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Chapter 1

Introduction

In this chapter, we introduce some definitions and notations used in this
thesis. Most of them follows that of Bondy and Murty ([3]).

A graph is a triple G = (V(G), E(G),wg), where V(G) is a finite set of
vertices, E(G) is a set of edges and an incidence function we that associates
with each edge of G and an unordered pair of vertices of G. If e is an edge and
x and y are vertices such/'that wg(e) = {z,y}, then e is said to be incident to x
and y. Further, the vertices & and y are called end vertices of e and we say that
x and y are adjacent. Theorder of G is the cardinality of V/(G). Two or more
edges that join the same pair of vertices-are called parallel edges. An edge that
joins itself is a loop. A graph G'is-simple if G has no loops and parallel edges.
If G is simple and wg(e) =4{%,y}, then-we simply denote e by zy.

A complete graphis a simple graph in-which every pair of vertices are
adjacent. A complete graph of order n-is-denoted by K,,.  The complement G
of a graph G is that graph with V(@) = V(G) and xy-€ BE(G) if and only if
xy ¢ E(G). A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G).
H is called an induced. subgraph of .G, denoted by G[H], if, for every pair of
z,y € V(H)ywy € E(H)-if and ounly if zy-€ F(G): For graphs-H and G, G
is called H-free if G does not contain H as an induced subgraph. A subset of
vertices S C V (G)is called a-clique if G[S| =K, for some r. A bipartite graph
is a graph whose vertices can be divided into two disjoint.sets X and Y such that
every edge connects a vertex.in X to-a vertex in-Y.

The neighbor set of a vertex v in G, denoted by Ng(v), is defined by
{u e V(G)|luw € E(G)}. ForveV(G) and T C V(G), a neighbor set of a vertex
v in T is denoted by Np(v) = {u € T|uww € E(G)} and if X C V(G), Ng(X)
denotes | J,cx Na(v). Observe that Np(v) = Ng(v) NT. The degree of a vertex
win G is denoted by degg(u) = |[Ng(u)|. The minimum degree and maximum
degree in a graph G is denoted by 0(G) and A(G), respectively. A regular
graph is a graph which each vertex has the same degree and a k-regular graph
is a regular graph with degree of a vertex is k.

A walk in a graph G is a finite, non-empty alternating sequence W =
Vvpe1vyes...e,v, of vertices and edges such that for 1 < i < n, the ends of edge e;
are v;_; and v;. W is said to be a walk from v, to v,. A path is a walk with
distinct vertices. Two vertices x and y of GG are connected if there is a path from



x to y. The distance between two vertices z,y in G, denoted by dg(z,y), is
the length of a shortest xy-path in G. A graph G is connected if every pair of
vertices of GG are connected otherwise G is disconnected. A maximal connected
subgraph of GG is called a component of G. A graph G is called k-connected
if removing less than k vertices from G, the resulting graph is connected. An
odd(even) component is a component of odd (even) order. The number of odd
components of G is denoted by ¢,(G).

A set S C V(G) is called an independent vertex set if no two vertices of
S are adjacent. The maximum cardinality of an independent set of G is denoted
by a(G). A subset M of E(G) is called a matching if no two edges of M have
common end vertex. A vertex u is saturated by M if there is an edge in M
incident with u. For simplicity, a set of all vertices saturated by M is denoted by
V(M). M is called a maximum matching in G if G contains no matching of
size greater than |M|. A perfect matching in G is a matching that saturates
all vertices of G. If M; and M, are matching in a graph G, then a symmetric
different of M; and My, denoted by MyAMs,, is an induced subgraph G[(M; —
MQ) U <M2 — Ml)]

A set § C V(@) is-a-dominating set of G, if Ng(S)U S = V(G) and
is a total dominating set if No(S) = V(G): The domination number of
G, denoted by v(G), (respectively, total domination number of G, denoted
by 7:(G)) is the number of wvertices in a smallest dominating set (respectively,
total dominating set) of G.“A set S C V(@) is an independent dominating
set of G, if S is a dominating set and S is independent. The independent
domination number of G, denoted by ~;(G), is the number of vertices in a
smallest independent ‘dominating set of G. ‘A set .S C V(@) is a connected
dominating set of G, if S is a.dominating set and the induced subgraph G[5]
is connected. The comnected domination number of G, denoted by v.(G),
is the number of vertices'in- a smallest connected dominating set of G. A set
D C V(G) is a locating-dominating. set-of G if for every u € V(G) — D,
its neighorhood Ng(u) N D-is' non-empty and distinet from Ng(v) N D for all
v € V(G) — D where v #u.-The'locating-domination number of G, denoted
by v.(G), is the number-of vertices in a smallest locating-dominating set of G. A
set D C V(G) is a double dominating set if D-dominates every vertex of G
twice or | Ng(u) N D> 2 for all u € V(G). The double domination number of
G, denoted by vx2(G), is-the number of vertices in a smallest double dominating
set of G. A set S C V(G) is arestrained dominating set of G, if for every
vertex v € V(G) — S, v is adjacent to a vertex in .S and to a vertex in V(G) — S.
The restrained domination number of G, denoted by 7,(G), is the number of
vertices in a smallest restrained dominating set of G.

For a positive integer k, a connected graph G of order at least 2k + 2 is
k-extendable if for every matching M of size k in G, there is a perfect matching
in G containing all edges of M. A graph G is k-factor-critical if, for every set
S C V(G) with |S| = k, the graph G — S contains a perfect matching. For k =1
and k£ = 2, k-factor-critical graph is also called factor-critical and bicritical,
respectively. For simplicity, a graph with a perfect matching is called 0-extendable



and 0-factor-critical. Observe that if G is k-extendable, then |V(G)| is even and
if G is k-factor-critical, then |V (G)| = k (mod 2).

For graphs H; and H, with disjoint vertex sets V7 and V5, the join of H;
and H,, denoted by H; + H, is the graph with vertex set V; U V5 and edge set
E(H,) U E(Hy) U {uv|lu € V; and v € Va}. The cartesian product G x H of
two graphs G and H has the vertex set V(G) x V(H) and two vertices (uy,v;)
and (ug,vy) are adjacent whenever ujuy € F(G) and vy = vq, or u; = uy and
vive € E(H). The lexicographic product G o H of two graphs G and H has
the vertex set V(G) x V(H) and two vertices (uq,v;) and (ug,v9) are adjacent
either ujuy € E(G), or u; = ug and vyvy € E(H).

The complementary prism of G, denoted by GG, is the graph obtained
by taking a copy of G' and a copy of G and then joining corresponding vertices
by an edge. The graph CsCj in Figture 1.1:is a complementary prism of Cs. Note
that C5C' is isomorphic to the Petersen graph.

Figure 1.1: C5C5

In this thesis, all graphs are simple and finite. Chapter 2 provides some
basic background and preliminaries results on extendability and factor-criticality
of graphs that we make use of in, establishing our results: In Chapter 3, we
establish a sufficient condition for the complementary prism of regular graphs to
be 2-extendable. Chapter 4 provides some constructions of a graph G such that
G and G are [;-extendable and ly-extendable non-bipartite, respectively, where 4
and [, are positive integers. We-then establish-that if G and G are [ -extendable
and [o-extendable non-bipartite graphs, respectively for [y > 2 and [, > 2, then
GG is (I + 1)-extendable where [ = min{ly, Iy}



Chapter 2

Literature Review

In this chapter, we provide some background and preliminaries related to
our work. In 1980, Plummer [16] introduced the concept of matching extension
and established a fundamental theorem on k-extendable graphs (see Theorem 2.2).
Since then it has been well studied, see surveys by Plummer [18, 19, 20] and a
book by Yu and Liu [26].-One-of main topics in studying matching extension is to
establish some sufficient conditions for a graph to be k-extendable. These condi-
tions include degree sum[15], minimum degree [16], forbidden subgraph [17], genus
of graph [21], etc. Moreover there are some results concerning the extendability
of a graph obtained from a product of two graphs such-as cartesian product [10],
lexicographic produgt [2] ‘and strong product [9]. A reader is directed to references
in Bibliography([18]; [19],.[20]-and [26]) for more detailed: We shall provide only
some results that used of in our work.

