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Chapter 1

Introduction and Literature Review

An algebra A = (A; F) is asstructure consisting of a nonempty set A which is
called the universe of A,‘and a set [’ of operations defined on A which is called the
set of fundamental operations of A. If ‘As finite and every fundamental operation
is finitary, A is called a finite algebra.. However, we may consider F as { fj}j6 J
for some index set J. For convenience, we may write-A .= (A; fi1, fa, ..., ft) when
F ={f, fa, ..., f¢} is finite for some positive integers t. A type 7 = (n;);cs of algebra
is a function which map each j.€ J to the arity of f;; Groups, rings and fields
are examples of well-known-algebras of-type (2, 1,0), (2,2,1,0) and (2,2,1,1,0,0),
respectively. Most of algebraist study algebraic properties of algebras through the
concept of subalgebras, product of algebras, homomorphic image of algebras, minimal
algebras and subdirectly irreducible algebras.

A wariety is a class of algebras of the same type which is closed under homo-
morphic images, subalgebras and direet-products of families of algebras. In [3], G.
Birkhoff proved that K is a variety if and only if every algebra in K satisfies a certain
set of laws. For instance, we know that all groups (G;-, ! e) satisfy the following

laws:
e associative law : (a-b)-c=a- (b-¢),
e identity law : a-e=a=¢€-a,

e inverse law : a-a l=e=a"1-a



for all a,b,c € A. Therefore, the class of all groups is a variety.

In the resent year, some complicate questions about algebras are not able
studied through those algebraic properties; especially, representing some classes of
algebras. Several algebraist are studying new methods to solve these problems. In
1970, H.A. Priestley [17] represented bounded distributive lattices by ordered Stone
spaces; it is a new branch to use a topology to study an algebra. And also, this concept
was used to describe subdirectly irreducible Ockham algebras by A. Urguhart [22].
In 1983, Davey and Werner [11] developed the method to represent every algebra as
an algebra of continuous functions; this concept is known as natural duality.

For each algebra A, let o ;= ISP(A) be the category consisting of all iso-
morphic copies of subalgebras, of direct powers.of A -and let 2" := IS.Pt(A) be
the category consisting of all isomorphie copies of closed substructures of non-empty

direct powers of A := (A; R, 7 ) where R C U S(A")and Z-isthe discrete topology

neN

on A. The dual D(B) € 2 of B €« and E(X) € o of X € 2 are the set of all
homomorphisms from B to A and the set-of all morphisms-from X to A, respectively.
We say that A (or R) yelds-a (natural) duality on &7 or A duwalise A if B = ED(B)
for all B € o7 and we say that A is dualisable if there is a structure A which dualise
A. These mean that every-algebra in e/ can be represented as a concrete algebra
of morphisms from the structure D(B) to the structure A; for further details, see in
[7] or [11]. One of the famous theorem in thenatural duality, -which'is named NU-
duality Theorem [7}, implies that the structure A := (A; S(A*), 7. ) yields a duality on
ISP(A) whenever A is an.algebra admitting a majority term operation; that is, there
is a term operation m : A3 — A satisfying-m(z,z,y) = m(z,y,z) = m(y,z,z) = x
for all z,y € A.
A lattice is an algebra (A;V, A) of type (2,2) satisfying the following laws:

e commutative law : aVb=bVaand aANb=0bAa,
e associative law : (aVb)Ve=aV (bVec)and (aAD)Ac=aAN (bAc),
e idempotent law : aVa =a and a A a = a,

e absorption law : aV (e Ab) =aand a A (aVb)=a



for all a,b,c € A. By Birkhoft’s theorem [3], the class of all lattices is a variety.
A bounded lattice is a lattice which has elements 0 and 1 satisfying 0 A x = 0 and
1Vax=1forall z € A. The elements 0 and 1 are called the least and the greatest
element in A, respectively. If A is a bounded lattice, we write A = (A;V,A,0,1).
It is well known that the medean function m : A3 — A on a set A defined by
m(z,y,z) = (x Ay) V (z A z)V (y A z) is a majority term operation on a lattice
(A;V,A). By NU-duality Theorem [7], every lattice is dualisable. A distributive
lattice is a lattice satisfying a A (bV ¢) =(a Ab) V (a A c) for all a,b,c € A. The
power set Z(X) of a set X is an example of a well-known bounded distributive
lattice whose V is the union, A is the intersection, 0 is the empty set and 1 is the
set X. However, there are some lattices which are not- distributive; for example, the
diamond lattice M3 and the pentagon lattice N5 whose diagrams are shown in Figure
1. In [2], G. Birkhoff gave a characterization of distributive lattices by M; and Ns

which is known as the M3 — N5 Theorem:

(A;V,A) is a distributive lattice if-and only if it-has no Mz and N; as sublattices.

Mg
Ns

Figure 1 The lattice N5 and Mj.

An algebra (A; F) is a reduct of an algebra (A; F*) if F C F*. All distributive
lattices are precisely sublattices of (Z(B); V, A, 0, 1) for some sets B. If we consider a
complement of sets as a unary operation’ : 2(X) — 2 (X) defined by A" = X\ A for
all A C X, we will have a new algebra (Z(X);V,A,,0,1) whose (Z(X);V,A,0,1)
is its reduct.

An algebra (A; F') is said to be a lattice-based algebra if (A; Vv, A) is its reduct.
So, NU-duality Theorem [7] implies that every lattice-based algebra is dualisable.

The dualities of lattice-based algebras have been studied by various authors (see [9],



[11], [18]). If a bounded distributive lattice is a reduct of an algebra (A; F), we
call (A; F') that a bounded distributive lattice-based algebra; or shortly, BDL-algebra.
For a set X, one can notice that (Z(X);V,A,,0,1) is a BDL-algebra such that the
complement ' is a dual endomorphism on its lattice-based. Lattice-based algebras are
extensively studied; especially, BDL-algebras whose F'\ {V, A,0,1} contains only a
dual endomorphism on its lattice-based; for instance, Boolean algebras, De Morgan
algebras, Ockham algebras.

A Boolean algebra was introduced by George Boole [6] to be a BDL-algebra
(A;V, A, £,0,1) whose f is a unary operation on A satisfying for each z,y € A,

o flzvy)=flz)A[fly)
o flzAy)=[f(x)V [(y),
e z A f(x)=0,
o 2V f(z)=1

In [5], G. Birkhoff and M. Ward proved that every finite Boolean-algebra is isomorphic
to (Z(B); V, A\, 0, 1) for some-finite sets B.

A De Morgan-algebra-was introduced by Moisil [16] to be a generalization of
a Boolean algebra. It is a BDL-algebra (A; VA, f,0,1) whose its unary operation f

satisfies for each z,9 € A,
o f(zVy)=fla)A f(y),
o flxny)=flz)V f(y),

° f2(x) =x

An Ockham algebra is a BDL-algebra (A4;V, A, f,0,1) whose f is a dual endo-
morphism on its lattice-based. This algebra is a generalization of Boolean algebras
and De Morgan algebras. It was first introduced by Berman [1]. Later, A. Urguhart

[22] characterized congruences and subdirectly irreducible Ockham algebras. Besides,



M.S. Goldberg [14] applied the concept of duality to characterize all finite subdirectly
irreducible Ockham algebras.

BDL-algebras not only are popularly studied in mathematics but also can be
applied in computer science; for instance, Boolean algebras have been fundamental
in the development of computer science and digital logic.

We are interested in introducing a new kind of BDL-algebras by considering
conditions on the unary operation f, especially when f is connected.

In the literature, if f is a unary operation on a set A then (A; f) is called mono-
unary algebra. A unary operation f on aset Ais connected if for each a,b € A, there
exist nonnegative integers n,m_such that f™(a) = f™(b). If f is connected, (A; f) is
called a connected mono-unary algebra. In [24], M. Yoeli characterized all subdirectly
irreducible connected mono-unary algebras.” Later, G:H. Wenzel [23] extended this
result to any mono-unary algebras. Itis well-known fact that-every mono-unary alge-
bra is a disjoint union of connected mono-unary algebras. So, we study mono-unary
algebras via connected mono-unary algebras. One direction of studying mono-unary
algebra is the concepti of pre-period which is-the least nonnegative integer A( f) satisfy-
ing Im fAY) = Im A+ (seee.g.[25)). If A(f) = |A| — 1 then f is called a long-tailed
function [12]. C. Ratanaprasert and K. Denecke [20] characterized all congruence
relations on (A; f) whose fis a long-tailed function; besides, C. Ratanaprasert ,
K. Denecke and S.L. Wismath [20],[13] proved-that there exists.d € A such that
A={d, f(d),..., AUNd) = )1 (d)}. The result from [20] and [13] implies that if
f is a long-tailed function then f is connected. If f is a long-tailed function on a finite
set A, one can define a totally order-<.on A by.d->f(d) > ... > fA)(d) = fAN+(d)
which implies that f is an endomorphism on (A;V, A, 0) where f2)(d) = 0.

In this thesis, we define a BDLC-algebra to be an algebra A := (A;V, A, f,0,1)
whose (A; f) is a connected unary algebra and f is an endomorphism on the bounded
below distributive lattice (A;V,A,0). For example, A = {1, f(1),..., f*)(1) = 0}
equipped with {V, A, f,0,1} and 1 > f(1) > ... > fA)(1) forms a BDLC whose f
is a long-tailed function on A and we prove later that this algebra is contained in

every BDLC algebra. Since the infinite direct product of connected unary algebras



does not need to be connected, the class M of all BDLC-algebras is not a variety.
But we prove that the subclass M,, of M whose the pre-period is less than or equal
to n is a variety for every positive integer n; in fact, M,, is the variety satisfying the

following laws:
o flaVvbd) = f(a)V f(b),
o flanbd) = f(a)A f(b),

e fM(1)=0

for all a,b,c € A.

For a class B of algebras of the same type; the variety generated by B is the
least variety which contains B and denoted by V (B)< In [4], G. Birkhoff proved that
K is a variety if and only if I = V(Si(K)) where Si(K) is the set of all subdirectly
irreducible algebras in K. By the result,-every subvariety of IC can be determined by
a subset of Si(K). Also, the elass A(KC) of all'subvarieties of K equipped with the
order C forms a complete lattice:

B. Jonsson proved in {15] that if IC.is a congruence-distributive variety gener-
ated by a finite set of finite algebras then A(KC)isa finite distributive lattice; besides,
B.A. Davey [8] proved that A(K) is isomorphic to the lattice @(Si(K)) of all order
ideals of (Si(K); <sjx)) where an-order on Si(/) is defined by A <g;) B if and
only if A € HS(B).

