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Chapter 1

Introduction

In this thesis, we study a new digit map that is a variation of Kaprekar operator
and determine the new constants arising in the process of repeatedly applying the
new digit map related to multiplication. For any x € NU{0}, we write the decimal

expansion of = as

b
xr = (akak_l - - a1a0)10 = E ak_jIO ],
0<j<k

where 0 < a; <9 forall:=0, 1,2,... k.

First, we introduce the reader to know about the Kaprekar constant.
The Kaprekar operator K is defined by the following operation: take any positive
integer x having four decimal digits which are not all equal and the leading digit
is not zero, say x = (asazaiag)i0; as # 0, and a; # a; for some 4, j, then rearrange

as, as, a1, Gy as C3, Ca, C1, Co SO that cg > cg > ¢1 > ¢g. Then
K(z) = (c3eac1¢0)10 — (Coc1¢263)10- (1.1)

Observe that the second number on the right-hand side of (1.1) is obtained by
reversing the decimal digits of the first. It is well known that no matter what x we
start, after repeating this process at most 7 steps, we always obtain the number

6174, which is known as Kaprekar’s constant. For example, suppose x = 1000.



Then

K (z) = 1000 — 1 = 999,

K*(z) = K(K(z)) = K(999) = K(0999) = 9990 — 0999 = 8991,
K*(x) = K(8991) = 9981 — 1899 = 8082,

K*(z) = 8820 — 0288 = 8532,

K°(z) = 8532 — 2358 = 6174,

and K™ (z) = 6174 for all m > 6. Here it is important to keep in mind that
the Kaprekar operator operates on the positive integers having four digits not all
equal. So the decimal representation of K (z) with nonzero leading digit may has
only 3 digits but to calculate K (K(x)), we must first write K (z) as 4 digits number
by adding 0 as the leading digit, as shown above in K(999) = K(0999). We can

generalize K to operate on any nonnegative integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let ¢ : NU {0} —
NU {0} be given by ¢g(0) =0 and-if 2 = (agar_1 - ..ao)10, ax # 0, and ¢, cx_1, .. -,

o is the permutation of ay, ag-q, ..., ag such that ¢, > c¢p_1 > -+ > ¢g, then

g(x) = (cpCr—1 ... c1c0)10 — (CoC1 - - - Ch—1Ck)10-

In addition, for the purpose of this thesis, if z is as above, we always write the

decimal representation of g(x) as k + 1 digits number, say g(z) = (brbx_1 - .. bo)10-

Another trick is as follows: take any positive integer having three digits,

say © = (a2a1a9)10, where ay # 0, 0 < a; < 9 for all j, and a; # a; for some



i, j. Then calculate g(z), say g(x) = b = (beb1by)10- Then compute f(b) =
b+ reverse(b) = (bab1bo)10 + (bob1b2)10. No matter what « we start with, we always

obtain f(b) = 1089. We generalize this to the following operator.

Definition 1.2. Let f be the reverse and add operator and let F' : NU {0} —
N U {0} be defined by F = f o g. In addition, to calculate F(z) = f(g(x)), we
always keep the same convention in Definition 1.1 where the number of decimal

digits of = and g(z) are equal.

For example, suppose z = 100. Then g(z) = 99 = 099 and so F(x) =
£(099) = 990 + 099 = 1089. By using a computer or a straightforward calculation,

it is not difficult to notice the following pattern:

if 10 < 2 < 10%, then F(x) =0 or 99;
if 102 <2 < 103, then F(x) =0 or 1089;
if 10° <2 < 10*, then F(x) =0, 10890, or 10989;

if 10* < x < 10%, then F(z) = 0, 109890, 0 4or 109989.

In general result, which can read in Chapter 2. Moreover, it is an interesting open
problem to determine whether or not a given number in the range of F' is a Lychrel
number. For more information on 6174 and the Kaprekar operator, see for instance
in [6], [13], and [16]. For related articles on 1089 and 2178, see for example in [1],
2], [3], [4], [18], [19], and [22].

Next, we introduce the reader to know about the happy function. For

each positive integer z, define S(x) to be the sum of squares of the decimal digits



of z. For example, S(2) = 4 and S(123) = 1* + 2% + 3? = 14. It is well known that
[11] for any x € N, there exists n € N such that S™(x) € {1,4}, where S™ is the
n-fold composition of S. The function is called the happy function and if z € N
and S™(z) = 1 for some n € N, then z is called a happy number. Furthermore,
we can generalize this concept to an (e, b)-happy function S, for e, b € N and e,
b > 2 by defining

Sep(r) = ay+ag_, + -+ - + ag,

if v = (agag_1...a9)p = apb® 4 a1 bF 4 - + ag is the b-adic expansion of z with
ar #0and a; € {0,1,2,...,b—1} forall i =0, 1, ..., k. Then a similar result still
holds: there exists a finite set A C N such that for any x € N, there exists n € N
such that Sé?(x) € A. For example, if (e,b) = (2,10), then A = {1,4}; and if
(e,b) = (3,10), then A ={1,55,136, 153,160,370,371,407,919}. For more details
about this, see for instance in the articles by El-Sedy and Siksek [7], Grundman
and Teeple [10], and the book by Guy [11].

On one hand, we may focus on the study of long strings of consecutive
integers which are happy or (e, b)-happy as given by El-Sedy and Siksek [7], Pan
[15], Zhou and Cai [23], Gilmer [8], Styer [17], and Chase [5]. On the other hand,
we may consider generalizations of the concept of (e, b)-happy functions as in the
work of Grundman [9], Chase [5], Swart et al. [21], Noppakaew, Phoopha, and
Pongsriiam [14], and Subwattanachai and Pongsriiam [20]. In this thesis, we focus
on the latter and continue the study from those articles [14, 20]. Let us consider

the following functions.



Definition 1.3. (The sum of factorials of digits) Let b > 2 and let f, : N — N be
defined by

fb(l’) = CLk! + ak_l! + -+ ao!

if x = (agag_1...ap)p is the b-adic representation of z with a; # 0.

Definition 1.4. (A power of sums of digits) Let e, b > 2 and let g., : N — N be
defined by

ge,b<x> - (CLk +ap_1+ -4+ aO)e

if © = (agag_1...ap)p is the b-adic representation of z with a; # 0.

The functions fp, gep, and similar variations are natural examples of
new digit maps falling outside the scope of Chase’s definition and other articles
on digit maps, yet similar results still hold. That is, if f is such a function, then
we can explicitly determine a finite set A € N such that for every x € N, there
exists n € N such that f®™(z) € A. So we can study this result in Chapter 3.
Furthermore, our results can be interpreted as solutions to certain Diophantine
equations which explain some popular mathematical memes in Chapter 4.