Our first result is a well known theorem for studying an existence of a
perfect matching in graphs. established by-Tutte.

Theorem 2.1. [3] (Tutte’s-Theorem)-A-graph -G has a perfect matching if and
only if for any S C V(G), ¢,(G —8)<]S]. ]

In 1980, Plummer [16] established a-fundamental theorem on k-extendable
graphs as following.

Theorem 2.2. [16] Let G be a graph-of-order p > 2k + 2 and k > 1. If G is
k-extendable, then

(a) G is (k — 1)-extendable, and

(b) G is (k+ 1)-connected. O

He also gave a sufficient condition for a graph to be k-extendable in terms
of minimum degree.

Theorem 2.3. [16] Let G be a graph of order 2p. If §(G) > p + k, for a non-
negative integer k, then G is k-extendable. O]

Ananchuen and Caccetta [1] gave a necessary condition for a neighbor set
of a vertex having minimum degree in extendable graphs. They showed that:



Theorem 2.4. [1] If G is a k-extendable graph on p > 2k + 2 wvertices with
0(G) =k+t, 1 <t <k <p Ifdglu) = §G), then the induced subgraph
G[Ng(u)| has at most t — 1 independent edges. O

A neccessary and sufficient condition for a graph to be k-extendable and
to be k-factor-critical were provided by Yu [24] and Favaron [7], respectively.

Theorem 2.5. [24] A graph G is k-extendable (k > 1) if and only if for any
S CV(G),

(a) co(G—S) <|S| and

(b) co(G—S) =1|S|—2t,(0 <t < k—1) implies that F'(S) < t, where F(S)

is the size of a mazimum matching in G[S]. O

Theorem 2.6. [7] A graph/G is k-factor-critical if and only if |V (G)| =k (mod
2) and for S C V(G) with |S| > k, c,(G—=29) < |S|—k. O

Some following properties of k-factor-critical graphs were proved in [7].

Theorem 2.7. [7] Let G be a k-factor-critical graph.- Then G is (k — 2)-factor-
critical. O

Theorem 2.8. [7] If G'is a 2k-extendable non-bipartite graph for 2k > 2, then G
1s a 2k-factor-critical graph. O

Maschlanka and Volkmann [14] gave a relationship between k-extendable
non-bipartite graph and the independence number.

Theorem 2.9. [14] Let G be a k-extendable non-bipartite graph of order p. Then
a(G) < 3p— k. O

In Phd. Thesis of Yu:[25], he gave the following observation.

Observation 2.10. A graph G is-k-extendable if and only if for any matching M
of sizei (1 <i< k)y G—V(M) isa (k — i)-extendable-graph. O

An observation onk-factoer-critical graphs which is similar to Observation
2.10 can be stated as following.

Observation 2.11. Let G be a k-factor-critical graph and S C V(G) where |S| <
k. Then G — S is (k — |S|)-factor-critical. O

A following lemma follows from Theorem 2.9.

Lemma 2.12. Let G be a k-extendable non-bipartite graph and S C V(G) where
|S| <2k —2. Then G — S is a non-bipartite graph.

Proof. Suppose to the contrary that G — S is a bipartite graph. Then a(G) >
a(G—=V(9)) > H(|V(G)] — (2k — 2)) = 3|V(G)| — k + 1. But this contradicts
Theorem 2.9 and completes the proof of our lemma. O

Our next corollary follows immediately by Observation 2.10 and Lemma
2.12



Corollary 2.13. Let G be a k-extendable non-bipartite graph and let M C E(QG)
where |M| =1<k—1. Then G — V(M) is (k — l)-extendable non-bipartite. [

Note that the upper bound on |M| in Corollary 2.13 is best possible. Let
G = Ko, + K, for some positive integers k,t > 2. It is easy to see that G is k-
extendable. Clearly, there is a matching M of size k in G[Ks] such that G—V (M)
is a bipartite graph.

The following results concern the extendability of graphs obtained from a
cartesian product, established by Gyori and Plummer [10], Liu and Yu [13] and
Wu et al. [23] and lexicographic product established by Bai et al. [2].

Theorem 2.14. [10, 13] If G is a k-extendable graph, then G x Ky is (k + 1)-
extendable. O

Theorem 2.15. [13] If G'is a k-extendable. graph and H is a connected graph,
then G x H is (k + 1)-extendable. O

Theorem 2.16. [10] For non-negative integers ly and ls, let G; be a l; -extendable
graph for 1 <i < 2. Then Gy x-Gs is (I3 + lo +1)-extendable. O

Theorem 2.17. [23] Let Gy-be an m~factor-critical graph and Gy an n-factor-
critical graph. Then Gy x Gy is (m + n+ €)-factor-critical, when € = 0, if both m
and n are even; € = 1, otherwise. O

Theorem 2.18. [2] Fornon-negative integers Iy andls, let-G; be a l; -extendable
graph for 1 < i < 2. Then G10Gy 1s-2(1y + 1)(l3 + 1) -factor-critical. In particular,
G10 Gy is (I + 1)(lo + 1)-eatendable. O

We now turn-our attention to complementary prism of graphs. A comple-
mentary prism.is-a specific case of complementary product of graphs.introduced by
Haynes et al.[5] in 2007. Haynes-ct al. [5, 6] studied some parameters of comple-
mentary prism of graphs such as.the vertex.independence number, the chromatic
number and the domination number.” Some of them- are stated in the following
theorems.

Theorem 2.19. [6] For any graph G, a(G)+ (@) —1< a(GG) < a(G) +a(G),
and both these bounds are sharp. O
Theorem 2.20. [6] For any graph G, maz{v(G),v(G)} < v(GG) < ~(G) +
v(G). O

The bound on various domination number of complementary prism of
graphs have been studied in Desormeaux [4], Haynes et al. [6], Holmes [11],
Gongara, Desormeaux [8] and Vaughan [22]. These results are stated in the next
six theorems.

Theorem 2.21. [4] For any graph G, maz{y(G),7(G)} < 7.(GG) < ~,.(G) +

v (G) and these bounds are sharp.

Theorem 2.22. [6] IfG and G have no isolated vertices, then max{v,(G),v(G)} <
N(GG) < n(G) +%(G). U



Theorem 2.23. 8] For any graph G, maz{v;(G),7(G)} < %(GG) <2(n—1)—
maz{A(G), A(G)}. O

Theorem 2.24. [11] For any graph G, maxz{y.(G),7.(G)} < vL(GG) < y.(G)+

Theorem 2.25. [11] For any graph G, maz{v(G),7(G)} < 7.(GG) < 7.(G) +

7.(G) + 1. O

Theorem 2.26. [22] For any graph G with no isolated vertices, maz{vyx2(G),
Vx2(G)} < Yx2(GG) < 752(G) + 7x2(G). o

We now conclude this chapter by pointing out that matching extension in
complementary prism of graphs has been studied recently. The only known results
are the last two theorems established by Janseana et al. [12], in 2014.