It is known that every variety of lattice based-algebras is congruence dis-
tributive; so is M,, for all positive integers n. To describe the lattice A(M,,), it is
interesting whether M,, is generated by a finite set of finite subdirectly irreducible
algebras. We will prove the affirmative answer that the set Sip(M,,) of all finite sub-
directly irreducible algebras in M, is finite (up to isomorphism) and then equipped
with the result in [19] we prove that all subdirectly irreducible algebras in M,, are
finite.

We organize this thesis into six chapters as follow:



In chapter 2, we summarize some basic concepts from several books which are
useful in the sequel.

In chapter 3, we study general properties of BDLC-algebras and apply them
to find a certain set of laws for varieties of BDLC-algebras; and then we characterize
all their minimal non-identical congruences.

In chapter 4, we characterize all finite subdirectly irreducible BDLC algebras
by using the results in Chapter 3; and then apply some results in [19] to prove that the
varieties of BDLC-algebras has no infinite subdirectly irreducible algebras; moreover,
we show that it is generated by a single subdirectly irreducible algebra.

In chapter 5, we apply the result'in{8] to describe the lattice of all subvarieties
of the varieties of BDLC-algebras.

In chapter 6, we summarize our main results in previous. chapters for more
insight.

To avoid a confusion, in writing the thesis, let N be the set of all natural
numbers, <* denote the natural order-on'N U {0} and < denote the order of the

lattice (A4;V, A, 0, 1).



Chapter 2

Basic Concepts

In this chapter, we provide-some hasic concepts which will be referred in the

sequel. All theorems here are stated without proofs.

2.1 Ordered Sets

In this section, we-introduce and present some basic properties of an ordered

set.

Definition 2.1 Let P-be-a nonempty-set..An-order (or.-partial order) on P is a

binary relation < on P satisfying the following three conditions for all z,y, z € P,

1. z <z, (reflexivity)
2. r<yandy<zximply r =y, (anti-symmetry)
3. r<yandy < zimply z < z. (transitivity)

A set P equipped with an order relation < is said to be an ordered set (or
partially ordered set) and denoted by (P; <). Some authors use the shorthand poset.
An ordered set (Q; <') is called a subordered set of (P;<) if @ C P and <’ is the
restriction of < to @ x @, denoted by <|gxq-

An order relation < on P gives rise to a relation < of strictly inequality: x <y
in P if and only if z <y and = # y. For each x,y € P, we say that x is comparable

with y if x <y or y < .



Definition 2.2 Let P = (P; <) be an ordered set.
(i) P is a chain if all pairs of elements of P are comparable.
(ii) P is an antichain if x = y whenever x < y for all z,y € P; that is, no pairs of

elements in P are comparable.

If P = ({a,...,a;} ;<) is a finite chain with a; < ... < a; for some ¢t € N, we

denote P by {a; < ... < a;} or {a; > ... > a1 }.

Example 2.3 Examples of ordered sets arising in mathematics such as:
1. the set of real numbers equipped with the less than or equal relation (R; <),

2. the set of subsets of a giwven set A. (power-set of A) equipped with the inclusion
(Z(A); 9),

3. the set of natural numbers equipped with the relation of divisibility (N |).

Definition 2.4 Let P be an ordered set-and let =,y € P. We say that x is covered
by y (or y cover x), and writer <.y ory % x,if @ < yand z = x for all z € P
with z < z < y. The latter condition means that there is no element z of P with

r<z<y.

Observe that if the universe P of P is finite, # < yif and only if there exists a
finite sequence of covering relations @ = xq < 7; < ... < x;=y. Thus, in the finite

case, the order relation determines, and is-determined by, the covering relation.

Definition 2.5 Let P and Q be ordered sets and ¢ : P — Q be a function.

1. pis called an order-preserving (or monotone) if x < y in P implies ¢(x) < ¢(y)

in Q.
2. ¢ is called an order-embedding if x <y in P if and only if p(z) < ¢(y) in Q.

3. ¢ is called an order-isomorphism if it is an order-embedding mapping P onto

Q.
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Whenever ¢ : P — Q is an order-embedding we will write ¢ : P — Q. If

there exists an order-isomorphism from P to Q, we say that P is isomorphic to Q

and denoted by P = Q

Definition 2.6 Let P be an ordered set and ) C P.

(i) @ is a down-set (alternative terms include decreasing set or order ideal) if y € Q
whenever z € Q,y € P and y < x.

(ii) Dually, @ is an up-set (alternative terms are increasing set or order filter) if

y € Q whenever x € Q,y € P and y > .

Given an arbitrary subset @ of P and = € P, we define

1Q={yeP:(EreQ)y<atandtQ={yeP (JzeQ)y=>uz}

These are read “ down ) "and-* up @ 7, respectively. It is easily checked that | @ is
the smallest down-set containing () and that @) is-a down-set if and only if Q) =| @,
and dually for 1 Q. If @ = {z} then-we denote { @ and 1 Q by | z and 1 =,
respectively; that is, | @ ={y€ Py <z} and T v ={y € Py > x}.

The family of all down-sets of P is denoted by O(P). It is proved that if P is
finite then every nonempty set.in O(P) can be-written in the form | B where B is a

finite antichain in P.

Definition 2.7 Let' P be an ordered set and @) C P.

1. a € @ is called a mazimal element-of Q if a < x-€ (@ implies a = x for all

x € Q.

2. a € @ is called a minimal element of Q) if a > x € () implies a = x for all

x € Q.

3. a € @ is called the greatest (or maximum) element of @ if a > x for every

x € (Q, and in that case we write ¢ = max Q).

4. a € @ is called the least (or minimum) element of @ if a < x for every = € @,

and in that case we write a = min Q).



11

5. P is said to be bounded if P has maximum and minimum elements; otherwise,

P is said to be unbounded.

Example 2.8 Let X be a set. The powerset Z(X), consisting of all subsets of X,
is ordered by the set inclusion: for A,B € P(X), we define A < B if and only
if A C B. Moreover, X is the mazimum element of Z(X) and () is the minimum

element of 2 (X).

2.2 Algebras

Definition 2.9 Let A be a'set: For n € N, a function f : A" — A is called an n-ary
operation defined on A and is said to have -arity n. An operation of arities one or

two are often said to be unary or-binary, respectively.
Definition 2.10 An algebra'is a pair A = (A; F) consisting of
e a nonempty set A which is called the universe of-A, and

e a set I of operations-defined on A which is called the set of the fundamental

operations of A.

Sometimes, we may consider F as {f;}. _ for some index sets J. If F' =

=
{f1, f2, ..., fr } (is finite for some’ positive integers.t, we write’A = (A; f1, fa, ..., fi)-
A type T = (nj);es of algebra is the sequence-of all the arities of f;. Avoiding of
confusion, we denote fjA for n;<ary operation of algebra A for all'j € J. If all elements
in F' are unary operations, A= (A;F’) is called a unary-algebra. In particular, if F' is
a singleton set of a unary operation then A is a mono-unary algebra and we denote
(A; F) by (4; f).

Groups and rings are examples of algebras of type (2) and (2, 2). For a group,
we may consider its identity e as a nullary operation of arity 0 which means a function

from {0} to e. And also, a function ~! ;which map each element to its inverse, is a

unary operation. In this case, a group is an algebra of type (2, 1,0).

Definition 2.11 Let A = <A; {fé} J> and B = <B;{
je

J

fjg} > be algebras of
jeJ

the same type. B is called a subalgebra of A, if the following conditions are satisfied:
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1. BC A,
2. ij is the restriction of the operation fjA to the set B, denoted by fjA | g, for all
jeJ.
Lemma 2.12 (Subalgebra Criterion)[13] Let A = <A; {fJA} > be an algebra of
jed

ij}jeJ> 15 a

type 7 and let B C A and ij = fjA |p for all j € J. Then B = <B;{
subalgebra of A if and only if fjA(an) C Bforall j € J.

Definition 2.13 A binary relation # on a set. A is called an equivalence relation on

A if the following three conditions hold for all a,b, c.€ A:

1. (a,a) €0, (reflexivity)
2. (a,b) € 0 implies (bja) € 0, (symmetry)
3. (a,b) € 0 and (b,c) € f-imply (a, c) €. (transitivity)

Definition 2.14 Let A be a-set, let § € A x A be an equivalence relation on A,
and let f be an n-ary operation on A. Then f is said to be compatible with 0, or to

preserve 0 or 0 is invariant. with respect-to-f, iffor all'ay,... a,,b1,...,b, € A,
(a1,b1) €0,.. . (anybp)€.0 implies (f(ay,.«, ay), f(br,..0,b,)) € 0.

Definition 2.15 Let A be an algebra. ‘An equivalence relation # on A is called a
congruence relation on A if all its fundamental operations are compatible with 6.
We denote by Con A the set of all congruence relations of the algebra A. In facts,

(Con A; C) is an ordered set.
For every algebra A, the equivalence relations
Ay :={(a,a)]ae€ A} and Vo4:=Ax A

are congruence relations which are called the identity relation and the full relation,

respectively.



13

Theorem 2.16 [13] Let {0, :i € I} C Con A. Then mﬁi is a congruence relation
iel

on A.

Remark 2.17 [13] In general, the union of two congruence relations of an algebra
s not necessary a congruence relation since this does not hold even for equivalence

relations; for example, let A = {1,2,3} and define

0, = {(1,1),(2,2),(3,3),(1,2), (2. 1)} and 6 := {(1,1),(2,2),(3,3),(2,3), (3,2)}.

Then 01 and 05 are equivalence relations; but

0, U0, = {(1,1), (2,2), (3,3),(1,2), (2,1),(2,3), (3,2)}

18 not an equivalence relation on A since it is not-transitive:

(1,2) € 61 Uby and (2,3) € 01 U0y but (1,3) ¢ 6, U 0,.

As in the subalgebra; case, we can-define a smallest congruence generated by the

union. This motivates the following definition.

Definition 2.18 Let A be an algebra and let € be a binary relation on A. We define
the congruence relation (0),,. A -0n°A generated by f.to be the intersection of all

congruence relations ¢’ on A which-contain 6:

(0) coma :=N{0" 710" € Con'A and 0.C0'}.

