a contradiction. The last case implies that

2197 - 132972 — 1 = 27(141 - 13?572 — 81),

which leads to 1610 - 132°~2 = 2186, which is impossible. For (iv), we have p = 11, Dy = 3,
Dy =81, 2a > 4, and

121-1126-1 -1
if Dy = 99, then 32¢~% = € (1,2):
nes . 103 11271 — 243 € (12

1331-11%26-2 -1
: o 20—4 __
if D3 =121, then 3 = e 11992 913 € (1,3),

40 VOLUME 59, NUMBER 1



ON EXACTLY 3-DEFICIENT-PERFECT NUMBERS

which is false. For (v), we have p = 11, D1 = 3, Dy =99, D3 = 121, which leads to
1331112672 -1 .
37-1126-2 27
which is not possible. We now consider (iii). We have p = 11, D; = 3, Dy € {27,33}. We
know the values of dy, da but not ds. We start with o(n) = 2n — d; — d2 — d3 and write ds in
terms of the product of the other variables. Similar to the calculation for (2.13), we obtain

if Dy = 27, then 2 > 3 and (32272 — 1)(112%%! — 81) = 80 — 20ds3; (2.27)
if Dy = 33, then (3%F!1 —121)(11%°71 — 1) = 120 — 20ds3. (2.28)

32072 — (35,37) U {133},

In (2.27), 2« is an even integer > 3, so 2« > 4, and thus, the left side of (2.27) is larger than 80,
whereas the right side of (2.27) is less than 80, which is a contradiction. Because the right side
of (2.28) is less than 120, we see that a = 1 and (2.28) reduces to 47 - 1125+1 —10d3 + 13 = 0.
Reducing this modulo 11, we see that 10ds = 2 (mod 11), and therefore, d3 = 9 (mod 11).
So, 11 t d3. Because d3 | n and.n = 3%*p*# = 32 .11%%, we have d3 = 1,3,9. Because
ds =9 (mod 11), d3 = 9 only. Then 47 - 112741 — 90 + 13 = 0. This leads to 47 - 112+ = 77,
which has no solution.

Case 7. p = 7. Then, {Dl,DQ,Dg} = {3,7, 9,21, N } If D1 > 7 and D2 > 21, then (24)
implies 2 < (3/2)(7/6) +1/7+1/21 +1/21 < 2, which is impossible. So, (D; =3) or (D1 =7
and Dy =9). If Dy = 3, then dy = 3201728 4nd we have

0=12(c(n) —2n +dy + ds + d3)

= (320 )72 1) = 24n 4+ 12(dy + ds + d3)

— 320728 (21 _g)r?8 /3% 24) 1+ 12(dy + da + ds)

= 14 12dy (L4dp/dy +dg/dy) = 3273 +3/7% 4.7/3%)

> 1+ 12dy — 32972034 3/7% + 7/3%)

> 12d; —3%27%2(4) = 0,
which is a contradiction. So, D; =7 and Dy = 9. We start with o(n) = 2n — d; — dy — ds,
substitute d; = 32*72A=1, dy = 3222728 and do the usual algebraic manipulation to obtain

(3201 _49) (72071 — 9) =440 — 12ds. (2.29)

If « > 3 and 5 > 2, then the left side of (2.29) is larger than 440, whereas the right side of
(2.29) is smaller than 440. Therefore, (a € {1,2}) or (&> 3 and 8 = 1). Because d3 | n and
n = 320728 ds = 3975 for some as, by > 0.

Case 7.1. a« > 3 and 8 = 1. Then, (2.29) reduces to

32071 1171 = 6 - 3937%s, (2.30)

Because 32! + 171 = 32(32273 4+ 19), we obtain 32 || 6d3, which implies a3 = 1. Dividing
both sides of (2.30) by 9, we obtain 32473 + 19 = 2. 7%3. Reducing this modulo 3, we have a
contradiction.

Case 7.2. a € {1,2}. If @ = 2, then (2.29) leads to d3 = 0 (mod 11), which contradicts that
ds = 3%37%. So, @ = 1. Then, a3 € {0,1,2} and (2.29) reduces to 23 - 726~1 — 6d3 + 13 = 0.
From this, we see that 7 { d3. So, bs = 0, d3 = 3%, and the above equation becomes
23. 7261 _6.3% 4 13 = (. Substituting as = 0,1,2, we obtain 23 - 72#~1 = —7,5,41, which
is not possible. Hence, there is no solution in this case.
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Case 8. p = 5. Then, the possible values of D1, Do, D3 listed in increasing order are
3,5,9,15,25,.... If Dy > 25, then (2.4) implies 2 < (3/2)(5/4) + 1/25 + 1/25 +1/25 < 2,
which is false. Therefore, D € {3,5,9,15}. It is possible to obtain bounds for Dy and D3 as
in the other cases, but the same method will lead to a longer calculation. In this case, it is
better to get a bound only for D; and go back to dy, do, d3. Let d; = 3u501  dy = 3025b2
and d3 = 3“35”3, where a;,b; > 0, and recall that n > dy > do > d3 > 1 and dy, do, d3 are the
deficient divisors of n = 322525, In addition, from o(n) = 2n — (d; + dz + d3), we get