Theorem 2.27. [12] For jpositive integers | and i where 1 <i <1, let Gy,...,G
be components of G. If G;G; 1s k-extendable of orderp; > 2k+2 for some positive
integer k, then GG 1s k-extendable. O]

Theorem 2.28. [12] Let G be a 2-regular H-free graph-where H € {Cs, Cy, Cs},
then GG is 2-extendable. [l



Chapter 3

Matching extension in complementary

prism of regular graphs

We begin this chapter by establishing some lemmas concerning comple-
mentary prism of graphs and of regular graphs. These results are essential for
establishing Theorem 3.10, a main result of this chapter. To simplify our dis-
cussion of complementary prisms, -G-and G ‘are referred to subgraph copies of
G and G, respectively, in GG, For a vertex v_of G, there is exactly one ver-
tex of G which is adjacentto v in-GG- This vertex is -denoted by v. That is,
{v} = Ngyg(v) N V(G). Conversely, v is the only vertex of G which is adjacent
to ©. Similarly, for ¢ # X ={z);@9;.. 7} SV(G), {#1,%2,...,71} C V(G) is
denoted by X and vice versa. Clearly, | X| = |X].

Lemma 3.1. Let G be-a graph. - Then GG.is even and connected.

Proof. Clearly, GG is-even.-Let w,v € V(GG).-It is easy, to see that if u,v €
V(G)(V(Q)), then either uv-€ B(G) or utivvis a u—ov path. We may now assume
that u € V(G) andw-€ V(G). Clearly, uwv € E(GG) ifw.=. So suppose that
v = w for some w€ V(G) —Au}. Then either uaw or www is.a v — v path. This

proves that GG is connected-and completes-the-proof of our lemma. O]

For a graph G, it is-easy to see that GG has-a perfect matching. It then
follows by Theorem. 2.1 that for a cutset-S-CV(GG); co(GG —S) < |S|. The next
lemma provides a relationship of a cutset and the number of odd components in
a complementary prism.

Lemma 3.2. Let G be a graph and let S = AU B be a cutset of GG, where
ACV(G) and B CV(G). Then

a) co(GG — S) = |S| — 2t = |A| + |B| — 2t, for some t > 0.

) (GG — S) < co(G[B — A)) + c,(G[A ~ B)) < |A] +|B| — 2/4 1 B|.
Consequently, |AN B| < t.

c) If co(G[B—A)])+c,(G[A—B]) = |A|+|B|—2|ANB|, then each component
of G|B — A|UG|A — B] is singleton. Consequently, A — B is a clique.

Proof. a) Since GG contains a perfect matching and is of even order, it follows by
Theorem 2.1 that there is a non-negative integer ¢ such that ¢,(GG —S) = |S|—2t,

8



for any cutset S C V(GG). Clearly, |S| = |A|+|B|. Thus ¢(GG - S) = |S| -2t =
|A| + | B| — 2t as required.

We first observe that |B — A| +|A— B| = |B— A|+|A— B| = |A| + |B| —
2|AN B| since |[A| =|A—B|+|ANB|and |B| =|B—-A|+|[ANB|.

b) Let C = V(G) — (AU B). It is easy to see that if C' = ¢, then ¢,(GG —
S) = ¢o(G[B—A)) +¢o(G[A—B]) < |B—A|+|A— B| = |A| +|B| - 2|AN B|. We
now suppose that C' # ¢. Then, by Lemma 3.1, GG[C' UC] is even and connected.
Thus ¢,(GG — S) < ¢,(GG — (SUC UCQ)) = ¢,(G[B — A]) + ¢,(G[A — B]) <
|B — Al + |A — B| = |A| + |B|] — 2|A N B as required.

c) follows by the fact that |B — A|+ |A— B| = |A|+|B| - 2|ANB|. O

For an induced subgraph H of &G, C'ompg denotes the set of all components
in H. If X C V(G), then we use Comx for Comgx). For a cutset S of GG, put
A=SNV(G), B=SNV(G) and ¢ =V (G) ~(AUB). Thus S = AU B.
Further, let Tp_4 = {F|F is-an odd eomponent of G[B — A] and Ng(u) —V (F) C
Afor all w € V(F)}. T3 = {F|F-is an-odd component of G[A — B] and
Ng(w)—V(F) C Bfor all i € V(F)}. Finally, let L = LgWlLg, where Lg = {F|F
is an odd component in G[B.— A]-and N z(V(F)) A C % ¢} and Ly = {F|F
is an odd component in G[A — B] and N,z(VAF))NC # ¢}. Note that if
C = ¢, then L = ¢. Clearly, Tg_4 N Lg = ¢ and Ty 5N Lz = ¢. It is easy
to see that, if G is connected and G[B — A]-contains only odd components, then
Comp_4 = Tp_4ULg. Similarly, if G'is connected and G[A— B] contains only odd
components, then Com5 -5 = T5-5U Lg. In what follows, the symbols Comy,
S, A, B, C, Tp_ 4 Tx. 5+ Ls L and Lz arereferred-to these set up.

The next lemma, follows from our set up-

Lemma 3.3. Let. G be an-r=regular connected graph of.order p->2r+ 1 and GG
a complementary prism. If|A| <, then Tg_ 4 contains no singleton components.
Similarly, if |Bl <p —= — L, then T4 5 contains no singleton components. O]

Lemma 3.4. Forr > 3, let G be-a_connected r-reqular graph of order p > 2r + 1.
Let A, B, Tp_a,T5 5 be defined as above: Then

a) If G[A] = K., then_each component of Tp_a"is of order at least 3.

b) If |JAN B| = 1 and G[A =B} = K,, then the number of singleton
components in Tg_ is at most 1.

¢) If [ ANB| =1 and G[A — B] = K,_1, then the number of singleton
components in T's_ 1S at most 2.

Proof. a) It follows by the fact that G is connected r-regular of order p > 2r + 1.
b) Suppose to the contrary that T_4 contains two singleton components,
say Fy and F, where V(F) = {1} and V(F2) = {y2}. Because |[ANB| =1,
and yo are adjacent to at least r — 1 vertices of A — B. Since G[A — B] = K,
and r > 3, it follows that there exists a vertex of A — B, say ys3, such that
{y1,92} U (A — B) C Ng(y3). Thus dg(ys) > r + 1, a contradiction
¢) By applying similar arguments as in the proof of (b), (¢) follows. O
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Let a be a real number, |a]. is denoted a greatest even integer less than or
equal to a, that is, |a]. = 2|a/2]. Note that if a is an integer and |a|. = k then
a=kora=k+1.

Lemma 3.5. Let G be a graph and L = Lg U Lz be defined as above. Then

co(GG — 8) = ¢o(G[B — A]) +¢o(G[A— B]) — | |L||.. Consequently c,(G[B — A])+

co(GIA—B]) = co(GG—S) < |L| < co(G[B — A]) + ¢o(G[A—B]) — co(GG — §) +1.

Proof. If C' = ¢, then |L| = 0 and thus ¢,(GG — S) = ¢,(G[B — A]) +¢,(G[A— B))
as required. We now suppose that C' # ¢. By Lemmas 3.2(a) and (b), ¢,(GG —
S) < ¢,(G[B — A]) + ¢o(G[A — B]). By Lemma 3.1, GG[C U C] is even and
connected. So it must be contained in some component of GG — S, say F. If
x € V(F) — (CUQCQ), then z is in some component of G[B — A] U G[A — B,
say M. So V(M) C V(F).,If M is odd; then M € L. Note that each odd
component of L is a subgraph of F.-Hence, |V (F')| has the same parity with |L|
and ¢,(GG — S) = ¢,(G[B = AJUG[A — B]) — |L| 4+, where ¢ = 1 if |L| is odd
and € = 0 if | L] is even. S0 c;(GG =5) = ¢o(G[B ~ A]UG[A—~B]) — | |L|].. Thus
LIL|]e = co(G[B — AJUG[A~ B])~ ¢,(GG — S). By properties of |z, our result
follows. This proves our lemma. O

Lemma 3.6. If G is an r-reqular graph of order p> 2r + 1, then G is connected.