A B
fj}jEJ> and B = <B; {fj}jeJ> be algebras of

the same type. A function h : A — B is called a homomorphism from A into B if for

Definition 2.19 Let A = <A;{

all j € J,

h(fH (a1, oo any)) = [ (R(ar), ... h(an,))
for all ay, ..., a,, € A. A homomorphism from A into itself is called an endomorphism.
A surjective homomorphism is called an epimorphism. An injective homomorphism
is called a monomorphism or an embedding. A bijective homomorphism is called an

isomorphism.
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Definition 2.20 Let {é 1€ ]} be a family of algebras of type 7. The direct
product of the family {é el } is defined as an algebra of type 7 with the carrier
set

A= {(a;)ier 1 a; € A; for all i € T}

and for each j € J the corresponding operations is defined by
A i
ff((%i)ieb ax3) (anji)iel> = (ff(a1i7 ---aanji>>iel

We denote the direct product ( A; {fJA} J> by HA If J={1,...,n} then
je

el

Hi can be written as A; x - - X A,

iel

Definition 2.21 An algebra A of type 7 is called subdirectly irreducible if ﬂ@- # Ay
for all §; € Con(A) \ {As}ands € I. <
Remark 2.22 [13] It is easy tosee that an algebra A is subdirectly irreducible if
and only if A s has exactly one coverin the ordered set(Con A; C) of all congruence

relations on A. Thenthe ordered set (C'on A; Q) has the form shown in the following

figure.
Va

A{Con(A) \{Aa}}

Ay
Figure 2 The ordered set (Con A; Q).

2.3 Terms and Term Operations

For each positive integer n, an n-element set X,, = {x1,...,x,} is called an
alphabet and its elements are called variables. To every operation symbol f;, we
assign an integer n; >* 0, the arity of f;. Let 7 = (n;);es be a type such that the set

of operation symbols { f; }j ¢ 1s disjoint with X,,. Now we define the terms of type 7.
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Definition 2.23 For each positive integer n, the n-ary terms of type 7 are defined

in the following inductive way:
1. every variable x; € X,, is an n-ary term,

2. for n; € 7, if ty,...,t,, are n-ary terms and f; is an nj-ary operation symbol,

then f;(t1,...,t,,) is an n-ary term.

It follows immediately from the definition that every n-ary term is also k-ary
if & > n; and we may write the n-ary term ¢ in full by t(xy, s, ...,2,). The set
WA(X,) = Wi(zy, 29, ...,x,) of all n-ary terms is the smallest set which contains
x1, T3, ..., T, and is closed under finite application of (2). The set of all terms of type

7 over the alphabet X := {x,x, /.} is-defined as the union
W-(X)= WX
n=1

that is, W, (X) is the set of all terms of type 7 over the countably infinite alphabet
X. Let A be an algebra of type 7 and let't be an n-ary term of type 7 over X. Then
the n-ary operation t® on A, which is-called the term operation. on A, is induced by

t via the following steps:
1. if t = x; then t2 is an n-ary projection-on A;

2. if t = fj(t1y..ty, ) is n-ary term of type 7 and tlé, A2

= are term operations
J

which are induced by #y, ity then t2 = fi(tf .. 1)

eey n;

Theorem 2.24 [13] Let A = <A; {fjé} J> and B = <B; {fJB} J> be algebras of
J€ Jj€

type T and let n be a positive integer.

1. Ift € W,(X,) and a : A — B is a homomorphism then
a(tr(ay, as, ..., a,)) = tB(a(ar), alay), ..., alay))
for all ay,as, ...,a, € A.
2. If S C A then

(S)a = {té(al,ag, o an) st € Wo(X,),n is a positive integer and aq, ay, ..., a, € S} )
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2.4 Identities and Varieties

In this section, we will introduce a popular class of algebras which is called a

variety.

Definition 2.25 An equation of type 7 is a pair of terms (p, q) € (W,(X))?. Those

such pairs are more commonly written as p =~ q.

Definition 2.26 An equation p =~ ¢ is said to be an identity of the algebra A of type
7 if pA = ¢&; that is, if the term operations induced by p and ¢ on the algebra A are
equal. In this case we also say that the equation p ~ ¢ is satisfied by the algebra A,
and we write A = p = q.

If p2 = ¢ then wesay-that A satisfies the law p® = ¢. For instance, we know
that a group G is an algebra satisfying the associative identity a - (b-c) = (a-b) - ¢;
that is, G satisfies the agsociative law: x: (y - 2) = (z-y) -z for all z,y,z € G.

Let Alg(7) be the class of all-algebras of type 7. For any subset ¥ C (W, (X))?
and any subclass K C Alg(1), let defined:

ModS = {A € Alg(7): Vp »'g e By A = paq),

1K = {p~q € (WAX))* VA€ Alg(T))A = p~ d}

S(K) is the class of all subalgebras of algebras fromkC,
H(K) is the class of all homomorphic.images of algebras from K

P(K) is the class of all direct products of families of algebras from K.

Definition 2.27 A class K C Alg(7) is called a variety if K is closed under the
operators H, S and P; that is, if H(K) C K;S(K) C K and P(K) C K.

Theorem 2.28 [13] For any class K of algebras of type T, the class HSP(K) is the

least (with respect to set inclusion) variety which contains K.

For any class K of algebras of the same type, the variety HSP(K) from Theo-
rem 2.28 is called the variety generated by KC, it often denoted by V(K). If K consists

of a single algebra A, we usually write V' (A) for the variety generated by A.
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Corollary 2.29 [13] A class K of algebras of type T is a wvariety if and only if
HSP(K) =K.

Theorem 2.30 [3] A class K of algebras of type T is a variety if and only if K =
Mod(X) for some ¥ C (W, (X))%

Theorem 2.31 [4] A class K of algebras of type T is a variety if and only if K =
V(Si(K)) where Si(K) is the set of all subdirectly irreducible algebras in K.

Definition 2.32 A variety K is locally finite if every finitely generated algebra in IC

is finite

2.5 Lattices

In this section, we give a definition and some properties of lattice.

Definition 2.33 Let L be an ordered set andilet SC L. An element z € L is an
upper bound of S if ss<x forall s €.S. A lower bound is defined dually. The set of
all upper bounds 65 is denoted-by 5" (read as ‘S upper’)-and: the set of all lower
bounds of S is denoted by S'(read as“S lower’); that is,

St =z € L: (Vs &85) 5/<x} jand. S ={xv-eL : (Vs€ S) s> x}.

If S* has the least_element zthen x is called theleast upper bound of S or the
supremum of S and is.denoted by supS. Equivalently, = is the least upper bound of
S if

1. x is an upper bound of S and

2. x <y for all upper bound y of S.

Dually, if S' has the greatest element z then x is called the greatest lower bound of
S or the infimum of S and is denoted by infS.

Notation: We write V.S instead of supS whenever supS exists; for special case
S = {x,y}, we write x Vy (read as ‘x joins y’). Similarly we write AS or x Ay (read

as ‘x meets y’) instead of infS whenever infS exists.
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Definition 2.34 Let L be a non-empty ordered set.
1. If z Vy and z Ay exist for all x,y € L then L is called a lattice.

2. If VS and AS exist for all S C L then L is called a complete lattice.

If L is a lattice then V and A can be considered as binary operations on its
universe; so, (L;V, A) is an algebra. It is proved that (L;V, A) satisfies the following

identities:
e commutative : xVy~yVaerand s Ay = yAuz,
e associative : (x Vy) Ve aNV(yV z)and (x Ay)Az=zA(yAz),
e idempotent : x V= z and o Az~ x,
e absorption : xz V (2 Ay) =~z and z A (2 V y) =

Conversely, if (L;V, A)is an algebra satisfies those above four identities then

L equipped with the order <'defined by
T <ysx =3 Ny forallz, y &L

&y = My forallz,ye L

is a lattice.
By subalgebra criterion, if L = (L;V, A) is.alattice and (4 M C L then M
is a sublattice of L if and.only if a Vb€ M and aAb & M for all a,b e M.

Definition 2.35 Let L be a lattice.
(i) L is said to be distributive if it satisfies the distributive identity

aN(bVe)=(anb)V(aAc).
(i) L is said to be modular if it satisfies the following condition:
aA(bVe)=(aNb)Vcwhenever a > c for all a,b,c € L

which is equivalent to satisfying the modular identity zA(yV (zAz2)) = (zAy)V(xAz).



19

Theorem 2.36 [10]|The M3 — N5 Theorem:
Let L be a lattice. Then
(i) L is distributive if and only if L has no sublattices isomorphic to both N5 and Ms.

(ii) L is modular if and only if L has no sublattices isomorphic to Nj.
Theorem 2.37 [10] If L is a distributive lattice then L is a modular lattice.
Note that every chain is distributive.

Proposition 2.38 [13] For every algebra A, the structure (Con A; A, V) with
A:Con A x Con A — Con A define by (61,65) — 01N 05,
V:Con A x Con A — ConA define by (61,0) — (6, U 92)0()”A

is a complete lattice, called the congruence lattice' Con(A) of A.

The structure (Con'A; A, V) is called the congruence lattice of A and denote
it by Con(A).

Definition 2.39 Let A bean algebra.
(i) A is congruence-distributive if Con(A) is distributive.

(ii) A is congruence-modular-if Con(A) is modular.

Definition 2.40 A variety K.is congruence distributive if every algebra A € K is

congruence distributive.



Chapter 3

Algebraic Properties of
BDLC-algebras

We begin this work with studying algebraic properties of BDLC-algebras such
as general properties, subalgebras, product of algebras, homomorphic image of alge-
bras and minimal algebras which are useful in the sequel. Then, we apply those
results to show that the elass:M,, of all BDLC whose X(f) <* n is a variety for
all n € N; moreover, it can be described by identities. Besides in this chapter, we
characterize all minimal (non-identical) congruences in Con (A) for A € M,, having

no infinite chains.

3.1 Identities for. Varieties of BDLC-algebras

In this section, we include general properties of BDLC-algebras and apply
them to study algebraic properties of BDLC-algebras.

Proposition 3.1 Let A := (A;V, A, f,0,1) be BDLC.
1. If x <y, then f(z) < f(y) for all x,y € A,
2. Mf) is finite and A (A) = {0},
3. A(f) is the least nonnegative integer such that fA)(1) =0,
4. fHQ) < fRQ) forall 1 <F k<t <FA(f),

20
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5. for eachx € A and j €N, fi(x) =z if and only if x = 0,
6. MN(fa) = A(f) for all subalgebras B of A,
7. M fs) <* A(fa) for all homomorphic images B of A.

Proof. (1) Let 2,y € A with z <y. Then x = 2 A y which implies that f(z) =
f@) A fly) < fy).

(2) Since f is connected, there are n,m € N U {0} such that f*(1) = f™(0) =0
and the result from (1) implies that Imf™ = Imf"™ = {0}; so, A(f) <* n. By
the property of A(f), we get Tm AP =Tmft for all # >* A(f); and so, fAF)(A) =
Im A= Imf" = {0}.