Throughout this thesis, there is using a computer to calculate some
numbers. Then we list some relevant codes in the last chapter. Moreover, we hope
that this thesis will help explaining something related to 6174, 1089, and other

similar magic numbers.



Chapter 2

Variation of Kaprekar operator and 1089

In this chapter, if y € R, then [y] is the largest integer less than or equal to y and
[y] is the smallest integer larger than or equal to y; and unless stated otherwise, all
other variables are nonnegative integers. Then we recall Definition 1.2 to introduce

the general result.

Theorem 2.1. Let F = fog, k > 2, and 10¥F < » < 10", Letx = (arax_1 . .. ao)1o,
ar 0, and 0 < a; <9 for alli=0,1, ..., k. If k=2, then F(z) =0 or 1089.
Suppose that k > 3 and ci, Cx-1, ~-., Co s the permutation of ax, ag_1, ..., Qo
such that ¢, > ¢y = -« > co. If a; = a; for alli, j, then F(x) = 0. Suppose
that a; # a; for some i, j and let m = z(x) be the largest element of the set

{7€{0,1,... k} | ex—j > ¢;}. Then

where y(x) =k — 2 — z(x).

Proof. We first consider the case &k = 2. Since 10®> < z < 103, it can be written
in the decimal representation as x = (agajag)10 where as # 0 and 0 < a; < 9 for
i=0,1, 2. If ay = a1 = ag, then F(x) = 0. So suppose that as, a1, ag are not all

the same and let co, ¢1, co be the permutation of as, a1, ag such that co > ¢; > .



Then ¢y > ¢y and

g(x) = (e2c1¢0)10 — (coc1c2)10
= (10%cy + 10¢; + cp) — (10%cy + 10¢; + )
=10%*(cy — co — 1) +10(9) + 10 — (c2 — co)

= <d2d1d0)107
where dy = ¢ —cg— 1, dy =9, and dg = 10 — (ca — ¢p). Then it is easy to see that
F(x) it (d2d1d0)10 + (d0d1d2)10 = 108&9.

Next, let k > 3, 108 < 2 < 10*, and write x = (apag_i...ag)10 where a; # 0
and 0 < a; <9foralli=0,1, ..., k If q; =a; for all i, j, then F(z) =0 and
we are done. So suppose that a; # a; for some ¢, j. Let cx, cx—1, ..., ¢y be the

permutation of ay, ag_1, ..., ag such that ¢ > cp_1 > +-+> ¢y. Then

g<x) — (Ckckfl P o CO)IO - (COCl L Ck)lo

k
er—g 10¥77 =3 " ;108

J=0

]~

=
o

>l

(ch_j — ¢;)10%. (2.1)

[e=]

.

Let A ={j € {0,1,...,k} | cxy—; > ¢;}. Since ¢ > ¢o, we see that 0 € A,
and so A # @. Let m be the largest element of A. If m > [£], then k —m <
k— %] = [£] < m, which implies ¢;_,, < ¢, which contradicts the fact that

m € A. Therefore 0 < m < f%} Since m is the largest element of A and



Cp > Cr_1 > -+ > ¢o, we assert that the following relations hold:

ch—j >c; for 0<j5<m, (2.2)
ci—j <cj for j>m, (2.3)
, k
cr—j=c¢; for m<j< {iJ : (2.4)
k :
cy—j =c¢; for 5 <j<k—m, (2.5)
ch—j <c; for k—m <j<k. (2.6)

For (2.2), we know that cj_n, > ¢, and if 0. < j < m, then cx—; > cj_p > ¢ > 5.
So (2.2) is verified. By the choice of m, (2.3) follows immediately. If j < |4], then
k—j>k—|%] =% > j, and so cx—; > ¢;. Thisand (2.3) imply (2.4). Replacing
j by k—jin (2.4), we obtain (2.5). Changing j to k — j in (2.2), we obtain (2.6).
Next, we divide the sumin (2.1) into 3 parts: 0 < j < m,m < j < k—m,
and k —m < j < k. By (2.4) and (2.5), the second part is zero. Therefore (2.1)
becomes
g(x) = Z (erlj—c;)10M7 + Z (chi — c;)10%7. (2.7)
0<j<m k=—m<j<k
The terms ¢;_; —¢; in (2.7) are positive in the first sum and negative in the second
sum. Then we write

10F—™ = ( Z 9~10’H’) +10

m+1<j<k—1

:< 3 9.10M>+< > 9~10M>+10.

m+1<j<k—m—1 k—m<j<k—1



Let dy_,, = Co—n — ¢p — 1 and dy = 10 4+ ¢ — ¢. Then
(Chm — € )10F7™ - Z (ch_j — c;)107
k—m<j<k

= di_ 10"+ 10"+ Y 0 (e — ¢5)1087

k—m<j<k

= dj_ 10577 + < > o9 1o’f—j>

m+1<j<k—m—1

+ ) 9+ ey —¢) 1087 4 dy, (2.8)

k—m<j<k—1
where dj,_,,, dy, and the coefficients of 107 in the above equation are nonnegative
and are less than 10. Therefore (2.7) and (2.8) imply that we can write g(x) in

the decimal expansion as

9(37) o (dkdk—l . -do)m = Z dk_jlok’j,

0<j<k

where 0 < d; <9foralli =0,1,2, ..., k, and dj-; satisfies the following relations:

dp—j=cp—j—¢; for 0<j<m, (2.9)
Ay = Clon = C, — 1, (2.10)
dp—j =9 for m+1<j<k-=m-—1, (2.11)
dij=94cp_j—c; for k—m<j<k-—1, (2.12)
do = 10 + ¢o — ¢. (2.13)