Proof. Note that G is (p=7 — 1)-tegular'graph of order p. Suppose G is discon-
nected. Then each compenent must have order at least p—r--So p > 2(p—r) and
thus p < 2r; a contradiction. This proves our lemma. O]

Lemma 3.7. Let G be a connected r-reqular graph of order p>72r + 1. Let S be
a cutset of GG. Then SAV(G) # ¢ and SOV (G) # ¢.

Proof. By Lemma 3.6, G is connected. Hence, G and G are connected. Suppose
without loss of generality that SOV (G) = ¢.-So S C.V(G). Since G = GG—V(G)
is connected and each vertex @ of V(@)= S-is adjacent toa vertex win G, it follows
that GG — S is connected, a contradiction. Hence, S 0 V(G)# ¢. By similar

arguments, S NV (G).# ¢. This proves our lemma. ]

Theorem 3.8. Let G be a connected r-reqular graph of order p > 2r+1, for some
r > 2. Then GG 1is bicritical. Consequently, GG is 1-extendable.

Proof. Suppose GG is not bicritical. By Theorem 2.6, there is a cutset S C
V(GG), where |S| > 2 such that ¢,(GG — S) > |S| — 2. It follows by Lemmas
3.2(a) that c,(GG —S) = |S| for |S| > 2. Note that, by Lemma 3.7, A = SNV (G)
and B = SN V(G) are not empty. Thus A and B are not empty. By Lemma 3.2
(b), AN B = ¢ and thus ¢,(G[B — A)]) + ¢,(G[A — B]) = ¢,(G[B]) + ¢,(G[A])) =
co(GG — S) = |S| = |B| + |A|. By Lemma 3.2(c), each component of G[B] and
G[A] is singleton. Hence, G[A] = K|4. Since G is r-regular of order p > 2r + 1,
|A| < r+1. If |A| = r + 1, then G[A] = K, is a disconnected component in
G, a contradiction. So 1 < |A| < r. By Lemmas 3.3 and 3.4(a), no singleton
component in G[B] belongs to Ts_ 4. Since each component of G[B] is singleton,

Tp_a = ¢. Because c,(GG — S) = c,(G[A]) + ¢o(G[B]), it follows by Lemma 3.5
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that 0 < |L| < 1. Since B # ¢ and G[B] contains only singleton components, it
follows that 1 < |B| = |Tp-a| + |Lg| < 1. Hence, |B| = |Lg| = 1. Therefore,
|B|=1<r <p—r—1. By Lemma 3.3, T;_3 contains no singleton components.
Hence, T 5 = ¢. Since each component of G[A] is singleton, it is contained in
Lg. So |Lg| = |A| = |A| > 1. Therefore, |L| = |Lg| + |Lg| > 2, a contradiction.
Hence, GG is bicritical. It then follows that GG is 1-extendable. This proves our
theorem. O

The next lemma follows by Theorem 2.4.

Lemma 3.9. Let G be a connected r-regular graph of order p > 2r + 1, for some
r > 2. If G contains a triangle, then GG is not r-extendable. ]

By Lemma 3.9, if G is a 3-regular graph of order p > 8 containing a triangle,
then GG is not 3-extendable. The next theorem provides a sufficient condition for
a connected r-regular graph-G which GG is 2-extendable, for r > 4.

Figure 3.1: the graph F

In case r = 3, a graph G in Figure 3.2 contains the graph F' in Figure
3.1 as an induced subgraph. It is-easy to seethat GG is not 2-extendable since
{yz, 7w} cannot be extended to a perfect matching in GG. We next show that
the complementary prism of connected 3-regular F-free graphs and connected 7-
regular graphs for r > 4 are 2-extendable.

Figure 3.2: a 3-regular graph G which GG is not 2-extendable
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Theorem 3.10. Suppose G is a connected graph of order p. If G is either 3-
regular F-free where p > 8 and F is the graph in Figure 3.1 or ro-reqular where
p>2rg+12>9, then GG is 2-extendable.

Proof. Observe that G is (p — r — 1)-regular where r € {3,7} and p —r — 1 > 4.
By Theorem 3.8, GG is bicritical. Suppose to the contrary that GG is not 2-
extendable. Then there is a matching M C E(GG) of size two such that GG —
V(M) contains no perfect matching. By Theorem 2.1, there is a cutset T' C
V(GG) — V(M) such that c,(GG — (V(M)UT)) > |T|. Let S =T UV(M).
Clearly, |S| > 4. Thus ¢,(GG — S) > |S| — 4. Because GG is bicritical, by
Theorem 2.6, c,(GG —S) < |S| —2. It follows by parity that c,(GG —S) = |S|—2
and GG[S] contains a matching of size at least two. Let A = SN V(G) and
B =5SNnV(G). By Lemma 3.2 (b),/|AnB| < 1. Further, by Lemma 3.7, A # ¢
and B # ¢. So A # ¢ and B # ¢./We distinguish 2 cases according to |A N B|.

Case 1: |[ANB| = 1. Put {u} = AN B, By Lemma 3.2(b) ¢,(GG — 5) =
co(G[B — A]) + ¢,(G[A —'B]) =S| = 2. By Lemma 3.5, |L| < 1. Further, by
Lemma 3.2(c), each component of G[A~ BJUG[B — A}is singleton. Thus, A— B is
a clique, |Com+_5| = |A= Bl-and |Comp_ 4| = |B —A]. Since G is connected, it
is easy to see that if |A— B},>r + 1, then G[A — B} = K|4_ p| contains a vertex of
degree greater than r or'G = K4 is a graph of order less than p, a contradiction.
Hence, |[A— B| <.

We first show that |Tg_ 4> 2. Suppose to the contrary that |T5_4| < 1.
Since G[B — A] contains enly singleton components and |Lg| < |L| < 1, it follows
that |B — A| = |Comp_al-=Tp_il+ |Lal’< 2oThus |Bl.= |B| = |B — A| +
IBNAl <3 <4 <p—=r—1-By Lemma 3.3, 7% 5 contains no singleton
components. Thus T3 5 = ¢." Consequently, Comz 5 = T3 5 U Lz = Lg.
Therefore, |A — B| =Lz < 1 since G[A = B] contains onlysinigleton components.
So |A| = |A] = |A— B| + AN B| <2 <7 By Lemma 3.3, Ts_4 contains no
singleton components. S0 Tz_4 = ¢. Since Ty 5 = ¢and Tp_y = ¢, it follows
that every odd component of G[Al~ B] U.G[B~= A].is in L. Because |L| < 1
and G[A — B] UG[B — A] contains only singleton components, it follows that
|A— B| +|B — A| <1. Hence, |S| = |A~ B|+|ANB|+|ANB|+|B-A4] =
|A— B|+2|ANB|+|B—A]'< 3 < 4, contradicting the fact that |S| > 4. Therefore,
Tp-al > 2.