(3) Let m € NU{0} such that f™(1) = 0. By (1), we have Im f™=f"(A) = {0} which
implies that Im f™ = Imf™fL: so, A(f) <* m;that is; A(f) is the least nonnegative
integer such that fA()(1) = 0.

(4) Since 1 is the greatest element with respect-to <, we have ff(1) = f*(f17%(1)) <
f*(1) for all k,t € NU {0} with & <*t.

(5) Let x € A and j-€ N. Since. f-preserves 0; if v =0 then f/(z) = x. Conversely,
assume that f7(z) = . Since jA(f) > A(f) and by (4), we have z = f*)(z) <
A1) < (1) =0-which implies that, a=0.

(6) Let B be a subalgebra of A. Then 1, = 1g; and so, fM/2) (15) = fAUa)(1,) = 0.
By (3), we get A(fi) <" Ma). Sistilatly, M(fa) <" A( f) Tetice, A(fa) = Al fi).
(7) Let B = h(A) where h © A — Bis-a-homomorphism. Since 1p = h(1,), we have
AU (1) = h(fAU2) (1)) = h(04).= O which implies that A(fg) <* A(fa). ]

For a BDLC-algebra A, the chain {1 > f(1) > ... > f*/)(1) = 0} forms a sub-
algebra and is contained in every subalgebras of A. Hence, it is the smallest subal-
gebra of A; so, we denote it by Ca and call it the core BDLC-subalgebra of A. If
A = Cy; we call A, the core BDLC-algebra.

< :B i) fzsl) f(lg L
<

< <

Figure 3 The core BDLC-algebra.
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The following proposition shows some basic properties of BDLC-algebras

which can be proved directly from properties of a homomorphism.

Proposition 3.2 Let A and B be BDLC-algebras and ¢ : A — B be a homomor-

phism.

1 6(0) = 0, 6(1) = 1 and §(f(1)) = F4(1) for all £ >* 1,
2. ¢(H) is a subalgebra of B for all subalgebras H of A,

3. ¢7Y(K) is a subalgebra of A for all subalgebras K of B,

4 ¢(CA) =Cp.

Corollary 3.3 If A and B are BDLC with |Cxl <* {Cp| then there are no homo-

morphisms between A and B.

Recall that an algebra A is minimal if A &2 B whenever B can be embedded
in A for all algebras B; or equivalently, A hasno proper subalgebras. Since Cu is
a subalgebra of A for all BDLC-algebras A, it is obvious that A = C, whenever A
is minimal; and Proposition 3.2 implies the converse that A is minimal whenever

A=Cy.
Proposition 3.4 All core BDLC-algebras are precisely minimal BDLC-algebras.

Proof. Let B be a BDLC-algebra which can be embedded in a core BDLC A.
Then there is a monomorphism ¢ : B — A; so, by Proposition 3.2, A = Cy =
»(Cp) C ¢(B) C A. Hence; ¢ is surjective. |

It is well known that the infinite direct product of connected unary algebras
does not need to be connected; so, the class of all BDLC-algebras is not closed under
the product. However, Proposition 3.1(2) implies that a direct product of BDLC-
algebras whose A(f) <* n for some fixed n € N is BDLC.

Proposition 3.5 Let n € N and {é 1€ I} be a family of BDLC-algebras whose
M fAY <*n for alli € I. Then A = Hi is a BDLC-algebra whose \(f2) <* n;

iel
moreover, there exists j € I such that A\(f2) = max {A(fA) e N:i eI} and Cy, =

Ca.
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Proof.  To show that the product A is BDLC, it is left to prove that fA is con-
nected. By Proposition 3.1(2), we have (f2)(a)(i) = (f2)"(a(i)) = 0 = (fA)*(b(i)) =
(f2)"(b)(7) for all a,b € A and i € I.

Note that {A(f2) € N:i € I} is bounded above by n; so, it is finite. Let
A(fA) = max {\(f2) € N:4 € I} for some j € I. Then, (fAIH(1,) = 04 implies
that (f2) ) (1,) = 0455 50, A(f2) <* A(f2) Since A(f25) >* A(f2) for all i € 1,
we have (fﬁ)’\(fﬁ)(li) = 04, for all i € I so, (fé>)\(fﬁ)(1é> = 0 which also implies
that A(f2) <* A(f25). Altogether, A(f2)'=\(f2). Therefore, Cy, = Ca. n

From now on, let n € N and’' M;, be the class of all BDLC whose \(f) <* n.
By Proposition 3.5, we have P(M,,) € M,,. It is clear-that a homomorphic image B
of a BDLC A is BDLC and Proposition 3.1/ implies that A(#2)<* \(f#). Similarly,
a subalgebra B of a BDLC A<is BDLC whose A(f2).=A(f24).

Theorem 3.6 M,, is a variety.

Notice that DMZ is the class of all BDLC-algebras and M; C M; for all
J >*1. Since the pré—zlieriod of the unary operation f of all algebras in M,, is less than
or equal to n and by. Proposition 3.1(2), we have f"(1) = 0. Andalso, if (4;V,A,0,1)
is a bounded distributive lattice and f'is an endomorphism on (A;V,A,0) with
f™(1) = 0 then f"(a) = Ofor all a € A which implies that f is connected; so,
(A;V, A, £,0,1) belongs to M,,~We have the following characterization.

Proposition 3.7 An algebra A :=(A; VA, £,0,1) is inM,, if and only if (A;V, A, 0, 1)
is a bounded distributive lattice and f is an endomorphism on (A; V, A, 0) with f™(1) =
0.

We conclude the section by showing identities for the varieties of BDLC-

algebras.

Theorem 3.8 The variety M,, of BDLC-algebras is a class of BDL-algebras satis-
fying the following identities:

flevy) = f(x)V f(y), flx Ny) = f(x) A fy), f(0) =0 and f"(1) = 0
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3.2 The Congruence Lattice

It is well-known that a variety of BDL-algebras is congruence distributive;
hence, also is M,,. In this section, we will show a natural way of defining a unary
operation on Con (A) for A € M,, so that Con (A) € M,, and we show a relationship
between Cp and M .

Recall that for an algebra A, Con (A) is a complete lattice having A, and
A X A as the least and the greatest element, 0; A0 = 61 Ny and 01 V 0y = (01 U 0s);

besides, (61 U 0s) U 0, o 92 o---ofyand if (a,b) € (A; U6y), there is t € N such
teN
that (a,b) € f106y0-- 0 ; that is, (@, c1) € 01, (c1,.02) € Os, ..., (ci—1,b) € 6y for

some ¢y, ...,¢_1 € A.

Lemma 3.9 Let A € M,,.
1. If 0 € Con (A) then@ = {(f(a), (b)) (a,b) €0} U A, belongs to Con (A),
2. 04 ANy =01 N 6by and 0, N 0y =0,V 65 for all 61,05 Con (A).

Proof. (1) Let.#-€ Con(A)- Then is an equivalence relation. To show that 6
preserves V, A and f, let ay,az, by, b € Awith (f(aq), f(b1)),(f(az), f(b2)) € 6. Since

6 is a congruence relation and f preserves-V-and-/A, we have
(f(aa) ¥ flaz), f (ba) V £ (b)) = (f(arV a2)of (baV b2)) € 0,
(f(ar) A flag) s f(D) AL (b2)) = (flar N az)s f(bi A bs)) €0

and

(f(f(a1)), f(f(az))) € 0.

Therefore, 6 is a congruence relation.

(2) Let 61,60, € Con (A). Tt can be proved directly that 6, A 0y = 6, Afy. Let (2,y) €
0,V 0y. Then (z,y) = (f(a), f(b)) for some (a,b) € 6,V bs; so, there exists ¢ € N such
that (a,b) € f1obpo0---00, sthat is, (a,c1) € 01, (c1,¢2) € ba, ..., (c-1,b) € 0 for

t

some cy, ...,c;_1 € A. So, (f(a), f(c1)) € 01, (f(c1), fc2)) € Oy, (f(cion), f(B)) € 04
which implies that (z,y) = (f(a), f(b)) € 0, V 0. Tt follows that 6; V 0y C 6, V 0s.

Similarly, we can prove that 0,V 0 C 01 V 0y. Therefore, 61 V 0y = 0, V 05. [
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By the above results and Proposition 3.7, if we define ¢ C (Con (A))? by
g(0) = 0 for all € Con (A) then Con (A) := (Con (A);V, A, g, A4, A X A) € M,,.

Applying the proof in [21], one can see that Con (Cy) = {#(0,¢) : ¢ € Cy} for
all A € M,, where Cy x Cy = 6(0,1) and A¢, = 6(0,0). We will show that the
map o : Cy — Con (Ca) , which is defined by a(c) = 6(0,¢) for all ¢ € Cy, is an

isomorphism via the following proposition.

Proposition 3.10 Let A € M,,.

1. For each 6 € Con (A)\{Qa}, if(z;y) €@ for some x <y in Cy then (a,b) € 0
for all a,b € A with a <y and b-<w,

2. 0(0,¢) = Ay U{(zVa,2Vb)rx € Aand 0 < a,b < c} for all c € Cy,

3. 9(0(0,¢)) = 6(0, f(c)) for all c € Cx where g+ Con(A) = Con (A) is defined
by g(0) = 0 for all § € Con (A).

Proof. (1) Let 6 € Con(A)\ {Aa} and (z,y) € 0 for someax,y € Cy with z < y.
Assume that a,b € Awitha < yandb < yandlet k, =min{s € NU {0} : f/(a) = 0}.
Since x < f(y), we get' (f(y),y) =(f(y) V z, f(y)\V.y) € 0. Since O preserves f and
0 is transitive, (0,y) € ¢ which implies that (a, y);(byy) € 6. Hence, (a,b) € 6.

(2) Let ¢ € Cy and =Ly U {(zVa;xzVb):r€ Aand 0<a,b<c}. It is
clear that § € Con(A) and 0(0,¢c) C (. ~Now;let (u,v) ‘€ [B./If u # v then
(u,v) = (z Va,z Vb) for some x € Aand 0 <.a,b-< ¢. So,(a,b) € 6(0,c) which
implies that (u,v) € 0(0, ).