(3%t _ )52 — 1) = 16 - 329528 — 8(dy + da + d3)
=16 - 322528 _ g(3u15% 4 3025b2 | 3asgbs) (2.31)
From (2.31), we see that 8(d; + dg + d3) = 32¢528 4 320+1 4 526+1 _ 1 which implies

8 3 5
1<W(d1+d2+d3)<1+?+?<2. (232)
Because D; € {3,5,9,15} and dy = n/D;, we see that
(a1,b1) = (2a —1,20), (2,268 = 1), (2a0 — 2,20), or (2a— 1,258 —1). (2.33)

Observe that 3% = 1 (mod 5), 52 = 1 (mod 3), and the exponents 4 and 2 are the smallest
positive integers satisfying each congruence. From this, it is not difficult to verify that the left
side of (2.31) satisfies

(3201 _ 1)(52+1 _ 1) = 3 (mod 5), if o is even; (2.34)
4 (mod 5), if « is odd,
(3%t _ )52 ~ 1) = 2 (mod 3). (2.35)

Because 5 does not divide the left side of (2.31), at least one of dy, da, ds is not divisible by
5, that is, at least one of by, ba, bs is zero. By (2.33), we see that by # 0. Thus,

by # 0 and min{be, b3} = 0. (2.36)

Suppose, for a contradiction, that a; = as = ag = 0. That is, d; = 5%, dy = 5%, dg = 5.
Because d; > dy > ds, we have by > by > bs. So by (2.36), by = 0 and by > by > 0. Then, the
right side of (2.31) is = 2 (mod 5), contradicting (2.34). So, one of aj, as, as is not zero. By
(2.35) and (2.31), one of d;, dg, d3is not divisible by 3, and so one of aj,as,as is zero. We
conclude that

max{a,as,as} > 1and min{a;,as,a3} =0. (2.37)
The right side of (2.31) is congruent to

(0+0+45%) (mod 3), ifa; # 0,as # 0, and az = 0;

(04 5% 4+ 0) (mod 3), ifay #0,as =0, and ag # 0;

(5" +040) (mod 3),  if a; = 0,as # 0, and az # 0; (2.38)
(5% 4 5% 4+ 0) (mod 3), if a; = az =0, and a3 # 0; '
(5% +0 +5%) (mod 3), if a; =az =0, and ay # 0;

(04 5% 4+ 5%) (mod 3), if ay = a3z =0, and a; # 0.

By comparing (2.31), (2.35), and (2.38), we obtain the parities of by, by, b3 as follows. If
5 = 2 (mod 3), then b is odd. If 5* +5Y = 2 (mod 3), then x and y are even. For convenience,
for each i € {1,2,3}, if b; is odd, we write b for b;; if b; is even, then we replace b; by b..
Therefore, for each i € {1,2,3}, b, b > 0, b, = b; is odd, and b = b; is even, and there are
six cases to consider as follows:
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Case 8.1. d; = 3950 dy = 392502 d3 = 5% ) £ 0, ay # 0, and a3 = 0,

Case 8.2. d; = 395", dy = 5%, dy = 395 q; £0, ay = 0, and ag # 0,

Case 8.3. d; = 5%, dy = 392502 dy = 39553 q; =0, ay # 0, and a3 # 0,

Case 8.4. d; = 5", dy = 5%, d3 = 3%35% gy = ay = 0, and ag # 0,

Case 8.5. di = 5%, dy = 39252, d5 = 5% qy = a3 = 0, and ay #0,

Case 8.6. d; = 395" dy = 5% dg = 5% ay = a3 =0, and a; # 0.

Some cases are shorter, but we will begin with Case 8.1.

Case 8.1. Because b # 0, we obtain, by (2.36), that b; # 0 and by = 0. By (2.33), there
are four cases to consider. If a3 = 2o — 1 and b; = 2, then

8(dy + da + d3)/(3%5%%) = 8 (32“*1525 4302 4 5b'3) / <32a525> > 8/3> 2,
which contradicts (2.32). Next, suppose that a; = 2a and b; = 28 — 1. Because 3?2 = dy >
ds = 5% > 5, we obtain ao > 2. Thus,
0=8(c(n) —2n +di +dy + d3) = 8(dy + do + d3) = 322528 — 32+l _ 52641 4
= (3201 —25)(5%"1 — 1) 4+ 87> 0,
which is false. Next, consider the case (a1,b1) = (2a —2,28). Because a; # 0, « > 2. If § > 2,
then (2.32) implies that

(3204—252,3 +3a2 _’_51)%) <

1< — 32 526

2a-2r28 | o2a , r26—1
T (3 528 4 32 L 5 )

—8(i+i+;> <8<i+i+#) <1
32 528 320.5 ) =7\32 5t 315 ’
which is a contradiction. So, 8 =1. Then, d3 = 5.