Let D1, Dy € Tp_4. Since G[B — A] contains only singleton components,
D; = Ky, for1 <i<2. Put{v;} =V(D;). By Lemma 3.3, |A| > r. Consequently,
|A—B| >r—1. Because |[A—B| <r,r—1<|A—-B| <r. Since A—Bisa
clique, |[AN B| =1 and |Tg_a| > 2, it follows by Lemmas 3.4 (b) and (c) that
|A— B| =r —1and [Tg_4| = 2. Thus |A| = |A — B| + |AN B| = r. Because
r—1= |A—B| = ‘Z—§| = |COTTL2_§| = ’TZ—§‘+|L5’ S |Tz_§|+1, it follows that
|75 _5| > r—2> 1. Thus T;_5 contains a singleton component. By Lemma 3.3,
|B| > p—r—1> 4. Therefore, |B—A| = |B|—|BNA| > p—r—2 > 3. On the other
hand, |[B—A| = |Comp_a| = |Tp_al+|Lg| < 3. Then |B—A| = |[B—A| = 3. Thus
3=|Tp_a|+ |Lc| = 2+ |Lg|. It follows that L = Lg = {K1} and consequently
Lz = ¢. Since |A| = r, deggvy = deggvs = r and Ng(vi) = Ng(ve) C A, it follows
that Ng(v1) = NG'(UQ) = A.



We now put {w} = V(K;) where K; € T4 5. Clearly, Ng(w) C B —
{v,,0,} since v; and v, are adjacent to every vertex in A. Because |B| =
Al+|ANB| =3+1=4, |Ng(w)| < |B| - |{v1,02}| = 2 thus G is t-regular where
t < 2. This contradicts the fact that G is (p —r — 1)-regular where p —r —1 > 4.
Therefore, Case 1 cannot occur.

Case 2: |AN B| =0. By Lemmas 3.2(a) and (b), |S| —2 = ¢,(GG — S) <
co(G[A]) + ¢o(G[B]) < [A| +|B| = |S|. By parity, co(G[A]) + ¢o(G[B]) = |S] or
co(G[A]) + co(G[B]) = |S| — 2. We distinguish 2 cases.

Case 2.1 : ¢,(G[A]) +c,(G[B]) = |S| = |A|+|B|. Clearly, each component
of G[A] U G[B] is singleton. So G[A] 2 K 4. It is easy to see that if |4 > r + 1,
then G[A] contains a vertex of degree/greater than r or G[A] is a disconnected
component in G, a contradiction. Hence, |A| < r. By Lemmas 3.3 and 3.4(a),
Tp_ 4 contains no singleton components. Therefore, Tp_4 = ¢. Thus |Lg| = |B].

Because ¢,(G[B]) + ¢,(G[A]) = c,(GG—=8) = |S| = (|S| — 2) = 2, by Lemma 3.5,
2 < |L| £ 3. Since B # ¢-and |B} = |Lg| < |L|, it follows that 1 < |B| < 3.
Because |B| = |B] < 3/<.4 < p—7r="1,by Lemma 3.3, T 5 contains no
singleton components. Thus T4 5 = ¢. Hence, | L] = |A| = |A|. Therefore,
|L| = |Lg| + |Lg| = |B+{4| = |S) and thus 2 < S| < 3 since 2 < |L] < 3,
contradicting the fact that [S| > 4. Hence, Cas¢ 2.1 cannot occur.

Case 2.2 : ¢,(G[A])+¢,(G[B]) =|S| -2 =/|A| +|B| -2. Put s = |S|. Itis
easy to see that G[A] UG[B] contains all singleton components except exactly one
non-singleton component, which is-of order 2 or 3. Henee, G[AJUG|[B] is isomorphic
to a graph in {(s — 2)K U Kgi (s ~3) Ky UPs, (s — 3)K, UKs}). If |A] > r+2>5,
then G[A] must contain a singleton-componént, say [, where V(F) = {u}. It
follows that deggu > 7 + 1, a contradiction.. Hence, |A| = |A| < r + 1. Since
co(G[A]) + co(G[B]) = co(GG— S) =(|S| =2) —(|S]~ 2) =0, by Lemma 3.5,
|L| < 1. Wedistinguish 2 subcases according-to-the non-singleton-ecomponent.

Subcase 2.2.1 :_The only non-singleton component in G[A] U G[B] is
contained in G[B]s So-G[A}< |A|K, and GJA] = Kz & K- Clearly, [A| <7
otherwise G[A]\is a disconnected component in G. By Lemmas 3.3 and 3.4(a),
Tp_ 4 contains no singleton components.—Se every_singleton component in G[B]
is contained in Lg. Since |Lg| < 1L|*< 1, G[B] contains at most 1 singleton
component. We first show that. 7'y 5 ="¢. Suppese this is not the case. Then
there is K; € T4 5 since G[A] contains only singleton components. By Lemma
3.3, |B| = |B| > p—r—1> 4. Because G[B] contains a non-singleton component
of order either 2 or 3 and at most 1 singleton component, it follows that G[B] is
isomorphic to a graph in { K1UP;, K;UK3}. Thus |B| = 4 and either Tp_4 = {Ps}
or TB—A = {Kg}, and LG’ = {Kl} Thus La = Qb So Comz = TZ—EULé = Tz_g.
Therefore, each vertex of A is adjacent to every vertex of B since G is (p —r — 1)-
regular and p—r —1 > 4. It follows that there is no edge joining vertices of A and
B. But this contradicts the fact that Ts_4 # ¢. Hence, T;_5 = ¢ as required.

Therefore, Coms = Lg. Since |Lg| < |L| <1 and |A| = |A| # 0, it follows
that |Com| = |Lg| = 1. Further, Lg = ¢ and G[A] = K,. Thus Comp = Tg_a.
Because |A| = |[A| = 1 < r < 3, by Lemma 3.3, Tz_4 contains no singleton
components. So G[B] contains no singleton components and G[B] is isomorphic to
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a graph in {Ps, K3} since | B| = |S|—|A| > 3. Then GG[S] = G|A]UG|B] contains
a matching of size less than two, contradicting the fact that GGI[S] contains a
matching of size at least two. Hence, Subcase 2.2.1 cannot occur.

Subcase 2.2.2 : The only non-singleton component in G[A] U G[B] is
contained in G[A]. So G[B] = |B|K,. We first show that Ts_4 # ¢. Suppose
this is not the case. Then Tg_4 = ¢ and thus Comp = Ts_4 U Lg = L¢g. Since
B # ¢ and |Lg| + |Lg| = |L| < 1, it follows that |Lg| = 1 and |Lg| = 0.
Consequently, |B| = 1 since G[B] = |B|K;. Because |B| = |B| =1 <, T4 3
contains no singleton components by Lemma 3.3. Hence, G[A] contains exactly
one non-singleton component of order 2 or 3. Thus |A| = |A| < 3. It is easy
to see that GG[S] = G[A] U G[B] contains a matching of size at most one since
|B| = 1. This contradicts the fact that GG[S] contains a matching of size at least
two. Hence, Tp_4 # ¢. Further, [Tz 4| >"|B| — 1 since |Lg| < |L] < 1 and
Tp-al + |Lc| = |B].

Because G[B] = |B|K}, thereexists Ki € Tp_4. By Lemma 3.3, |[A] > r.
Sor < |A] < r+ 1. We first suppose that {A| = r+ 1. Let F; be the non-
singleton component of order ¢ in.G[A] and let A; =V/(F}). Then 2 <t < 3 and
G[A] = (r + 1 —t)K; U Fy. It is easy to see that G[A] contains r + 1 — ¢ vertices
of degree r and each vertex of A; = A; has degree, in G[A], at least r + 1 — ¢
and at most r — 1. Let {w} = V/(K;) where Ky € Ts_4, then Ng(w) C A; and
thus 3 < r = degg(w) < t'< 3. Tt then follows that Ng(w) = A; and t = r = 3.
Thus w is not adjacent to any vertex of A; and G[A] = K, U Fy. Further, each
vertex of A; has degree at least |Tg_4| + 1= |B| =|Lg| + 1 > |B| since |Lg| < 1.
Thus |B| < 3 since G _is now 3-regular. Because G-is (p-~ r + 1)-regular where
p—r—1> 4 and each vertex of V/(F})'= A, has degree at mnost 3in G[AU B] since
it must be adjacent to at-most one vertex in B, it follows that F3 € Lz. Since
|Lz| < |L| <1y the only singleton component,-K7; of G[A] must-bein Ty 5. By
Lemma 3.3, |B| > p—r ~1>4. But this contradicts the fact that |B| = |B| < 3.
Therefore, |A| = 7.