Since the decimal expansion of g(z) has k + 1 digits, that of f(g(x)) has at most

k + 2 digits. Then

F(ZL‘) = f(g(l’)) = (dkdkz—l e dO)lO —I— (dodl R dk:)lO = (6k+16k e 60)10,
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where 0 < e; < 9foralli=0,1, ..., K+ 1. Recall the fact from an elementary
arithmetic that ey = dy + dp — 10eq where ¢g = 0 if dy + dp < 10, and g5 = 1
if dy + di, > 10. In addition, e; = d; + dx—; + €j_1 — 10¢; for 1 < j < k, where
£j—1 = 0 if there is no carry in the addition in the (j — 1)th position and ¢;_; =1
otherwise; while €; = 0 if d; +dy—; +¢;-1 < 10, and ; = 1 if dj +dj—_; +¢;-1 > 10.
Moreover, e = 0 if there is no carry in the addition in the kth position and

ex+1 = 1 otherwise. We now calculate ey, ey, ..., ek, exy1 by using this fact and

the relations in (2.9) to (2.13). We obtain

eo = do + dp — 10g9 = (10 +¢o — ¢x) + (¢ — o) = 109 = 10 — 10¢y,
which implies g = 1 and ey = 0. Then
ey =dy+dp1+1—10er=(9+ c1 — cp_1) + (1 — 1)+ 1 — 10e; = 10 — 10¢ey,

which implies £; = 1 and ey = 0. In general, we replace j by k — j in (2.12) to see

that d; =9 +¢; —cp—j for 1 < j<m;andifg; 3 =1and?2 < j <m —1, then
€j :dj—l-dk,j—f—l—loe’:‘j:(9+Cj—Ck,j)+(Ck,j—Cj)+1—10(‘5]':10—108]',

which implies ¢; = 1 and e; = 0. Applying this observation for j = 2, 3, ..., m—1,

respectively, we obtain
go=1,e2=0,e3=1,e3=0,...,6p1=1,€51=0.
Then

em = Ay + dj—py, + 1 — 10g,,

=94 cm— hm)+ (Chom —cm — 1) +1—=10e, =9 — 10¢,,,
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which implies €,, = 0 and e,, = 9. Then e,.1 = dpi1 + dj—m_1 — 10611 =
9+ 9 — 10e,,41, which implies €,,4,1 = 1 and e,,1; = 8. In general, we replace j by
k—jin (2.11) toobtain d; =9 form+1 < j<k—m—1;and if ¢;_4 = 1 and

m+2<j<k—m—1, then

ej:dj+dk—j+5j—l_105j:9+9+1_105j:19_]—05j7

which implies €; = 1 and e; = 9. Applying this observation for j = m + 2, m + 3,

..., k—m — 1, respectively, we obtain
Em+2 = 1, mi2 = Y emi3 = L emia=9;. . s epm=r= 1, €4—m—1 = 9.
Then

€k—m = dk—m + dm + 1= 10ep—,

= (Chem = Cm = D+ (94 Cr — o)+ 1 = 10832, = 9 — 10641,
which implies ;_,, = 0 and e;_,, = 9. Then

Ch—m+1 = Agemt1 + dm—1 = 10441
= (Chom+1 — Cm-1) + (9 + cm—1 — Chomt1) — 1061

=9 — 1084 _ymi1,

which implies €541 = 0 and e;_,,+1 = 9. In general, we replace j by k£ — j in
(2.12) to obtain d; = 9+c¢; —cp—; for 1 < j <m;andife,_;_; =0and 1 < j <m,

then

€k—j = dk_j + dj — 105k—j = (Ck—j — Cj) + (9 + Cj — Ck:—j) — 105k—j =9 - 105k—j7
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which implies €;_; = 0 and e;_; = 9. Applying this observation for j = m — 2,

m — 3, ..., 1, respectively, we obtain

Ek-mt2 = 0,€kmi2=9,k-mi3 =0, mi3=9,...,6,1=0,€e,1=09.

Then

e = dk + dg — 10€k = (Ck - Co) + (10 + ¢y — Ck) — 105k =10 — 1051{:,

which implies ¢, = 1 and ey = 0. Then e;,; = 1. To conclude, we obtain that
ej=0for0<j<m,en=9en1 =8¢ =9form+2<j<k—-1 e =0,and

ex+1 = 1. This completes the proof. O



Chapter 3

Happy Functions and Digit Maps

In this chapter, we first show the calculation related to f;, in Definition 1.3 and
gep in Definition 1.4. After that we consider a similar function and give some

calculations in less details. Our results are as follows.

Lemma 3.1. Let b > 2 be integer. Then there exists an integer M = My, > 1 such
that

(k+1) (b= < b* for all k> M.
In particular, if b =10, then we can choose M =T7.

Proof. By using a usual method in calculus, one can show that v*/(k + 1) — +oo
as k — +o00. So there is an integer M > 1 such that if & > M, then b*/(k + 1) is
larger than (b — 1)!. This proves the first part. For the second part, we prove by
induction that

(k+1)9! < 10* for all k > 7. (3.1)

It is easy to see that (3.1) holds when k = 7. Suppose that £ > 7 and (3.1) holds
for k. Then

(k4 2)9! < (10k + 10)9! = 10(k + 1)9! < 10*,

Therefore (3.1) is verified and the proof is complete. H
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Remark 3.2. By a similar method as in the proof of Lemma 3.1 for 2 < b <9,
we can take My as follows: My =2, M3 =2, My =3, M5 =3, Mg =4, M; =5,

Mg =5, and Mg = 6.
Theorem 3.3. Let b and M be the integers as given in Lemma 3.1. Then

fo(z) < & for all v > bM, (3.2)
In particular, fio(z) < x for all z > 107.

Proof. Let x > b™. Then x = (apag_1...ap)y where k > M, ap # 0, and 0 < a; <

b—1foralle=0,1, ..., k. By Lemma 3.1, we obtain
fox) =ap! +ap 1!+ Fagl < (B F1)(0— 1! < b <apd® <.
This proves (3.2). The second part. follows from (3.2) and Lemma 3.1. O

Remark 3.4. By Remark 3.2 and Theorem. 3.3, we see that

fo(x) < 2 forall > 2%  f3(x) < forallx > 32
fa(x) <z forallx > 4%, -~ fs(x) < x for all x > 5,
fo(z) < x for allx > 6%, fi(x) <z for all x > 7°,

fs(z) <z forallz > 8%, and fo(x) < x for all x > 9°.

To obtain a finite set A C N satisfying fb(n) (x) € A, we now only need
to recall Theorem 1.2 of Noppakaew, Phoopha, and Pongsriiam [14]. Consider the

following two conditions for a function f: N — N:

(A) There exists Ny € N such that f(z) < z for all x > Ny.



15

(B) For each = € N, the sequence (f™ (z)) converges to a fixed point or

n>1
eventually enters into a cycle. In addition, the number of all such fixed

points and cycles is finite.
Then we have the following results.

Theorem 3.5. (Noppakaew, Phoopha, and Pongsriiam [14]) If f : N — N satisfies

the condition (A), then f satisfies the condition (B).

Theorem 3.6. Let b > 2 be an integer. Then there exists a finite set A= A, C N
such that for every x € N, there is an integer n > 1 such that fb(")(:v) € A In
particular, if b = 10, then we can-take A = {1,2,145,40585,169,871,872}. In
fact, 1, 2, 145, 40585 are the fized points of f, and 169, 871, 872 are the elements

of distinct cycles arising from the iteration flfn) (x) for any n, v € N.