(3) Since (0,c¢) € 0(0,c) and the definition of g, we have (0, f(c)) € g(6(0,c)) which
implies that 6(0, f(c)) C g(6(0,c¢)). Let (f(s), f(t)) € g(6(0,c)) for some s,t € A with
(s,t) € 6(0,c). If s = ¢, we are done. If s # t, we get by (2) that (s,t) = (zVa,z VD)
for some x € A and 0 < a,b < ¢. So, (s,t) = (xVa,zVb) € 0(0,c) which implies
that (f(s), f(t)) € 6(0, f(c)). Hence, g(6(0,c)) = 0(0, f(c)). u

Theorem 3.11 C, = Con (Q) for all A e M,,.
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Proof. Let A € M, and let a : C4 — Con (C,) be defined by a(c) = 6(0, ¢) for
all ¢ € C'y. Then « is a function which preserves 0 and 1 and « is onto. To show that
« is one to one, let ¢1, co € Cy such that 0(0,¢1) = 6(0, c). Since (0, ¢;) € (0, ¢o) and
Proposition 3.10 (2), we get (0,¢;) = (zV a,zV b) for some x € A and 0 < a,b < ¢y;
so, x = 0 which implies that ¢; = b < ¢,. Similarly, we can prove that co < ¢;. Hence,
« is one to one. It can be proved directly from Proposition 3.10 (2) that « preserves
V and A. By Proposition 3.10 (3), a(f(c)) = 0(0, f(c)) = g(6(0,¢)) = g(a(c)); so,

preserves f. Therefore, o is an isomorphism. [ ]

By the definition of a core BDLC algebra and Proposition 3.10 (3), Ccona) =
{6(0,¢) : c € C4}. One can see that the map S : Con(Ca) — Ccon(a) , Which is

defined by 5(6(0, c)) = 0(0, ¢) for all ¢ &€ C4jis anisomorphism. Notice that the map
/3 is not an identity because the greatest element in Cgop(a)is-Ax A but the greatest

element in Con (Cy) is Ca x Ca: By Theorem 3.11,we have Ca = Ccon(a)-

3.3 Minimal Congruences

In this section, we characterize all minimal (non-identical) congruences in
Con (A) for A€ M, having no infinite chains. We begin with a-summarization of
some facts from lattice theory in Lemma 3:12-and Lemma3.13 (one can see e.g. [10])

which are useful in the sequel.

Lemma 3.12 Let (A;V,A) be a distributive lattice and asb,c,d € A.
1. Foreacht e A, ifavt=bVt andaNt=DbAt then a=0>.
2. Ifa<b,ec>aandc?bthenb<bVcandc=<bVe.

3. Foreach z€ A, ifa<bandaV z2#bthenaVz=<bV z.

Lemma 3.13 An ordered set (A; <) no contains infinite chains if and only if every

non-empty subset T of A contains a mazximal element and a minimal element.
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The following proposition shows a necessary condition of all minimal congru-
ences on an algebra A € M,, having no infinite chain. It is also a sufficient condition

which will be shown in Theorem 3.16 via Lemma 3.15.

Proposition 3.14 Let § € Con (A) \ {As} be minimal. Then
1. 0 =0(c,d) for some ¢,d € A with ¢ < d and f(c) = f(d),

2. there are a < b € A such that 0 = 0(a,b),f(a) = f(b) and a Nx =bAx for all

xzb.

Proof. (1) Let (p,q) €,0 for some p <.q € A. Since f*(p) = f"(¢) = 0,
we let ¢ = min{j € N: fI(p) = fi(q)} which implies that f~'(p) < fi='(q). Let
c,d € A with ¢ = fi(p) < d < f=Hq). ‘Then f(d)o= fi(p) = f(c) and
(e,d) = (f""1(p) Nd, f (g) Ad) € 6. Minimality of 8 implies that 6 = (c, d).
(2)By (1),letc,d € Awithc=<'dand f(¢)= f(d). Let T ={t € A:t <dand t £ c}.
If T'= 0, we choose a =¢ and b'=d.. Ti'T # (), let.b-be_a minimal element of T
Then b < d and b £ ¢. Let-a=eAb. Then f(a)= f(b). If.a <.s<bfor some s € A,
then bV ¢ =d =V candbAe=-a= s/ c which proves b = s, a contradiction;
hence, a < b. Letwz % b Then b/A@. < b and the minimality of b implies that
bAx ¢ T. Therefore, either b'AzZ'dor bAz < ¢;but, bAx' < b < dand c<d
imply b Az < ¢ Hence, aA-x =.b ANz, Sey(a;b) = (cAbydAb) € 0(c,d) and
(¢,d) = (aVc,bVd) €b(a,b)imply 0(c,d) = 0(a,b) u

Lemma 3.15 Let a,b € A be those-in Proposition3.14 (2) and
y={(avz,bvz):zec A}
where v~ s the inverse of v. Then

1 if (p.q),(q,t) €y (orvy~) then q=1t (orp=q) for all p,q,t € A,

2. YUy~ UA4 is an equivalence relation,

3. y Uy~ UA, is a congruence relation,
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4. 0(a,b) =yUy~ UA,.

Proof. (1) Let (p,q),(¢,t) € 7. Then (p,q) = (a V z1,bV x1) and (q,t) =
(aV z9,b V x9) for some xy,29 € A; so, aVxy = bV x; > b which implies that
bV zy>aVxy>bVaxy. Hence, ¢ =t. Similarly, if (p,q), (q,t) € v~ then p = q.
(2) It is easily seen that R := v Uy~ U Ay is reflexive and symmetric. To show
that R is transitive, let (p,q), (¢,t) € R. If (p,q), (q,t) € v or (p,q),(q,t) € v~ then
(p,t) € Rby (1). Assume that (p,q) € v and (¢,t) € v~. Then (p,q) = (aVzy,bV1)
and (q,t) = (bV x9,a V x3) for some x1,x5 € A; so, bV x; = bV g If 21 > bor
zy > b then p = q or ¢ = &, respectively; so, (p,t) € R. Assume that xq,29 # .
Then bV (aVxy) =bVry =bV zy=0bV(aVag)andbA (aVx)=aV (bAx) =
aV(aNzy)=a=aV(aNzy) =aV (bAxy) =bA (aVay). Distributivity of A implies
that a V &1 = a V x9; thatis, (p,t) € Ax € R. In the case of (p, q), (¢,t) € A and
(p,q) € 7,(q,t) € Ap areclear. Hence, R is transitive.
(8) It is left to show that R := yUy7UA preserves iy A and f. If (p, q) € YUy~ UAA
then (f(p), f(q)) € Aa € R.It is clear that v and 77 preserve V and A.

Let (p,q) €~ (ory~)and (s,t) € Ax. Then s=tand (p,q) = (aVz,bV x)
for some x € A ; and 0, (p V-5, ¢ \V\t) €. Note-that (p As,gAt) = ((aNs)V (A
s), bAt)V (zAL)). If's > then (pAs,gAt) € v If s £ b then (pAs,gAt) € Aa.

Let (p;q) € v.and-(syt) € v~ Then(p,q) = (a Vox,bV ) and (s,t) =
(bva',ava') forsome a, 2€ A. So, (pV's, gVt €A, Since pAs = (aVr)A(bVa')
and a < b, we have @V (# A2 )< (a VYA BV )y <bV (2 Aa). IfaVv(zAx) >b
then p A s = a V (v A x'). “Suppose that a \V/ (z A z')*# b. Then Lemma 3.12(3)
implies that a V (z A2') < bV (zAz) and (aVa)A (V) =aV(zAz)or
(avz)A(bVa)=bV(zAz). If (ava)A(bVa)=bV(rAz)thenaVe=bVuz,a
contradiction. Hence, pA s =aV (z Ax'). Similarly, g At = aV (z A z'). Therefore,
(pAs,gAt) € Ap. In any cases, R € Con (A).
(4) By the definition of v, we have (a,b) € YUy~ UA,. If S € Con (A) contains (a, b)
then (aVz,bVz) € Sforall x € A; so, yUy~UA, C S. Hence, 0(a,b) = yUy~UA,.
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Theorem 3.16 A non-identical congruence 0 on A is minimal if and only if § =

0(c,d) for some c¢,d € A with ¢ < d and f(c) = f(d).

Proof. By Proposition 3.14, it is left to prove the converse. Let a,b € A be those
in Proposition 3.14(2) whose 6 = 0(c,d) = 6(a,b). Assume that 5 € Con (A) \ {Aa}
is contained in 6(a,b). There are s,t € A such that s # ¢ and (s,t) € 5 C 0(a,b).
So, (s,t) = (aV a,bV ) € (B for some x € A. But s # ¢ implies & # b; so
((avVa)ANb,(bVx)Ab) = ((aNb)V (xAb),b) = (aV (zAa),b) = (a,b) € § which
implies that § = 6(a,b). Therefore, f(a,b) is‘minimal. [



Chapter 4

All Subdirectly irreducible
BDLC-algebras

By Birkhoft’s theorem [4], every algebra can be represented by subdirectly
irreducible algebras. In this chapter; we apply the results from Chapter 3 to charac-
terize all finite subdirectly irreducible BDLC-algebras; and then apply some results
in [19] to prove that the varieties M, has no infinite subdirectly irreducible algebras
for all n € N. Moreover, we can show that M, is generated by a single subdirectly

irreducible algebra.

4.1 Finite Subdirectly irreducible BDLC-algebras

Recall that an algebra (A; F) is areduct of an algebra (A; F*) if ¥ C F*. We
note that (A4; f) is the reduct of A forall BDLC-algebras A; so, Con (A) is a sublattice
of Con ((A, f)). By the fact in [21], if A is a core BDLC then Con ({A, f)) is a chain;
and also is Con (A). Hence, every core BDLC-algebra is subdirectly irreducible. But,
the converse is not always true; for instance, if A := ({0, f(1),z,1};V, A, f,0,1)
where z V f(1) = L,z A f(1) = 0, f(z) = f(1) and f?(1) = 0, then A € M, whose
picture is shown in Figure 4. So, A is not a core BDLC; but, it is subdirectly
irreducible since Con (A) = {AA,0(0, f(1)),A x A} is a chain.

30
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Figure 4 A subdirectly irreducible algebra A.

However, one can notice that Con (A) of all.above subdirectly irreducible algebras
A are chains. It is interesting whether Con (A) is a chain for all finite subdirectly
irreducible BDLC-algebras A. In this section, we prove an affirmative answer and

characterize all finite subdirectly irreducible-algebras in M.
Lemma 4.1 Let A be a BDLC-algebra with f(c) <e for all-e-€ C4 \ {0}.
1. f(a) =0 if and only ifreithera= 0 or a = fA)=1(1) for all a € A,

2. If v ¢ Cy and fYx) € Cy for:some 1.<* t /' <* A\(f)— 1 then there exists
z € Ca N f7HLSf () }) such that x < z and &-is-not-comparable with f(z) and
i (2) = 0 whenevera-A f(z)€Cy.