Consequently, for each w € V(K;) where Ky € T4, Ne(w) = A. Now
let ¥ € A. Then degg(®) <B| — |Ts=al =Bl —{Ts-4| =|Lc| < 1. Further,
deg+(v) < 2 since each.component of G[A] has order at most 3. Because G is
(p — r — 1)-regular where p=ux — 1 >4, v is-adjacent to some vertex of C.
Consequently, each odd component of G[A] is contained in Lg. Because |A| =
|A| = 7 > 3, G[A] contains a non-singleton component of order either 2 or 3 and
|Lz| < |L| < 1, it follows that ¢,(G[A]) = 1. Therefore, G[A] is isomorphic to a
graph in {K; UKy, P5, K3}. Hence, r = |A| =3, |L| = |Lg| =1, Comp =Tp_4 =
{|B|K,}. Further, for z € B,y € A, Ng(z) = A and degs(y) =r =3 > |B| = |B|.

We first suppose that G[A] = K3. Then G[A] is independent and thus G[B]
must contain a matching of size at least two since GG[S] contains a matching of size
at least two. So |B| = |B| > 4. But this contradicts the fact that |B| = |B| < 3.
Hence, G[A] # K. Therefore, G[A] is isomorphic to a graph in {P;, K; UK,}. In
either case, G[A] contains a maximum matching of size one. Then 2 < |B| < 3
since GG[A U B] contains a matching of size at least two.

We now suppose that G[A] = K;UK5. Then G[A] = P; and then the vertex
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of degree two in P; has degree, in (G, greater than r = 3, again a contradiction.
Hence, G[A] # K, U K. Consequently, G[A] = P; and then G[A] & K; U K.
Clearly, |B| # 3 otherwise G[A] contains a vertex of degree greater than r = 3.
So |B| = 2 and thus G[A U B] contains the graph F' in Figure 3.1 as an induced
subgraph. But this contradicts our hypothesis that G is 3-regular F-free graph.
This completes the proof of our theorem. O

It is clear that a connected 3-regular graph containing F', in Figure 3.1, as
an induced subgraph contains v as a cut vertex. So 2-connected 3-regular graphs
are F-free. The next corollary follows by this fact and Theorem 3.10.

Corollary 3.11. If G is a 2-connected r-reqular graph of order p > 2r + 1, for
r > 3, then GG is 2-extendable. O]

Note that for positive integers 7 and s where r+s > 6, a graph G = K, + K,
is a non-regular graph with minimum degree of GG is 1. Thus GG cannot be 2-
extendable by Theroem 2.2(b). Hence, the hypothesis of regularity in Theorem
3.10 cannot be dropped.

According to Theorems 2.27 and 3.10, we have the following theorem.

Theorem 3.12. If each component G; of G-is 3-reqular F'-free of order at least 8

where I is the graph in-Figure 3.1 orro-reqular of order-at least 2ro+1 > 9, then
GG is 2-extendable.

We conclude our chapter by posing following problem.

Problem :.._Establish sufficient condition for a.complementary prism of
r-regular graphs to be k-extendable for = > & > 3.



Chapter 4

Extendability of complementary prism

of extendable graphs

In this chapter, we show, in'Section 4.2, that'if G and G are l;-extendable
and l,-extendable non-bipartite graphs for ;> 2 and I, > 2, then GG is (I + 1)-
extendable where | = min{l;,lo}. One might ask whether there exist such graphs
G and G. We affirm this in Section 4.1 by providing some. constructions of a
non-bipartite graph G such that G and G ‘are l;-extendable and l,-extendable
non-bipartite graphs, respectively, where /1 and [, are positive integers.

4.1 Some constructions of extendable non-bipartite graphs

In this section, we provide two constructions of extendable non-bipartite
graphs in which their complement graphs are also-extendable by using cartesian
and lexicographic products. of two extendable graphs:

Theorem 4.1. For non-neqgative integers lyy 1o, p1 = 2l +2 and py > 2l + 2
and 1 < 1 <2;let H; be l;-extendable of order p;. Further, let G'= Hy x Hy. If
A(Hy) = p1— 1 =ty and A(Hy) = py — 1 = ts for some non-negative integers tq
and ty, then G is (ly+ ly+ 1)-eatendable and G is ((p1 =2)(pa—2)4+ t1 +1to — 1)-
extendable.

Proof. By Theorem 2:16, G = Hy x Hyis (I 4 I+ 1)-extendable as required. We
need only to show that G is(3(p; — 2)(p2 — 2) + ti+1> — 1)-extendable. Clearly,
G and G are of order pypy. Since Ng((u,v)) = {(z,v)|zu € E(Hy)} U {(u,y)|vy €
E(Hs)}, dega((u,v)) = degy, (u) + degy,(v). Thus A(G) = A(Hy) + A(Hy) =
p1 + pa — 2 — t1 — ty. Therefore, 5(5) =pip2 —Pp1 — P2+ 2+t +1t—1 =
$PD2 + 3p1p2 —p1— P2+t +Hto+ 1= Spips + 5(p1 — 2)(p2 —2) +t1 +t, — 1. By
Theorem 2.3, G is (3(p1 — 2)(p2 — 2) + t1 + t» — 1)-extendable as required. This
proves our theorem. O

Corollary 4.2. Let Hy, Hy and G be graphs defined in Theorem 4.1. If either H,
or Hy is non-bipartite, then G and G are also non-bipartite. O

16
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Theorem 4.3. For non-negative integers hy, ha, hy, hs, let H; be a h;-extendable
and let H; be a hi-exteﬁdablg Jor1<i<2. Then G = HyoHy is (h1+1)(hy+1)-
extendable graph and G is (hy + 1)(hg + 1)-extendable graph.

Proof. By Theorem 2.18, G = H; o Hy is (hy + 1)(hs + 1)-extendable. We first
show that G = H, o Hy. Clearly, V(G) = V(H,0 Hy) = V(H,) x V(Hy) =
V(H,) x V(Hq) = V(H;y 0o Hs). Let (uy,v1), (u2,v2) € V(H;) x V(Hy) and let
(u1,v1)(ug,v9) € E(Hy o Hy). Thus (uy,vq)(uz,ve) ¢ E(Hy o H). -

If uy = uy, then vyvy ¢ E(Hy) and thus (ug,vy)(ug,v2) € E(Hp o Hy).
Further, if u; # sy, then ujuy ¢ E(H;). And again (uy,v1)(ug, vo) € E(H, o Hy).
Hence, E(H, o Hy) C E(H, o H,).