Proof. By Theorems 3.3 and 3.5, we see that f, satisfies the condition (B). Then
we choose A to be the set of all elements in the cycles and fixed points of f;, so
that Ay is a finite subset of N.. Let z € N be given. We know that f, : N — N; so
if flfn) (x) converges to a fixed point y € N as n — 00, then it means that there
is N € N such that fb(") (x) = y for all n > N. So in particular, fb(N)(x) € A,
Moreover, if fb(n) () eventually enters into a cycle as n — oo, then fb(n) (x) € Ay
for some n. This proves the first part. For the second part, let b = 10, and let Fig
be the set of fixed points of fio and Ciq the set of all cycles (which are not fixed

points) occurring in the iteration fl(g) (x) for any n, x € N. We assert that

Fio = {1,2,145,40585} and
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Clo = {(169, 363601, 1454), (871, 45361), (872, 45362)}.

It is easy to check that if z € {1,2,145,40585}, then fio(z) = z. Suppose x € N
and fio(z) = . By Theorem 3.3, we obtain x < 107. So we only need to check the
integers x in [1,107) whether or not they satisfy fio(z) = z. After a computation
in a computer, we find that fio(x) = x if and only if x € {1,2,145,40585}. This
gives the set Fjg. Similarly, to determine the set Cig, it is enough to look for
the cycles occurring in the sequence ( ) (93)) where x runs over the integers in
[1,107). After a straightforward verification, we obtain Cjo as asserted.
Therefore we can take A to be the set consisting of 1, 2, 145, 40585,
169, 363601, 1454, 871, 45361, 872, 45362. But 169, 363601, 1454 are in the
same cycle, so we need only one of them. For instance, if fl(g)(x) = 169, then
1(g+1)(x) = 363601, fl(g+2)(x) = 1454, and fl(g+3)(a:) = 169. Similarly, we can
choose just one of 871, 45361 and one of 872, 45362. Therefore we can take A to
be the set consisting of 1, 2, 145, 40585, 169, 871, 872 as required. This completes

the proof. 0

Remark 3.7. By a similar method as in Theorem 3.6, we obtain for 2 < b < 9 the
set Fy of fized points of f, and the set Cy of cycles in the iteration fb(n) (x) for any
n, x € N as follows. For b =2, we only need to run a computation in a computer
for x in [1,22) to obtain that Fy = {1,2} and Cy = @. Similarly, forb=3, 4, 5, 6,

7, 8,9, we run a computation, respectively, for x € [1,3%), v € [1,4%), x € [1,5%),
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r€[1,6%), x € [1,7°), x € [1,8), z € [1,9°) to obtain

F={1,2},C; =2,

Fy={1,2,7},Cy = {(3,6)},
Fs={1,2,49},C5 = @,

Fs = {1,2,25,26},Cs = @,

Fr = {1,2},Cr = {(38,126, 27,726, 243,864)},
Fy = {1,2},Cs = {(3,6,720, 10), (125,5161)},

Fy = {1,2,41282},
and Cy consists of exactly one cycle, namely,
(1450, 80642, 251, 40327, 10803, 5173, 15121, 1445, 45481, 41094, 735, 723, 80646, 969, 41043).

The calculation for g, is similar to that for f;, but the well known Euler
constant will appear in the proof. So to avoid confusion, we will write £ to denote

Euler’s constant, while e is reserved for the integers appearing in the definition of

Ge,b-

Lemma 3.8. We have 81(k + 1)> < 10* for all k > 4, 729(k + 1)3 < 10% for all
k> 6, 6561(k + 1)* < 10% for all k > 8, 59049(k + 1)°> < 10* for all k > 10. In

general, if e > 2 is an integer, then
9°(k 4 1) < 10*  for all k > €. (3.3)

Proof. The first four inequalities can be straightforwardly proved by induction, so

we leave the details to the reader. For (3.3), let e > 2 be an integer. Observe that
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it can be proved by induction that 9(n? + 1) < 10™ for all n > 2, so in particular
9(e* + 1) < 10°. This implies that (3.3) holds when k¥ = e. Next, suppose that
k > e? and (3.3) holds for k. Recall that the sequence (a,) = ((1+ 1)") is strictly
increasing and converges to E, the Euler constant. From this and the fact that

k > €2, we obtain

e e e2+1
(k + 2)° 1 1 1 *
= (1+4—) <[(1 1
(k+ 1) “rv1) S\ Ter) U T e

= ae241 < supf{a, | n € N} = nll_g)lo a, = E < 10.

Then 9¢(k + 2)¢ < 9°(10)(k + 1)¢ < 10*"! by the induction hypothesis. So the

proof is complete. []

Lemma 3.8 will be used in the calculation in some examples. For a

general result, we have the following theorem.
Theorem 3.9. Let e; b > 2 be integers. Then the following statements hold.

(i) There exists an integer M= My, > 1 such that (k+1)%(b — 1)° < b* for all

k> M.
(i) gep(x) <z for all x > oM.

(ili) gep satisfies the condition (B) and there exists a finite set A = A.p C N such

that for every x € N, there is n € N such that ggz) (x) € A.

(iv) Let F.p and C.p be the sets of fized points of g.p and the cycles arising in
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the sequence <g§7? (x)) for any x € N. Then we have
’ n>1

Fy10 = {1,81},Cy19 = {(169, 256)},
Fs10 = {1,512,4913, 5832, 17576, 19683}, Cs 19 = {(6859,21952)},
Fy10 = {1,2401, 234256, 390625, 614656, 1679616}, Cy 19 = {(104976, 531441)},

F510 = {1, 17210368, 52521875, 60466176, 205962976},

and Cs 10 consists of the following cycles:
(16807, 5153632, 9765625, 102400000), (6436343, 20511149), (28629151, 45435424).

Proof. Since e, b are already given, we obtain b*/(k 4+ 1)¢ — +oo as k — oo,
and so there exists M > 1 such that ¥*/(k +1)¢ > (b — 1)¢ for all £ > M. This
proves (i). Suppose z > b™. Then z = (arag_1 ...ay), where k > M, a;, # 0, and

0<a;<b—1foralli=0,1,..., k- Then by (i), we obtain
Gen(®) = (ar + gy + -+ ag)* < ((k+1)(b=1)°< bF < apd® < .