Proof. (1) Let a € AN{0} with f(a) = 0 and we consider the case a < 1.
Suppose that @ b = fA)7L(1). Then a Vb is not-comparable with f7!(b) € C4 and
f(aVvb) = f(b). By continuation this process in finitesteps, there exists o’ ¢ C such
that f(a') = f3(1) and-a is not comparable with f(1). Since f(1) <a Vv f(1) <1
and f(1) < 1, we get a' V f(1) =-1;.50, f2(1).=-f(1) which implies that f(1) = 0.
Hence, f(1) = 0 < a < 1, a contradiction. Therefore a = b = fAH~71(1). The
converse follows directly from the properties of f.

(2) We prove by induction on t. If o ¢ C4 and 1 # f(x) € C4, we choose z € C4 N
Y {f(2)}). Ifx £ 2, we follow the proof of (1) to get f(1) = 0. So, f(z) < f(1) =0
which implies that f(x) = 0. By (1), we have z = 0 or x = A1) € Oy,
a contradiction. Therefore, x < z. Follows from f(z) < z, we get © % f(z). If
r < f(2), then f(2) = f(z) < f*(2) < f(2), a contradiction. So, z is not comparable
with f(z2).
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Let 1 <*t <* A(f)—1. Suppose that the lemma is true for £ —1. Assume that
x ¢ Cyand fi(x) € Cy. If f(z) ¢ C4 then f&1(f(2)) € Cy implies that f(z) < 2
and f(z) is not comparable with f(z') for some 2" € Ca N f=ED({fEV(f(2))});
and together with f(z) < f(1), we have 2" # 1. Choose z € Oy with f(z) = 2’. Let
u=min{c € Cy:z <c}. Thenz < u. Ifu < zthenz < u < f(2);s0, f(z) < f(2),
a contradiction. Also, if u > z then f2(u) = f(x)V f2(u) = f(z V f(u)) = f(u); so,
f(z) < f(u) = 0, a contradiction. Totally ordered of C'4 implies u = z and x is not

comparable with f(z). Also, the results implies the last statement. [ ]

Corollary 4.2 Ifx ¢ Cy and f(z) € C4 thena A fADA(1) =0 and v A1) =
z for some z € Cy with f(x) = f(2).

Proposition 4.3 If A is BDLC with-f(c) < ¢ forall c € Ca\{0} then

({676 & Con(A)\ {As}} =6(0, V(1))

Proof.  Assume that 6.€ Con(A)\ {Aa} and (zyy) € 6 for some z < y. If
x,y € Cy, it follows by Proposition-3.10(1) that (0, fAHL(1)).€ 6.

Denote z, = min{cl&Cyia<c¢} forae A lf v € Cypand y ¢ C4 then
(f(z,),2,) € @.and by Proposition 3.10(1) we. have.(0; fA)=1(1)) € §. Assume that
y € Cyand x ¢ Cy. Letm =min{t € N fi(x).€C4}. Then fm(z) < fmy)
and Corollary 4.2 imply that

(0, ADZHL) )= (7 Ha) NPT, ) a0 (D) e 0.

Assume that x,y ¢ Cy. If 2, < 2, then z < z, < f(2,); so, (f(zy),2,) € 0
which implies that (0, fA)71(1)) € §. We will show that if z, = z,, there exists
t € Cy such that t < z, and ¢ satisfies either {z At,y At}NCy £ Dor {x At,y Nt}N
Ca = 0 with za, < zypr. Assume that z, = z,. Let 21 = 2 A f(2,) and y1 = 2ynf(z)-
If f(z,) satisfies {z1,51} N C4a # 0 or {x1, 51} N Cy = O with z,, < z,, then we
choose t = f(z;). If {x1, 11} N Cy = 0 with z,, = z,,, we let zo = z1 A f(2;,) and
Yo = 11 A f(2ey). If f(zg,) satisfies {xo, 92} N Ca # 0 or {z9,y2} N Ca = O with

2y, < Zzy, then we choose t = f(z,,).
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This process will stop before z,, = z,, = fAH=2(1) for some i € N because if

g, = 2y, = AD72(1) for some i € N then {z;, yi, z,, f*)71(1),0} forms a subal-
gebra of A which contradicts to (A;V, A,0,1) being a bounded distributive lattice.
So, if z; = z, then there exists ¢ € C4 such that ¢ < 2, and ¢ satisfies either
{xAt,ynt}NCa # 0 or {xAt,y ANt} NCa = 0 with 20 < 2yn. In any cases,

(0, FAO=1(1)) € 6. Therefore, (0, FAHN=1(1)) CN{H:60 € Con(A)\ {AA}}. n

From now on, we consider only finite BDLC-algebras.
Theorem 4.4 The following statements are equivalent :
1. A is subdirectly irreducible,
2. f(c) < c for all c € Ca\ {0},
3. 0(0, FAOY1)) = U40(a;b) : a < b and | f(a)-= f(b)}.

Proof. (1) = (2) Suppose that there exists t >* 2 such that 0 < x; < g < ... <
ry = A1), Tt follows-by Theorem 3.16-that 0(0, 1) and f(x;, z5) are minimal.
Therefore, 6(0, x1) = 0(z1,x2) which-implies by Lemma 3:15 and (x, z2) € 0(0, z1)
that (x1,22) = (y,x; Vy) forsomey € A; so, x; = y. Hence, 250 = 21 Vy = 1, a
contradiction. Therefore, t = 1;.and so, 0 < #2H=1(1).

Let ¢ € G4 \ {0} and.assume that f(j) =<7 for all’j € C4 \ {0} with j <
c. Suppose that there exists #->* 2 such that f(e) <'a; < 235 < ... < 1y = ¢
Then f2(c) < f(z1) <f(€). /Since f2(e) < f(€), either f(z;) = f(c) or f(x;) =
f2(c). If f(x1) = f(c) then a similarly proof-implies x; = x5, a contradiction. So,
f(z1) = f?(c). Theorem 3.16 implies that 6(f(c),z;) is minimal; so, 0(f(c),x) =
0(0, fA)=1(1)). Hence, there exists y € A such that (f(c),z;) = (y, FAV71(1) v y)
which implies that y = f(c) and 2; = fA=Y(1) Vv f(c) = f(c), a contradiction.
Therefore, mathematical induction yields (2).
(2) = (3) follows by Proposition 4.3 and 6(a, b) is minimal; and (3) = (1) is proved

directly from the definition of subdirectly irreducible. [ |

Proposition 4.5 A is simple if and only if |A| = 2.
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Proof.  Assume that A is simple. Then Theorem 4.4 implies that f(c) < ¢ for all
c € Oy \ {0}. Suppose that A(f) > 1. Then 6(0, fA=1(1)) # Au; so, simplicity
of A implies 6(0, FA=1(1)) = A x A. So, (1, f(1)) € 6(0, fA)~1(1)) which implies
that (1, f(1)) = (z,2 vV fAH~L(1)) for some v € A; ie., f(1) = 1V D7), a

contradiction. Hence, A(f) = 1. u

We showed in Section 3.2 that for each n € N and A € M, Con(A) =
(Con(A);V, A, g, Aa, A x A) € M,, where g is defined in Section 3.2. We now prove
that A is subdirectly irreducible if and only if Con (A) = Cgon(a)-

Theorem 4.6 A is a subdirectly irreducible- BDLC-algebra if and only if Con (A) is
the chain {6(0, FAP (1)) <0(0; FAOT (1)) <. <0(0. f(1)) < 6(0,1)}.

Proof. Let § € Con(A) and 2z = max{c € Cy4 : (0,¢) € 8}-Then 6(0,2) C 0. For
eacha € A, let z, = min{c € Cx :a < c}. Let u,v € A with (u,v) € 6. Then z, < z,
or z, < z,. If 2z, < 2, thenu <z, < f(z);50, (f(2), 20) = (uV f(z,),vV f(z,)) €0
and Proposition 3.10(1) implies that (u,v) & 0(0,z). Similarly, (u,v) € 6(0,z2) if
2y < zy. If 2, = zy < z'then by Proposition 3.10(1), we have (u,v) € 0(0, 2).

Suppose that 'z, = z,-> z. Note by Proposition 3.10(1) that if z, = z, = 2
then (u,v) € 6(0,z). We will prove by the strong induction that foreach t € NU{0},
if (a,b) € 6 with 2z, = 2> z.and ['(z,) = 2 then (a, b)-€ 0(0; ) Let 1 <* t <* A\(f)
and suppose that the statement is true for any 1 <*p <*#¢. Let (a,b) € 0, z, = 2
and f(z,) = z. Assumethat @' =.a A f(zq) and b = bA f(z,). If 2y < 2y or
zy < 2z, then (a',b") € 0(0,2). The absorbtion law-and transitivity of 6(0, z) imply
(a,b) € 0(0,2). If zy = zyy < f(z,) then fi(zy) < f**!(z,) = z and by the induction
hypothesis implies that (a’,b") € 0(0, 2); so, (a,b) € 0(0,z). By the fact above, if
Zu = 2zp > 2 then (u,v) € 6(0, 2).

In any cases,  C 6(0, z). The converse is clear. [
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4.2 All Subdirectly irreducible BDLC-algebras

Recall that (X), is the smallest subalgebra of an algebra A containing X C A;
and (X), = GE’“(X) where
. E'(X) = X,
E(X):=XU{fMa,..,an) i € L,a1,...;an, € X},
and E*(X):= E(E*(X)) where k € N.

A variety V is locally finite if for each A € V, (X), is finite for all finite
subset X of A. In [19], R.W. Quackenbush proved that if V is a locally finite variety
and the set Sip(V) of all finite subdirectly irreducible algebras in V is finite (up to
isomorphism) then V has no infinite subdirectly irreducible algebras. In this section,
we apply the result in [19] toprove that M, has ne infinite subdirectly irreducible
algebras for all n € N ; especially, we show that it is generated by a single subdirectly
irreducible.

It is well known that the variety of distributive lattice is locally finite. One
can prove directly that for-each n-€ Nand A € M, if A= ({a,...,a:}), for some
a; € A, 1 <*i <*tandt € Nthen A= <Ofi({a1, vvy G330, 1})> is finite.

i=0 (A;v,A)

Theorem 4.7 M;, is.locally finite for alln € N.