We now suppose that (uy, v1)(ug, vo) € E(Hyo Hy). If up = uy, then viv, €
E(Hy). Thus (uy, vy)(ug, vo) & E(HyoHy). Further, ifu; # uy, then ujuy € E(H,)
and thus (uy, v1)(ug, vo) ¢ E(H;o Hs).-In either case (ui, v1)(us, v2) € E(H; o Hy).
Hence, E(H, o Hy) C E(Hyo Hs): Therefore, E(Hy 0 Hy) = E(H, o Hy). Thus
H, o Hy = H,0H,. It follows by Theorem 2.18 that G is (h;+1)(hy+1)-extendable
graph as required. This proves our theorem. O

Corollary 4.4. For 1 < i<:2, let'H;, H, and Gbe graphs-defined in Theorem
4.8. If Hy is connected, E(H3) # ¢ and E(Hs) # ¢ then G and G are non-
bipartite. O

According to Theorems 4.1 and 4.3, we have shown that there exists a
graph G such that G-is-l;-extendable and-G is ly-extendable for some integers [
and l5. Theorem 4.6 establishes that for any positive integers /; and [y, there is a
graph G such that G-is l;-extendable and G is ls-extendable.

Lemma 4.5. Let Py be-a-path of order t-—If t > 4 is an even integer, then P, is

0-extendable and Py is (¢ < 4)-factor-critical. Further, Py is 5(t — 4)-extendable.

Proof. Clearly, Py contains a perfect matching. We only show that P, is (t — 4)-
factor-critical. Let T .CV (P;)such that |T'| = t —4. Clearly, Py~ T is connected
and contains P, as-a subgraph. Thus P, — T is-one of a graph in {K,, K; —
e,Cy, Ky — {e1,ex}, Py}, where e; and ey have a common end vertex. In either
case, P, — T contains a perfect matching. Thus P, — T is (t — 4)-factor-critical
as required. It then follows by definition of k-extendable that P, is $(t — 4)-

extendable. This proves our lemma. O

Theorem 4.6. For positive integers Iy and ly, there is a non-bipartite graph G
such that G is l-extendable and G is ly-extendable non-bipartite.

Proof. Let H; = Py, 49 and Hy = Py, 5. By Lemma 4.5, H is (I, —1)-extendable,
H, is O-extendable, Hs is 0-extendable and Hy is (I — 1)-extendable. Let G' =
H, o Hy. By Theorem 4.3, G is l;-extendable and G is l-extendable as required.
Further, it is clear that G and G are non-bipartite. This proves our theorem. [J
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4.2 Extendability of complementary prism of extendable
graphs

In this section, we establish the extendability of the complementary prism GG of
G where G and G are [1-extendable and [y-extendable non-bipartite graphs for
[y > 2 and l; > 2, respectively. We begin with some lemmas.

Lemma 4.7. Let G be a k-extendable graph for some integer k > 2 and let S C
V(G) be a cutset of G. If G[S] contains t < k — 1 independent edges, then
S| > k+t+1.

Proof. Let S" = S—V/(F) where F' is amatching of size ¢ in G[S]. By Observation
210, G' = G — V(F) is (k — t)-extendable. Observe that k —¢ > 1. By Theorem
2.2(b), G’ is (k — t + 1)-connected.  Since.S" is a cutset of G', |S'| > k —t + 1 and
thus |S| > 2t + k —t + 1 = k+ t+1 as required. This proves our lemma. ]

Recall that, |a]. is denoted.a greatest even integer less than or equal to a.
Similarly, a greatest odd integer less than or equal to.a may be denoted by |a],.

Clearly, |a], = 2|(a — 1)/2)+ 1.

Lemma 4.8. Let G be a k-extendable non-bipartite graph for k > 2. Further, let
M C E(G) be a matching of size m-and let'S = ¢_or .S C V(G) — V(M) be an
independent set such that k — m=|S| =1t > 0 for some-integer t. Then

(a) If |S| isreven, then G-—=(V(M)U S) is t-extendable. Further G —
(V(M) U S) is |tlesfactor=critical.  Consequently, there is a. perfect matching in
G- (V(M)us).

(b) If |S| iswodd and t > 1, then G'— (V(M)U S)s |t],-factor-critical.
Thus G — (V (M) USY 4s 1-factor-critical.

(c) If | S| is.0dd, t = 0 and there is a vertex v.€ V(G) = (V(M)US) such
that vs € E(G)_for some's € S, then G = (V.(M) U.S'U {v}) contains a perfect
matching.

Proof. We first suppose m = k. So S = ¢ and thus G —(V(M)U S) = G —
V(M) contains a perfect-matching by Theorem 2.2(a) and it is O-factor-critical as
required. We now suppose thatm-< k—1. By Corollary 2.13, G—V (M) is (k—m)-
extendable non-bipartite. Since k —m = |S|+t, G—V (M) is (|S| +t)-extendable
non-bipartite.

(a) |S| is even. By Theorem 2.2(a), G — V(M) is (|S] + |t].)-extendable
and thus it is (|S| + |t].)-factor-critical by Theorem 2.8. Hence, by Observation
2.11, G=(V(M)UYS) is |t].-factor-critical as required. It then follows by Theorem
2.2(a) that G — (V(M) U S) contains a perfect matching. This proves (a).

(b) |S] is odd and ¢ > 1. By Theorem 2.2(a), G — V(M) is (|S| + [t].)-
extendable and thus it is (|S| + |t],)-factor-critical by Theorem 2.8. By Observa-
tion 2.11, G — (V(M) U S) is |t],-factor-critical. Since t > 1, |t], > 1. Further,
by Theorem 2.7, G — (V(M) U S) is 1-factor-critical as required. This proves (b).

(c) Let M' = M U {vs} and S" = S — {s}. Hence, our result follows from
(a). This completes the proof of our lemma. O
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Lemma 4.9. Let G be a k-extendable graph for some integer k and let S C V(Q)
be a cutset of G. If G|S| contains t independent edges fort < k, then c,(G—S) <
|S| — 2t. Further, if 1 <t <k —1 and c,(G — S) = |S| — 2t then G — S contains
no even components.

Proof. Let F' be a matching of size t in G[S]. Since G is a k-extendable graph,
G — V(F) contains a perfect matching by Theorem 2.2(a). By Theorem 2.1,
Co(G=8)=c,((G=V(F))—(S=V(F))) <|S—=V(F)| =S| — 2t, as required.
We now suppose that 1 <t <k —1 and ¢,(G — S) = |S| — 2t. Let D be an even
component of G — S. By Lemma 4.7 and the fact that t <k —1 < k+1, V(F)
is not a cutset of G. Then there is an edge e = sd joining a vertex s in S — V(F)
and a vertex d in D. Since G is k-extendable and F' U {e} is a matching of size
t+1 <k, it follows that there is a perfect matching in G' = G — (V(F) U {s,d}).
Let " =S — (V(F) U {s}). Clearly, es(G"—5) ='co(G—5)+1=|S] -2t + 1.
Since G’ contains a perfect matching, by Theorem 2.1, |S| —2t+1 < ¢, (G' = 5") <
S| — ([V(F)| + 1)| = |S]'= 2t —1,-a-contradiction.. Hence, there is no even
component in G — .S. This proves our-lemma. n

Lemma 4.10. Let G be an l-extendable graph and let M -be-a matching of size
[+t where t > 1. Then there is.a mazimum matching in G — V(M) saturates all
except at most 2t non-adjacent vertices in G —V(M).

Proof. Let T'C M where |I'| = t.-Thus M — T is a matching of size [ in G. So
there is a perfect matching F' in G =V (M-—1T))./ Clearly, |[V(F) OV (T)| = 2t. Let
Fy ={ay € Fl{zyy} N V(M) =¢}and F, = {ry e Fle € V(M) and y ¢ V(M)}.
Further, let F} be a maximum matching in GIV(Fy) = V(M)]. Then, Fy U F} is
a matching in G = V/(M) saturates all except at most-2¢ non-adjacent vertices as
required. O

By similar arguments as in the proof of Lemma 4.10; the next lemma
follows.