Starting with 0 = 8 (a(n) — 2n+dy + do + d3), and then simplifying leads to 2 - 3%2 =
13 - 32972 1 21, Because 13- 3202 4+ 21 > 2.3%2"! e obtain a» = 2a. But, then 21 =
2.3% —13.3%972 =5.32%°2 =0 (mod 5), a contradiction. Next, we consider the last case:
(a1,b1) = 2 — 1,28 —1). If « > 2 or 5 > 2, then (2.32) implies

1 (32a—1&'>2ﬁ—1 +3r 5bé)

8
< 32a52,3

<8<i+max{i+ ! i—i— ! }><1

- 15 25 1 3%1.575%4 .32.5 '

which is impossible. So, « =1 = . Then, a; = 1 = b;. Because 15 =d; > 3% =dy > d3 =
5% =5, we have dy = 9. Now, it is easy to verify that o(n) — 2n + dy 4+ dy +ds = —18 # 0.
So, there is no solution in this case.

Case 8.2. Because by = b}, # 0, we obtain, by (2.36), that b3 = 0. Similar to Case 8.1, we
divide our calculation into four cases according to the values of a; and b; as given in (2.33). If
(a1,b1) = (2ac — 1,28), then 8(dy +do +d3)/(3%*5%8) > 8d; /(3**5%8) > 8/3 > 2, contradicting
(2.32). If (a1,b1) = (20,28 — 1), then dy > 5, d3 > 3, and

0=8(c(n) —2n +dy +dg + d3) = 8(dy + dy + d3) — 3%¥52F — 321 _ 52001 4
> 320["!‘1525—1 _ 320[+1 _ 52ﬂ+1 + 65

= (3%t —925)(5%°~1 — 1) +40 > 0,
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which is not possible. Suppose (a1,b1) = (2a — 2,253). Because a1 # 0, we have o > 2. If
B > 2, then (2.32) implies

8 2a—2 23 A a
1< opamgp (37257 4 5% + 3)
8 1 1 1
< 320—2528 | £28-1 32a> <82 1,
_320‘525( + + - 9+3 5+54 <

which is false. So, 8 = 1. Then, ds =5 and d3 = 3.

Starting from 8 (o(n) — 2n + d; + da + d3) = 0 and then simplifying leads to 13-32¢72 415 =
0, which is impossible. The last case of (2.33) is (a1,b1) = 2a—1,26—1). If a>2or § > 2,
then (2.32) implies

< T (320‘*1525*1 L 3“3)

<8 (i + # 4 L)
- 15 [\ 32 . 5 /528
<8(i—|—rnax{i—|—i L—F = }) <1,
- 15 3.5 5232.5 ' 5t
which is not true. Thus, o = § = 1. So, a1 = b1 =1, ds =5, and d3 = 3. Now, it is easy to
verify that o(n) — 2n + d; + do2 + d3 = —24 # 0. So, there is no solution in this case.
Case 8.3. By (2.32), we obtain 1 < 8(3d;)/(3%*5%%) <24 .528~1/(328520) < 24/45 < 1, a

contradiction.
Case 8.4. By (2.32), we obtain

8 8 .7 4
1< 3% 52ﬁ(d1+2d2) 32a52/3(5 L+42.5%)
1 2
< 528 1 9. 5272y < g A 1
—32a525( T ) 979795 ) <"

which is not possible.
Case 8.5. If a > 2, then (2.32) implies that

2

8 1
1< (2d; +d3) £ (2 - 5% + 52~ 2)<8<34+34 52) <1,

8
32 52,8 — 32 525
which is false. Therefore, & = 1. Then the left side of (2.31) is = 4 (mod 5), whereas the
right side is = 2(d; + da + d3) = 2(3%25" 4 5%) (mod 5). By (2.36), by = 0 or by = 0. If
by = 0 and b3 # 0, then 52 < d3 < dp = 3%, and so ap > 3, contradicting that do | n and
n = 320528 = 32.520 If by # 0 and by = 0, then 2(3%25*2 + 5%) = 2 (mod 5), which is not
the case. Because a = 1, ag € {1,2}. So if by = b3 = 0, then 2(3%25% + 5%) = 3,0 (mod 5),
which is not true. So there is no solution in this case.
Case 8.6. Because 5% = dy > d3 > 1, we have 5 # 0. By (2.36), we see that b = 0.
Then, the right side of (2.31) is = 2(3%5" + 5% + 5%) =2 (mod 5), contradicting (2.34).
This completes the proof of this theorem. O
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