This proves (ii). Then (iii) follows from (ii), Theorem 3.5, and exactly the same
argument as in Theorem 3.6. For (iv), to determine the set F.;, and C,, for a
particular pair of (e, b), we only need to-apply Lemma 3.8 and run a computation
on the integers in [1,b*) as in the proof of Theorem 3.6. If ¢ = 2 and b = 10,
we can take M., = 4. After checking (ggz) (x)>n>1 for z in the interval [1,10%),
we obtain Fy 19 = {1,81}, Co10 = {(169,256)}. If e = 3 and b = 10, we can take

M., = 6. Then running a computation for ggz) () where n € N and z € [1,10),

we obtain

Fy10 = {1,512,4913,5832, 17576,19683} and Cj10 = {(6859,21952)}.
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Similarly, if (e, b) = (4, 10), then we take M., = 8; if (e,b) = (5, 10), then we take
M., = 10. After running a computation in a computer, we obtain Fj 9, Ciy 10,

F5 10, and Cj 10 as given above. So the proof is complete. O

Observing that 3435 = 33441433+ 55, we are interested in determining
all numbers with this property. So we should consider h(z) = ap* 4+ a3} 4+ - - +ag’
if z = (agap_1...a0)10 but there is a problem with this definition since 0° is

not defined. One way to avoid this is to skip the zero digit and define h(z) =

bom + b%”_‘f + -+ bgo if z = (arar—1-..ap)10 and by, b1, ..., by are taken from
ag, ak_1, -.., ag but without zero. Equivalently, we can temporarily assign the

value 0° = 0 and study the following function.

Definition 3.10. Let o : NU {0} — NU {0} be defined by h(0) =0, h(a) = a* if

a€{l,2,...,9}, and

h(x) = h(ag) + h(ag_1) + - -+ h(aop)

if x > 10 and x = (agax_1 ... ap)io is the decimal representation of x with ay # 0.

Equivalently, we can assign 0° = 0 and define h by

h(z) = ai +ap*y + - + ag”

for each = = (agag_1 ... ag)10-

The calculation for A can be done in the same way as that for f, and
Ge,p, SO we skip the details and leave them to the reader. We have the following

result.
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Theorem 3.11. The following statements hold.
(i) (k+1)9° < 10* for all k > 10.
(ii) h(z) <z for all z > 10'°.

(iii) h satisfies the condition (B) and there exists a finite set A C N such that for

every x € N, there is n € N such that b (z) € A.
(iv) The set of fized points of h is {1,3435, 438579088} .

Proof. The statement (i) can be proved by induction. If x > 10, then we write

x = (agag_1-..ag)10 with &k > 10 and aj # 0, and so
h(z) < 9%(k +1) < 10F <q,10* < =

Then (iii) follows from (ii), Theorem 3.5, and exactly the same argument as before.

Then running a computation in a computer, we obtain (iv). O



Chapter 4
Diophantine Equations and Proofs of Some Mathematical

Memes

Many people have seen some fun fact in mathematics from memes which are dis-
tributed via social media worldwide. Memes can be discovered by anyone and can
definitely be appreciated without proofs or explanations. Nevertheless, we show
that our results can be interpreted as solutions to certain Diophantine equations
and use them to explain or create some memes. For example, the only fixed points
of fig are 1, 2, 145, and 40585, and so the solutions in nonnegative integers ay,

ak_1, - .-, ag with ai # 0 to the Diophantine equation

ap! + a1l 4+ -+ agt = (apar—1... ao)io

are given by the numbers 1, 2, 145, and 40585.

Corollary 4.1. 1 =1!, 2 =2!, 145 = 1!+4! 45!, 40585 = 4! 40!+ 5!+ 8!+ 5!, and
these are the only positive integers with this property. That is, a positive integer
x 1s the sum of the factorials of all its decimal digits (except the leading zeros) if

and only if v =1, 2, 145, or 40585.

Proof. Let fip(z) be the function in Theorem 3.3. We would like to find all x € N

such that fio(x) = 2. By Theorem 3.3, fio(z) < @ for all x > 107. So we only need
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to find z < 107 such that fio(x) = x, which can be done using a computer. ]

Corollary 4.2. 1 = (1)g = 1!, 2 = (2)9 = 2!, 41282 = (62558)9 = 6!+2!+5!+5!+8!
and these are the only positive integers with this property. That is, if x € N, then
x 1s the sum of factorials of its digits (in base 9) if and only if x = (1)g, (2),

(62558)g.
Proof. This follows immediately from Remark 3.7. [

Corollary 4.3. We have

1=1%512=(5+1+42)%4913 = (4 + 9+ 1+ 3)°,

5832 = (5+8+3+2)% 17576 = (1+T7+5+7+6)°,19683 = (1+9 + 6 + 8 + 3)°,

and these are the only positive integers with this property. That is, if x € N, then
x 18 the cubes of the sum of its decimal digits if and only if x = 1, 512, 4913, 5832,

17576, or 19683. Similarly,

1=1%2401 = (2+4+0+1)"
234256 = (2+3+4+245+6)*,390625 = (3+9+0+6+2+5)%

614656 = (6 +1+4+6+5+6)* 1679616 = (1+6+7+9+6+1+6)*

are the only positive integers that are equal to the 4th power of the sum of their
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decimal digits;

1=1°17210368 = (1 +7+2+1+0+3+6+8)°,
52521875 = (5+2+5+2+1+8+ 7+ 5)°,
60466176 = (6 + 0 +4+6+6+1+7+6)°,

205962976 = (2+0+5+9+6+2+9+7+6)°

are the only positive integers that are equal to the 5th power of the sum of their

decimal digits.
Proof. This follows immediately from Theorem 3.9. O

Corollary 4.4. 1 =1', 3435 = 3% + 4%+ 3% 4 5%, 438579088 = 4% + 3% + 8% + 5° +

7T+ 9% + 8% + 8%, and these are the only positive integers with this property.
Proof. This follows immediately from Theorem 3.11. O

Other known results in the literature can be used to produce fun fact
or memes too. Here we rewrite the results of Grundman and Teeple [10], and

Hargreaves and Siksek [12].

Corollary 4.5. (Grundman and Teeple [10], and Hargreaves and Siksek [12]) We

have
1=1%153=13+5°4+3%370 =3 + 73+ 0%,371 = 3 + 73 + 13,407 = 43+ 0® + 73,

and these are the only positive integers with this property. That is, if x € N, then

x 18 the sum of the cubes of its decimal digits if and only if x = 1, 153, 370, 371,
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407. Similarly,
1=1%1634 = 1* +6* +3* + 44,8208 = 8* + 2+ + 0 + 8%, 9474 = 9* + 4% + 7% 4 44,

are the only positive integers that are equal to the sum of the 4th powers of their

decimal digits. In addition,
1=1%,4150 =4 + 154+ 5° + 0°,4151 = 45+ 1° + 5° + 1°,
54748 = 5% + 4% + 7° + 45 + 85, 92727 = 95 + 25 + 7° + 2° 4+ 75,

93084 = 9% +3° + 0%+ 8% +45,194979 = 154+ 9® + 45+ 9° + 75+ 9°

are the only positive integers that are equal to the sum of the 5th powers of their

decimal digits.
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11

12

Chapter 5

Computer Code for the Using MATLAB

In this chapter, we will explain the MATLAB code that we use various theorems.