Proof. Let n € N'and A €M, such that A= ({a;, ..., a}), for some a; €
A1 <* i <* t and ¢t € N We will show that “E*({ai,...,a;}) is a subset of
<Ufi({a1, ey ay, 0, 1})> for all K € NU {0} by induction on k.

i=0

(AV,1)

Let B = <Ufi({a1,...,at,0,1})> . Tt is clear that {a,...,a;} C B.
=0 (A;V,A)

Let k& € N and suppose that E*({ai,...,a;}) C B. Note that E*¥*'({ay,...,a;}) =
Ef({ar,...,a)U{z Vy,z Ay, f(2),0,1: 2,y € E*({a1,...,a;}) }. By the assumption
and the properties of B, it is left to prove that f(z) € B for all x € E*({ay, ..., a;}).
I;Let r € E*({ai,...,a4}) € B. Then z = tAVN(by, .. b) for some by,....b €

Ufi({al, .., a1,0,1}) where 4V is a term operation on (A;V,A). So, f(z) =
i=0
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FEANVN (B, b)) = tAYN(f(by), ..., f(B)). Since by, ..., b € Ufi({al, g, 0,1}),
i=0
we have f(z) € B; and so, A C B which implies that A is finite. Hence, M,, is locally

finite. Moreover in the similar proof, <Ufi({a1, e ag, 0, 1})> is a subset of
i=0

= (A;V,A)
A. ]
We are now describing all finite subdirectly irreducible BDLC-algebras which
show that the set Sip(M,,) is finite for all.n € N.
Let n € N, define A™ := (A", V, A,.f,0,1) whose (A™;V,A,0,1) is the usual
direct product of a BDL-algebra (A;VyA;0,1) and f : A" — A" is defined by

flai,as,...,a,) = (ag, ..., a,,0) for all'a; € A and 1 <*i <* n. Denote 0 := (0,...,0),
——

1:= (1,...,1) and A* to be the trivial BDLC-algebra: One can see that f is an
——

endomor;hism on (A™; VA, 0y with f™(1) = 0;/it follows by Proposition 3.7 that
A™ is BDLC whose A(f) = n if A # {0}. In particular, when A = {0,1} we call it
that an n-cube BDLC-algebra and denote by 2.

Recall that Com = {1'> f(1)> .. > f"(1) =0}; so, the definition of f on
2*" implies that f(c) </'c forall ¢ € Con \ {0}; hence, it follows by Theorem 4.4 that
2™ is a subdirectly irreducible-algebra-in M, .- We will now prove that all algebras

in 15(2*") are subdirectly irreducible.

Proposition 4.8 For A€M, and B € Sip(M,,), if A can be _embeded in B then

Proof. Let ¢y : A — B be an embedding and let ¢ € Cy \ {0}. To show that
f(c) < ¢, let x € A such that f(¢) < x < ¢. Then ¥(f(c)) < ¥(z) < ¥(c). Since
(Cy) = Cp and B € Sip(M,,), we have (f(c)) < ¥(c); and so, ¥(z) = ¥(f(c))
which implies that x = f(c). u

Corollary 4.9 15(2"") C Sip(M,,) for all m <*n.

Proof. Let m € N with m <* n and A € 15(2*"). Then there is an embedding
Y A — 2*". Since 2" € Sip(M,,) and Proposition 4.8, we get A € Sip(M,,).
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Note that M,, C M,; so, Sip(M,,) C Sip(M,) which implies that A € Sigp(M,,).

We are now giving another characterization of all finite subdirectly irreducible
algebras in M,, by showing all elements in Sig(M,,).

For A € M,, and a € A, let define 2z, := min{c € Cy :a <c¢} and k, :=
min {j € NU{0} : f/(a) = 0}.

Lemma 4.10 Let A € Sip(M,,). Then
1. ko =k, foralla € A,

2. for each 0 <* j <* X\(f) =1, the: mapx; from (A;V,A,0,1) to ({0,1};V,A,0,1)
defined by
1 9 zle f@HO=HD),
O ifse ¢ f77 (T2D71(1)),

is a homomorphism...Moreover, x;(f(z)) = xjii(x) forall z € A.

Xi(7) =

Proof. (1) Let a € A. If-a € Cy, we are done: Assume that a ¢ Cy and t is
the least positive integer such that f'(a) € Cx. By Lemma 4.1, f'(z,) = f*(a); so,
0= fra=t(fl(a)) = fr(fY2,)) = f*(24) which implies that %, <* k,. Similarly,
k, <* k,, . Hence, k, = k.

(2) Let z,y € A and 0 <j < A(f)—=1. Note that

i Ay)y=l= flzAy) et fA(f)_l(l)

Next, we will show that f7(z V y) €t fAH~1(1) if and only if f7(z) €t fAD~1(1) or
fi(y) et D7D, It is clear that if fi(x) €1 A1) or f(y) €t fA71(1) then
F(xvy) €t FAD7(1). Suppose that f/(z Vy) €t fAD7HL) and f/(x), f(y) ¢t
FADZHL). Then fi(z) v fiy) = (f/(z) v AOTH D)V fi(y) and f(z) A f(y) =
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(fi(x) v fFAD=L1)) A fI(y) which imply that f7(z) = f7(x) vV fA71(1), a contradic-
tion. So, f7(x) €t FAH1(1) or fi(y) €t FAPH1(1). Therefore,

xj(zVy) =1+ fl(zVy) et f’\(f)’l(l)

= fl(z) et POTA) or f(y) et ()
= x;(@) vV x;(y) =1

It is easy to see that x;(1) =1 and x;(0) = 0. Hence, x; is a homomorphism.

By the definition of x,, we have

Xi(F(@)) # 1 S f@)e f7 (1 2071(1)

b o e ORI (1)
== X+ (@)=L

Hence, x;(f(z)) = xj+1(2)-

Theorem 4.11 A €'Sip(M,,)-if and only-if A 1S(27),

Proof.  Let A be a finite subdirectlyirreducible algebra. Definea function ¢ : A —
22 by ¢(z).= (x0(), X1(Z)s-s Xa)—1(@)) for all.a € A where y;-is defined as in
Lemma 4.10 for all0 <* j <* M\(f)—1. By Lemma4.10, ¢is a homomorphism. Next,
we will show that ¢ is one to-one. For each ¢t € NU{0}, let P(¢) be the statement that
for cach .y € A, if (a) & @g)and [{0ET A fi(H) > POI(1)} ] <
t then z = y. To show that P(Q) is true,let z;y € A.-Assume that ¢(z) = ¢(y) and
(), f(y) # AO) forall 0 <* j <* A(f)—1. If 2 # 0 or y # 0 then Lemma 4.1
implies that ff==1(x) = A1) or fFv~1(y) = fAH71(1), a contradiction. Hence,
r=0=uy.

Let t € NU {0} and assume that P(¢) is true. Let z,y € A such that
B(z) = o(y) and [{0<*j < A(f)— 15 (@) > PO} < 41 We may
assume that z,y # 0. We will show that there exists z € A such that zVz =y V z
and z Az =y Az Let z = f(z,). Since ¢(z) = ¢(y) and the definition of ¢, we
have f7(z) €1 fAP)=1(1) if and only if f7(y) €t fA71(1) for all 0 <* 5 <* A(f) — 1.
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If k, <* k, then fo () = 0 < A1) ; and so, frv=l(y) # D71(1), a
contradiction. Hence, k, = k, which implies that k. = k. . It follows that 2, = z,;
and 50, 2V [() =y V f(z) =y V f(22).

In fact, if f7(x A f(z,)) > fAO7Y1) then fI(x) > A1) for all 0 <* j <*
A(f) =1 So, [{0< 5 < A(f) —1: fi(z A f(z) > AOHD)}] < £+ 1. Since
ot A F(22)) = 0, we get | {0 <* <0 M) — 1+ fila A () > PO} ] <
t. It is easy to see that for each x;(zA f(22)) = x;(yA f(2)) for all 0 <* 7 <* A(f)—1
which implies that ¢(x A f(z:)) = ¢(y A f(2x)). By induction hypothesis, z A f(z,) =
y A f(z,). Distributivity of A implies that 2 ='y. Therefore, A is isomorphic to ¢(A);
that is, A € 1.5(2**())). The converse follows by Corollary 4.9. u

Corollary 4.12 Sip(M,) = U 15(2:)

m<*n
Note that there are finite subalgebras of ‘an m-cube BDLC-algebra for all
m <* n. By Corollary 4.12; Sip(M,,)-is-finite (up to_isomorphism). Since M,, is
locally finite and the fact.in [19]," M;, contains no infinite subdirectly irreducible

algebras; so, Si(M,,) = U 15(2") where Si(M,,) is the set of all subdirectly ir-

m<*n
reducible algebras in M,,. By Birkhoff’s Theorem, M,, .= V( U I15(2"™)). Since
m<*n
152 = 18(| 2™}, we get My=V([J15@™)= V(| ] {27}). Fur-
m<n m<n m<n m<*n

thermore for each.m <* n, it is.well-known that a map h:2*" — 2" defined by

h(ala Agy... ., an) — (afn—m—l—la Ay —m425 -+ an)
for all a; € {0,1} and 1 <* j <* n is a homomorphism. Hence, one can prove that

M, =V({J 2™ =V(HEZ™) = V(2™).

m<*n

Corollary 4.13 M,, =V (2*").



Chapter 5

The lattice of all subvarieties of

M,

In [8], B.A. Davey applied Jonsson’s Lemma {15] to prove that if K = V(A)
is a congruence distributive variety generated by a finite set A of finite algebras
then the lattice A(K) of all subvarieties-of K is a finite distributive lattice and it
is isomorphic to the lattice-O(Si(K)).of all order ideals of (S7(K); <gix)) where an
order on Si(KC) is defined by A <g;x) B if and only-if A € HS(B). It is well-known
that a variety of lattice based-algebras is-a congruence distributive variety; so is M,,
for all n € N._ Hence, the fact in/[8] implies that for-each n € N, A(M,,) = O(P,)
where P, = (Si(M,); <p:) and.the order.on Si(M,) is defined by A <, B if and
only if A € HS(B):

In this chapter, we-show'a method of drawing the diagram of the ordered set
P which is a useful tool to describe the lattice A(M,,) for all n € N. For specification
n = 3, we describe the diagram of A(Ms3) via the diagram of the lattice O(Si(M3))
and this idea can be extended to the lattice A(M,,) for all n € N.

5.1 The lattice of subvarieties of M,

Let n € N. We know from Chapter 4 that Si(M,,) = U IS(2"™) which

m<*n

is infinite; so, its diagram is so complicated. However, the ordered set P; can be

40
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considered as an ordered set P,, = ( U S(2""); <p,) where A <p B if and only if
m<*n

A € HS(B) which is shown in the following proposition.
Proposition 5.1 P, >~ P,,.