For the first below code, we use it to calculate the general result of

Definition 1.2.

clear all; % clearg yariables It falso, dlears a lot of
other things from memory, suchas//breakpoints,
persistent variabtes | land” eached meémory.

cle; % clears the command window

k=4; % digits ‘nuwmbers

fprintf(’ %, 18 %d/ digit, numbers—=——7==\n" , k+1);
cycle=[];
for x=10"k:10" (k+1)=1

% split a number into its individual parts
newx=rem ( floor (x./(10." (floor (logl0(x)):—1:0))) ,10);
% sort new number to descending and ascending
desc=sort (newx, "descend ") ;

asc=sort (newx) ;

% sum the individual digits
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

27

gx1=0; gx2=0;
for i=1:length (newx)
gxl = gx1 + desc(i)*10"(length (newx)—i);
gx2 = gx2 + asc(i)*10"(length (newx)—i);
end
gx = gx1 — gx2;
% adding 0 when digits /mmmber is not equal to k.
if (gx < 107k)
gx = gx*10;
end
% split a number_ into Sts /Andividwal parts
y=rem ( floor (gx./(10."(floor (logl0(gx)):=1:0))),10);
% sum the \individual digits
fx1=0; fx2=0;
for i=1:length(y)
fx1 = fx1 4+ y(1)*10" (length (y)=1);
fx2 = fx2 + y(i)*10"(i—-1);
end
fx = fx1 + fx2;
% printed any numbers yet?
if length(find (cycle=fx))==

fprintf ("%d\n’, fx);
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36

37

10

11

12

13

14

15

28

cycle=[cycle, fx];
end

end

Next, let b = 10 and we know that M;y, = 7 in Lemma 3.1, so we use
the code below to find the set Fio of fixed points of fiy and the set Cjq of cycles

in the iteration f{(z) for any n € N, 1 < 2 < 107 in Theorem 3.6 as follows.

clear all; clc;
base=10; m=7; % m in Lemma 3.1
cycle =[];
for x=1:base m — 1
recal=1; kernel =[];
while (recal >0)
j=0; newx=x; number=0;
% split, number into./its _individudl parts and sum
factorialy ,of “aldl—itsdigits
while (j>=0)

number = number + factorial (mod(newx, base));

newx = floor (newx/base);
if (newx = 0)
j==1

elseif (newx < base)

number = number + factorial (newx);
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17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

end
end
% break for fixed point
if x == number
if length (find (cycle==number) )==0
fprintf ( "%d\n’ ,number) ;
cycle=[cycle , number |;
end
recal=—1;
% break or rveloop “for cycle
else
if length(find(kernel=mnumber))==
kernel=[kernel , number];
x=number ;
else
inxcy = find (kernel==number);
if length (find (cycle=mnumber) )==
fprintf (' (7);
for idx=inxcy:length (kernel)
fprintf( %, ’,kernel(idx));

cycle=[cycle, kernel(idx)];

29
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39

40

41

42

43

44

45

30

end
Eprintf (1) \n');
end
recal=—1;
end
end
end

end

In the same way, to calculate the results of Theorem 3.9, we just change
the conditions of the caleculation function but for finding fixed points and cycles

are written the same.

clear all; clc;
base=10; m=6; Y0-m)in_"Theorem ~3+9(i)
e=3; % e th power
cycle =[];
for x=1:base™m — 1
recal=1; kernel=[];
while (recal >0)
% split number into its individual parts and power
of sums in given base
arrnumber = rem (floor (x./(base.” (floor (log(x)/log/(

base)):—1:0))) ,base);
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

31

number = sum(arrnumber) “e;
% break for fixed point
if x = number
if length (find (cycle=number) )==
fprintf ('%d\n’ ,number) ;
cycle=[cycle , number];
end
recal=—1;
% break or /reloop -for (cycle
else
if length(find (kernel=number) )==0
kernel=[kernel , number];
x=number ;
else
inxcy = find (kernel=number) ;
if length(find (cycle=mumber) )==0
fprintf (' (7);
for idx=inxcy:length (kernel)
fprintf( %, *,kernel(idx));
cycle=[cycle, kernel (idx)];
end

fprintf(’)\n');
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34

35

36

37

10

11

12

13

32

end
recal=—1;
end
end
end

end

Finally, we use the last code to calculate the last theorem, in which the

principle of coding remains the same as the previous theorem.

clear all; clc;
base=10; m=10; % m' in Theorem 3.11(1)
cycle =[];
for x=1:base m — 1
j=0; newx=x; number=0;
% split. number to' its.individwal” parts, and sum of
itself pewer
while (j>=0)
digit = mod(newx, base);
if (digit "= 0)
number = number + digit digit;
end
newx = floor (newx/base);

if (newx == 0)
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16
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18

19

20

21
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23

24

25

26

27

end

33

j=—1
elseif (newx < base)
number = number + newx newx;
==L
end
end
% break for fixed poing
if x = number
if length (find (cycle=number) )==
fprintf (%d\n’" ,number) ;
cycle=[cycle , number];
end

end
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Abstract

We study a variation of the Kaprekar operator F(z) for all non-
negative integers x-and show that the range of F' consists of 0, 99,
1089, and the integers of the form 1099...98900...0, where 99...9
and 00...0 may be long, short, or disappear.

1 Introduction and Statement of the Main
Result

Throughout this article, if y € R, then |y is the largest integer less than or
equal to y and [y] is the smallest integer larger than or equal to y. Unless
stated otherwise, all other variables are nonnegative integers. For any = &€
NU {0}, we write the decimal expansion of z as

b
r = (akak,l e a1a0)10 = E ak,jlo ‘7,
0<j<k

where 0 < a; <9 foralli=0,1, 2, ..., k.

Key words and phrases: digital problem, Kaprekar operator, Reverse and
add operator, Lychrel number.

AMS (MOS) Subject Classifications: 11A63, 11B83.

Prapanpong Pongsriiam is the corresponding author of this manuscript.
ISSN 1814-0432, 2021, http://ijmes.future-in-tech.net



2 N. Phoopha, P. Pongsriiam

The Kaprekar operator K is defined by the following operation: take any
positive integer x having four decimal digits which are not all equal and the
leading digit is not zero, say x = (asazaiap)o, as # 0, and a; # a; for some
1, 7, then rearrange as, as, ay, ag as cs, ¢, c1, ¢ so that c3 > co > ¢1 > ¢o.
Then

K(I) = (6302610())10 — (60016203>10. (11)
Observe that the second number on the right-hand side of (1.1) is obtained
by reversing the decimal digits of the first. It is well known that no matter
what x we start with, after repeating this process at most 7 steps, we always
obtain the number 6174. For example, suppose x = 1000. Then

(z) = 1000 — 1 = 999,

2(z) = K(K(z)) = K(999) = K(0999) = 9990 — 0999 = 8991,
3(z) = K(8991) = 9981 — 1899 = 8082,

4(x) = 8820 ~ 0288 = 8532,

(z) = 8532 — 2358 = 6174,

X

AR AR

(x

and K™ (x) = 6174 for all m > 6. Here, it is important to keep in mind that
the Kaprekar operator operates on the positive integers having four digits
not all equal. So the decimal representation of K (z) with nonzero leading
digit may have only 3 digits but, to calculate K (K (z)), we must first write
K(x) as 4 digits number by adding 0 as the leading digit, as shown above
in K(999) = K(0999). We can generalize K to operate on any nonnegative
integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let g :

NU{0} — NU{0} be given by g(0) = .0 If v = (arak—1 ... ao)10, ax # 0, and

Ck, Ck_1, ..., Co 1S the permutation of ay, ax_1, ..., ag such that ¢, > cp_1 >
- > ¢, then

g(.%’) = (Ckck,1 .. .6100)10 — (0001 .. .Ckflck)lo

In addition, for the purpose of this article, if x is as above, then we always
write the decimal representation of g(x) as k + 1 digits number, say g(x) =

(bkbk,1 .. bO)lO-

Another trick is as follows: take any positive integer having three digits,
say © = (asa1a9)19, where ay # 0, 0 < a; < 9 for all j, and a; # a; for
some 7, j. Then calculate g(x), say g(x) = b = (bab1bg)10. Then compute
f(b) = b+ reverse(b) = (bab1bo)10 + (bobiba)10. No matter what x we start
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with, we always obtain f(b) = 1089. We generalize this to the following
operator:

Definition 1.2. Let f be the reverse and add an operator. Let F': NU{0} —
N U {0} be defined by F' = fog. In addition, to calculate F(x) = f(g(x)),
we always keep the same convention in Definition 1.1, where the number of
decimal digits of x and g(z) are equal.

For example, suppose = 100. Then g(z) = 99 = 099 and so F(x) =
£(099) = 990 + 099 = 1089. By using a computer or a straightforward
calculation, it is not difficult to notice the following pattern:

if 10 < x < 10%, then F(x) = 0 or 99;

if 10 < 2 < 10?, then F(z) = 0 or 1089;

if 10° <z < 10*, then F(z) = 0, 10890, or 10989;
if 10* < 2 < 10°, then F(z) = 0, 109890, or 109989.

In general, we have the following result.

Theorem 1.3. Let F = fog, k > 2, and 108 < 2 < 10!, Let x =
(arag_1...a0)10, ar # 0, and 0 < a; <9 foralli =0, 1, ..., k. Ifk =2,
then F(x) = 0 or 1089. Suppose that k > 3 and ci, ck_1, ..., ¢y is the
permutation of ay, Gg—_1, .., ag-such that ¢, > cp_1 >+ >co. Let m = z(x)
be the largest element of the set {j € {0,1,. .. k}| ckey > ¢} If a; = a; for
all i, j, then F(z) = 0. If a; # a; for some i, j, then

F(z) =1099...98900...0,
—_— =

y(z) z(z)
where y(x) =k — 2 — z(x).

Although the result is easy to observe for k = 2, 3, 4, it is more difficult
when k is large. As far as we know, there is no proof for a general k. We
hope that this article will help explain something related to 6174, 1089, and
other similar magic numbers. Finally, it is an interesting open problem to
determine whether or not a given number in the range of F' is a Lychrel num-
ber. We leave this problem for the interested reader. For more information
on 6174 and the Kaprekar operator, see for instance in [5], [6], and [7]. For
related articles on 1089 and 2178, see for example [1], [2], [3], [4], [8], [9], and
[10].
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2 Proof of the Main Result

Proof. We first consider the case k = 2. Since 10> < z < 103, it can be
written in the decimal representation as © = (asajag)io, where ay # 0 and
0<a; <9fori=0,1,2. If ag = a; = ag, then F(x) = 0. So suppose that
as, a1, ag are not all the same and let ¢, ¢1, cg be the permutation of as, aq,
ap such that ¢o > ¢; > ¢g. Then ¢y > ¢g and

g9(z) = (ezc1c0)10 — (coc12)10
= (10%¢y + 10c; 4 ¢p) — (10%co +10c; + )
= 10%(cy = o = 1) + 10(9) + 10 = (c5 — o)
= (dad1do) 10,

where dy = ¢ — ¢y =1, d; =9, and dy = 10 — (c3 = ). Then it is easy to
see that

F(x) = (dadidp)10 + (dod1dg)10= 1089.

Next, let k > 3, 10 < z < 10*, and write 7 = (agar_1 ... ag)10, Where ay # 0
and 0 < a; <9 for all i = 0,1, ..., k If a; = a; for all 4, j, then F(z) =0
and we are done. So suppose that a; # a; for some i, j. Let ¢, cx—1, ..., co
be the permutation of ay, ai_1, ..., ag such that ¢, > ¢c,_; > -+ > ¢g. Then

g(x) = (ckCr_1-..¢co) — (Coc1 - - k)10
k k
= Z ck_jlok_j — chl()k_j
§=0 J=0
k
= (Ck,j — Cj)lok_j. (22)
j=0

Let A={j €{0,1,...,k} | cx—; > ¢;}. Since ¢, > co, we see that 0 € A,
and so A # @. Let m be the largest element of A. If m > [%], then
k—m<k-— [%1 = L%J < m, which implies ¢;_,, < ¢,, which contradicts the

fact that m € A. Therefore, 0 <m < [gl Since m is the largest element of



Notes on 1089 and a Variation of the Kaprekar Operator 5

Aand ¢ > 1 > -+ > ¢o, we assert that the following relations hold:

Ch—j >c; for 0<j5<m, (2.3)

cr—j <c¢; for j>m, (2.4)

cr—j=c¢; for m<j< V;J : (2.5)
k .