Proof.  Define a function a : P, — P, by a(A,) = A for all A’ € P where
A € S(2") with A" >~ A Tt is easy to see that a is onto. We will show that
« is an order-embedding; that is, for each AI,B/ € P;L, A < P B if and only if
a(A)) <p, a(B'). Let A',B" € P.. Assume that A’ <p B'. We will prove that
A <p, B where A,B € S(2*7) with/A"'2 A and B' & B. Since A’ <p B', there
exists a homomorphism 7' +Q — A’ 'such that A’ =&’ (Ql) for some subalgebras C’
of B. Let h=aoh o ot L¢(Q') where. ¢ : B “sBisan isomorphism. Then h is a
homomorphism; and so, i(¢(C))=a o' op! W) (p(C))=aoh' (C)=a(A) =
A. Hence, A <p B.

Conversely, assume that A <p, B. Then there exists a homomorphism A :
C — A such that A = h(C) for some subalgebras C of B--Let b’ = p~'oho¢ lo-1(C)
where o : A" — A and ¢+ B~— B are isomorphisms. Then k" is.a homomorphism;
and so, ' (6~(Q)] Lo om0yt (6~ (C)r=p 6h(0) Lo (A) = A’ which

implies that A/ < P B/. Therefore, o P;l — P, is.an isomorphism. [

One can see that it 'is not easy to check directly that A€ HS(B); that is,
A <p, Bforall A;Be U S(2"™). So, we are interested in‘simplifying the condition

m<*n

of the order <p,.

Proposition 5.2 For l,m € N with | <* m, if A is a subalgebra of 2*™ then there

exists a unique homomorphism h™_, from A to 2*.

Proof. Let [,m € N with [ <* m. Assume that A is a subalgebra of 2" and let
i =m — . Define h" : A — 2" by h™(ay, as, ..., ap) = (Git1, Aito, ..., a) for all
a; € {0,1} and 1 <* j <* m. It is clear that h[*(0) = 0, ~h*(1) = 1 and h!" preserves
V and A; besides, hl" preserves f since h'(f(ay,aq,...,ay)) = h*(az,...,ay,0) =
(@ivy ey @y 0) = f(ais1, .y am) = f(h™(ay, ag, ..., an)) for all (aq,aq,...,a,) € A.

Hence, A" is a homomorphism.
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Now we are proving the uniqueness of h™. Assume that o : A — 2"
is a homomorphism. We first show that for each a € {0,1} and 1 <* j <*
m, «(0,...,0,a,0,...,0) = (0,...,0,a,0,...,0) if j >* i and «(0,...,0,a,0,...,0) =

SN—— S—— S——

j ji j
(0,0,...,0) if 7 <* 4. Let 1 <* j <* m. If a = 0, then we are done. If a = 1,

we let z = «(0,...,0,1,0,...,0) and y = (0, ...,0,1,0,...,0). If j >* i then
N~—— N——

j j—i
xVa(f" (1)) =al0,...,0,1,0,..,0) Vall,.., 1,0, ..., 0)
J J m—=J
= a(l,1,..,1,0,...,0)
N———— N~
J+1 m—j—1
=a(f™=H(1))
= "7 af1))
= (1,1,:..,1,0,...,0)
——— ——
j—itl- | m—jLl
=(0,...,0,1,0,..,0)V (1, ..,1,0,...,0)
J=t Jj—1 m—j
=yVa(fm" (1))
and r Aa(fm (1)) =a(0;4,0, 1,0,...,0) Aa(1]..., 1,0, ..., 0)
J g m—j
=a(0)

F L0)) . Bt laDNG (. ), 1, 0 pmns
REA X
i =i / m—j
=y a(f" (1))
Distributivity of the lattice 2" ~“implies that z = Similarly, z= y if j <* 7. Since

a preserves V, it follows that o/(ay,ag, .., dm) = (@1, Giro,e, am) = hI*(ay, ag, ..., ap)

for all (ay,aq, ..., a,) € A. n

The following theorem can be proved directly by Proposition 5.2.

Theorem 5.3 For l,m <*n and A € S(2*) and B € S(2*™), A <p, B if and only
if
1. [ <*'m, and

2. there is a subalgebra C of B such that A = h"_,(C).
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Proof. Let A,B € U S(2"™) such that A <p, B. Since A,B € U S(2*™M),
m<*n m<*n

there exist [,m € N such that A € S(2*) and B € S(2*™). Since A <p, B, there
is a homomorphism h : C — A such that h(C) = A for some subalgebras C of B.
By Corollary 3.3, we have |C¢| >* |Ca| which implies that A(fc) >* A(fa); and so,
m >* 1. By Proposition 5.2, we get A = h(C) = A" _,(C). The converse is clear by

the definition of the order <p, . ]

We are now going to show the picture of the ordered set P,. Since P, =

U S(2™), we first focus on‘its subordered set (S(2*™); <p, | 5(2+m)) for all m <* n.
m<*n

By Theorem 5.3, the order <p, | g(pny is the-inclusion € on S(2*") for all m <* n.
Proposition 5.4 S(2"") =h}_,.(S(27)) for allm <*n.

Proof.  Let m <* n. It is clearithat A% - (S(2"))C S(2*™). Conversely, let A be
a subalgebra of 2*. Then

B = {(21, -, Ty 01,055 5 Am) “Eg57es, Tnom/ €. 40,1 and (aryas, ..., an) € A}
is a subalgebra of 2" ; hence, Proposition 5.2 implies that there exists a homomor-

phism A}’ from B to 27"y s0, h!' . (B) = A. Therefore, S(2*") Chl_, (S(2)). =

Next, we consider a condition of covering of all-elements in'P,, = U S(2™)
m<n
which is shown in the following theorem.

Theorem 5.5 A <p B in U S(2*™) if and only if there exists m € N such that
m<*n
either

1. A =s(2*m) B, or
2. A e S22 1) andB € S(2™) where B is a minimal of {D € S(2*™) : h7*(D) = A}.

Proof. Let A,B € U S(2"") with A <p, B. Then there exist [, m <* n such
m<*n

that A € S(2*) and B € S(2*™). By Theorem 5.3, we get | <* m and there is a
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subalgebra C of B such that A = A" (C). If m — 1 >* 1 then A = A" ,(C) =
1 (R(Q)) <p, BT(C) <p, C which contradicts to A <p, B. So, m — 1 <* 1.

If | = m then A <g@wm) B. If I = m —1 then A € S(2"""). Let D be a
proper subalgebra of B such that h7*(D) = A. Then A = h{*(D) <p, h*(B) <p, B,
a contradiction. Hence, B is minimal.

Conversely, if A <g@m) B then A <p, B. Assume that A € S(2"!) and
B € $(2"™) where B is a minimal of {D € S(2") : hj"(D) = A}. Let C € [ J S(2™)

m<*n

such that A <p C <p, B. Then C € S(2*) for some ¢t <* n; hence, Theorem 5.3
implies that t =m — 1 or t =m.

If t = m, the minimality of B-implies that € = B, a contradiction. So,
t = m — 1 which implies that A~C C. By Theorem 5.3 and C <p B, we have
C = h'"(D) for some subalgebra D-of B; so, C is a'subalgebra of A. Therefore, A = C
which implies that A <p B

5.2 The lattice of subvarieties of M3

In this section, we will follow the concepts:in Section 5.1 to show all elements

in O(P3) where P3 = (U S(2"); <p,). By the fact in [8], one can see that O(P3)
m<3

is isomorphic to the lattice A(M3). Firstly, we find all-elements in S(2*%).
We see that A1 ={(0,0,0);(1,0,0),(1,1,0);(1, 1)},

Ay = {(0,0,0),(0,1,0), (170;0);(1;1,0), (1,1, 1)},
As = {(0,0,0),(0,1,0),(0,1,1), (1,0,0), (1,1,0), (1,1, 1)},
Ay ={(0,0,0),(0,1,0),(1,0,0), (1,0,1), (1,1,0),(1,1,1)}
and As ={(0,0,0),(0,0,1),(0,1,0), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}

are all subalgebras of 2** and the diagram of the lattice (5(2*%); C) is shown in Figure
5.

As
A4 As
Aa

Ax

Figure 5 The lattice (S(2*); C).
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By Proposition 5.4, we have S(2**) = h3(S(2*%)). So, h3(A4)) = h3(Ay) =
P(As) = {(0,0),(1,0), (1,1)} and B(As) = hi(As) = {(0,0), (0, 1), (1,0), (1, 1)} arc
all subalgebras of 2*2.

Let A = {(0,0),(1,0),(1,1)} and A; = {(0,0),(0,1), (1,0), (1,1)}. The dia-
gram of the lattice (S(2*?); C) is shown in Figure 6.

Az
Ag
Figure 6 The lattice (S(2*%); C).

Similarly, S(2*') = h{(S(22));-s0; h3(As) = h3(A;) = {0,1} is the only
subalgebra of 2*! and let denote it by Ag. And the trivial: Ag .= {0} is the only
subalgebra of 2*.

By Theorem 5.5, we have Ag <p, Ay, A7 <p, Az and Ag <p, Asg.

The following figure shows the ordered set P = ( U S(2"™), <p,).

m<3
As
Az
As
Asg
Ag

Figure 7 The ordered set P35 = (U S(2"); <p,).

m<3
Since every nonempty set in O(P3) is in the form | B where B is a finite

antichain in U S(2™); so, we can find all elements in O(P3) as follows: | {4},
m<3

\l/ {A2}7 \L {A3}7 \L {A4}7 \l/ {A5}7 \L {A6}7 \lf {A7}7 \lf {A8}7 \L {Ag}, i {AlaA7}7
b {As, Az}, | {As, Ay} and | {Ay, A7}
In facts, for each order set (Q;<gp) and X,Y C @, | X Cl Y if and only if

for each € X there exists y € Y such that x <g y. So, the diagram of the order
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shown in the following Figure 8.

ideal O(P3) is




Chapter 6

Conclusion

For each n € N, the class M, -of all- BDLC-algebras whose A(f) <* n is a

variety determined by identities; in-addition, it can be generated by a single algebra.

Theorem 6.1 For eachn € N, the variety M,, is a class of BDL-algebras satisfying

the following identities:
F ) @) F A ) A @Y A () FO) ~ 0
and {"(1) & 0.
Theorem 6.2 M, =V (2") for all n € N.

Moreover, 2" is a subdirectly irreducible algebra in M, for all n € N and
every subdirectly irredueible algebra is an-isomorphic copy of a subalgebra of 2*™ for

some m <* n.
Theorem 6.3 Si(M,,) = U IS(2"™) for alln € N.
m<*n

Applying Theorem 6.2 together with the result in [8], we obtain a tool for
drawing the diagram of the lattice A(M,,) of all subvarieties of M,, for all n € N.
If n = 3, the lattice A(M3) is shown in the following figure.

47
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