Cp—j = c; for [5—‘ <j<k-—m, (2.6)

Cp—j < c¢; for E—=m <g <k, (2.7)

For (2.3), we know that ¢z, > ¢, and if 0 < j < m, then ¢;_; > ¢p_py >
Cm > ¢j. So (2.3) is verified. By the choice of m, (2.4) follows immediately.
If j <|%], thenk—j > k— |5] = [£] > j, and so ¢;—; > ¢;. This and (2.4)
imply (2.5). Replacing j by k. —7 in (2.5), we obtain (2.6). Changing j to
k — j in (2.3), we obtain (2.7).

Next, we divide the sum in (2.2)-into 3 parts: 0 < j < m,m < j < k—m,
and k —m < j < k. By (2.5) and (2.6), the second part is zero. Therefore,
(2.2) becomes

g(.’L‘) = Z (Ck‘j N Cj)lok_j + Z (Ckfj N Cj)lok_j. (28)
0<j<m k—m<j<k

The terms c¢;_; — ¢; in (2.8) are positive in the first sum and negative in the
second. Then we write

10Fm = ( Z 9. 10“) + 10

m+1<j<k—1
= ( > 9-10’f—j> + ( > 9-10’“]‘) +10.
m+1<j<k—m—1 k—m<j<k—1
Let dy_,, = ¢ — & — 1 and dy = 10 + ¢y — ¢. Then
(Chm — C)10F7™ 1 Z (ch_j — c;)10F
k—m<j<k

= dp-m 10"+ 10"+ Y (e — ¢)1087

k—m<j<k

= dj_,, 1057 4 ( > o9 10’“‘]’)

m+1<j<k—m-—1

+ Z (9 + C—j — Cj) 10k_j + do, (29)

k—m<j<k—1
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where dj,_,,, dy, and the coefficients of 10*~7 in the above equation are non-
negative and are less than 10. Therefore, (2.8) and (2.9) imply that we can
write g(x) in the decimal expansion as:

g(z) = (dpdi—1 . .. do)10 = Z dk,jlok_j,

0<j<k

where 0 < d; <9 foralli =0,1, 2, ..., k, and dj_, satisfies the following
relations:

dr—j=cx_j—¢; for 0<j<m, (2.10)
Ag—m = Ch=m = Cm — 1, (2.11)
dpyj =9 for m+1<j<k—m-—1, (2.12)
dp—j =94 cCp—j—c; for k—m<j<k-1, (2.13)
do =104 ¢co — ¢ ( )

Since the decimal expansion of g(z) has k + 1 digits, that of f(g(z)) has at
most k + 2 digits. Then

F(l‘) = f(g(ac)) = (dkdk,1 ™= dO)lO —+ (dOdl .. -dk)lo = (ek+1€k .. .60)10,

where 0 < ¢; <9 for all © = 0, 1, ..., k+ 1. From elementary arithmetic,
recall the fact that ey = dy + 'di — 10gg, where ¢g = 0 if dy + dj, < 10, and
Eo — 1 if d0+dk > 10. In addition, € = dj+dk~j+5j—1_105j for 1 < ] < k‘,
where €;_; = 0 if there is no carry in the addition in the (j — 1)th position
and €;_; = 1 otherwise; while ¢, = 0'if d; +dj_; + ;-1 < 10, and ¢; = 1 if
d; +dy—; +e;-1 > 10. Moreover, ey = 0 if there is no carry in the addition
in the kth position and e;,; = 1 otherwise. We now calculate ey, eq, ..., e,
ex+1 by using this fact and the relations in (2.10) to (2.14). We obtain

eo = do + d, — 10eg = (10 + ¢o — 1) + (cx — ¢o) — 10eg = 10 — 10gy,
which implies g = 1 and eg = 0. Then
ey =di+d_1+1—10e;y = (94c1 —cp_1) + (g1 —c1) +1—10e; = 10— 10gy,
which implies 1 = 1 and e; = 0. In general, we replace j by k — j in (2.13)
togetdj =9+c; —cp_jfor1 <j<mjandife;;=1land2<j<m—1,

then

ej = dj+dk—j+1_105j = (9+Cj_Ck—j)+(0k—j_cj)+1_105j = 10_105]"
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which implies €; = 1 and e; = 0. Applying this observation for j =2, 3, ..,
m — 1, respectively, we obtain

gg =169 = 0’53 = 1a€3 = 07"'a€m—1 =1lem1= 0.
Then

em = Ay + dj—yn +1 — 10e,,
=9+ cm — Ch—m) +(Chirmn —Cm— 1)+ 1 —10e, = 9 — 10¢e,,,

which implies €, = 0 and e,, = 9. Then €, 1 = dpni1 + dg—m—1 — 10,41 =
949 — 10,11, which implies €,,.1 = 1 and e,,1 = 8. In general, we replace
J by k—jin (2.12) to obtaind; = 9for m+1 < j < k—m —1; and if
gjioi=land m+2<j<k—m-—1, then

GJ:d]+dk_]+€]_1—]_0€]:9+9+1—10€]:19—10€J,

which implies ¢; = 1 and e; = 9. Applying this observation for j = m + 2,

m—+3, ..., k—m — 1, respectively, we-obtain
Em42 = 17 €mt2 = 97€m+3 ~ ]'7 €m43 = 97 vy Ek—m—1 = ]-7 €k—m—-1 = 9.
Then

€k—m = dkfm + dm +1—10g_p,
= (Chemn — Cm = 1) + (94 o =)+ 1= 1064, =9 — 10k _pn,

which implies ¢;,_,, = 0 and e;_;;, = 9. Then

Ch—mt1 = Ag—my1 + 1 — 106 _m41
= (Ck—m+1 - Cm—l) + (9 + Cm—1 — Ck—m+1) - ]-OEk—m-i-l

= 9 — 10651,

which implies €;_,,11 = 0 and e;_,,11 = 9. In general, we replace j by k —J
in (2.13) to obtain d; =9+ c¢; — ¢;—; for 1 < j < m; and if g4_;_; = 0 and
1 < j < m, then

€k—j = dk—j +d] - 10€k—j = (Ck—j — Cj) + <9+Cj — Ck—j) — 105k—j =9— 105k—j7

which implies €,_; = 0 and e,_; = 9. Applying this observation for j = m—2,
m — 3, ..., 1, respectively, we obtain

Ek-m+2 = 0,€k—mi2 =9,k-mi3=0,€—m13=9,...,6-1 = 0,1 =9.
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Then
er, = dy, + dy — 10ey, = (¢, — ¢o) + (10 + ¢g — ) — 10ey, = 10 — 10gy,,

which implies e, = 1 and e, = 0. Then e;,; = 1. To conclude, we obtain
e =0for0<j<m e, =9 ¢en1=8¢=9form+2<j5< k-1,
er = 0, and e = 1. This completes the proof. O
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