Lemma 4.11. Let- G be a k=factor-critical graph. and let T €V (G) where |T| =
k +t. Then there is a mazxtmum matching in G —V (T) saturates all except at
most t non-adjacent vertices inG.—V (T). O

Lemma 4.12. Let G be an 1-extendable graph of order p > 6 and let v be a vertex
of degree 2 in G. Then there are perfect matchings My, My in G such that v is
a vertex of Cyy, in MyAMy where n > 3. Further, there is a vertex x € V(Csy,)
where Cay, is a subgraph of My /AMy such that ve ¢ E(G) and G — {v,z} contains
a perfect matching.

Proof. Let {u1,us} = Ng(v). We first suppose Ng(u1) N Ng(uz) = {v}. Let M; be
a perfect matching in G containing vu; and M a perfect matching in G containing
vug. Clearly, {vuy,ugug} C M; and {vug, ujus} C My for some uz,uy € V(G).
Since {v} = Ng(u1) N Ng(ug), us # ug. Hence, ususvujuy is a path of length 4
containing v. It must be contained in an even cycle of order at least 6 in M; /A M,
as required.
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So we now suppose that Ng(u1) N Ng(ug) # {v}. Then there is a vertex
v # uz € Ng(u1) N Ng(ug). Since G is 2-connected by Theorem 2.2(b) and G
is of order at least 6, it follows that us is not a cut vertex. Then there is a
vertex uy € Ng(uq) U Ng(ug) where uy # uz. Without loss of generality, suppose
uy € Ng(up). Let M; be a perfect matching in G containing ujuy and My be a
perfect matching in G containing uous. It is easy to see that {ujuy,vus} C M
and {uqug,vu;} € Ms. Hence, ugujvusus is a path of length 4 containing v. It
must be contained in an even cycle of order at least 6 in M; A M, as required.

Further, let © € V(Cy,) be such that the distance between v and z along
the cycle Cy, is 3. Clearly, zv ¢ E(G) and it is easy to see that G —{v, z} contains
a perfect matching. This completes the proof of our lemma. O

Lemma 4.13. For a graph G, let A C V(G) and B CV (G). Suppose c,(G—A) =
|A| —t1 and co(G — B) = |B| — ts, for some mon-negative integers ti, to. Then
co(GG — (AUB)) < |A|+|B|~ (t) £t3). Further, if AUB # V(G) and G — A and
G — B contain no even components, then-¢,(GG—(AUB)) < |A|+|B|—(t;+t5)—2.

Proof. Tt is easy to see that c,(GG ~ (AU B)) < |Al 4 |Bf — (t1 +t2). We now
suppose that A U B # V(G).and G+~ A, G~ B contain-no even components.
Let z € V(G) — (AU B). Then x is in an odd component of G — A, say C.
Clearly, ¢ AU B and thus'7 is-in-an odd component of G — B, say D. Hence,
GGV (C)UV(D)] forms an-even component in GG =(AU B). Therefore c,(GG —
(AU B)) < |A| + |B| = (ty #t2) =2 as required.-This proves.our lemma. O

Lemma 4.14. Let G and G be'l,~extendable andly-estendable graphs, respectively
where l; and ly are positive antegers.  Further, let-M be a matching of size [+ 1 in
GG where | = min{ly, ly}.If either M = {2;2;|x; € V(G)for'1 <i <1+1} or
M C (E(G) UE(G)), then-GG has a perfect matching containing M.

Proof. Clearly, if M = {z;7i|z; € V(G)for 1-<4.< I +1},then {vv|v € V(G)}
is a perfect matching in*GG containing M as required. So we now suppose that

M C (E(G)UE(G)). PutMeg= MNE(G) and Mg= MNE(G). If 1 < |Mg| <l
and 1 < |Mg| < [, then it is-easy to see that M = Mg U Mg can be extended
to a perfect matching in"GG, by Theorem 2.2(a), since G is l;-extendable and G
is lo-extendable. Hence, we suppese without loss of generality that |[Mg| =1+ 1.
Suppose there is no perfect matching in G' containing M. By Lemma 4.10, there
is a maximum matching F} in G — V(M) saturates all except two non-adjacent
vertices, say x and y. So Zy € E(G). Since G is ly-extendable where I, > 1 and by
Theorem 2.2(a), it follows that there is a perfect matching F, in G containing Z7.
Hence, M U F} U (Fy, — {Zy}) U {x%, yy} is a perfect matching in GG containing
M as required. This completes the proof of our lemma. O

_ Weare now ready to prove our main result. We begin with the extendability
of GG where G is [1-extendable and G is [y-extendable for I; > 4 and [, > 4.

Theorem 4.15. For positive integers ly > 4, lo > 4, let G cﬁzd@ be 1y -extendable
and ly-extendable non-bipartite graphs, respectively. Then GG is (I+1)-extendable,
where | = min{ly,l2}.
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Proof. Let M C E(GG) be a matching of size [ + 1 in GG. Put Mg = M N E(G),
Mgz = MNE(G) and Mgg = M — (MgU Mg). Note that Mg = {2Z|x € V(G)}.
If Mg = M or Mz = ¢, then, by Lemma 4.14, there is a perfect matching in
GG containing M as required. We now suppose that M,z # M and Mgg # ¢.
Without loss of generality, we may suppose that |M¢g| > |Mg|. Hence, Mg # ¢.

Put § = V(G) N V(Myg). Let Ng be a maximum matching in G[S].
Put Is = S — V(Ng). Clearly, Ig is an independent set. Similarly, let Ng be a
maximum matching in G[S] and put I = S — V(Ng). For simplicity, we denote
the cardinalities of each set by its small letter, i.e., mg = |Mg|, mg = | Mg,
mage = |MG@‘7 s = ’5‘7 ig = ’15‘7 etc.

Clearly, 1 < mg <, s =35, ng+is > 1 and ng+1g > 1 since s = 5 =
Mmee > 1. Therefore,

[+ 1 = mg~+mg+mgg (4.1)
I+ 1 =me+mg+s (4.2)
4+ 1=mg+ mg +2ng + 13 (4.3)
I+ 1= mg + mgH 2hgtis. (4.4)

Consequently, mg +ng = +1—(mg+ns +is) <l since ng+ig > 1 and
mg+ng =1+ 1— (mg+ ng+ ig) <1since ng + ig> 1.-Further, s = ig (mod 2)
and 5§ = ig (mod 2) because s =2ng+ ig and 5 = 5 =2ng + is.

We first suppose that ig.=0. Since mg+ ng <1, by Theorem 2.2(a), there
is a perfect matching in G=(V (Mg)UNy), say Fg. Now consider G. By Equation
4.4, 1 — (mg+ng+ig) = mae+ng—1> 0 since mg > 1. By Lemma 4.8(a), there
is a perfect matching in-G— (V(Mg U Ng)U I5), say I Hence, M U Fg U F is
a perfect matching.in GG containing M as required.

So we now suppose that ig > 1. We distinguish-2 cases according to parity
of s.

Case 1 : s is‘even. So ig-=> 2 and ig >.0-are also even.”We distinguish 2
subcases according to.mg+ ng.

Subcase 1.1 : mg+ ng > 1 So, by Equation 4.3, | — (mg + ns +
is) = mg+ng —1 > 0. By Lemma 4:8(a); there is a perfect matching in G —
(V(Mg U Ng) U Ig), say Fg. Further, by Equation 4.4 and the fact that mg > 1,
| — (mg + ng +ig) = mg +ng—1>0. So, by Lemma 4.8(a), there is a perfect
matching in G — (V(Mgz U Ng) U I5), say Fg. Hence, M U Fg U F5 is a perfect
matching in GG containing M as required.

Subcase 1.2 : mz = ng = 0. We first show that ng < L. Since ng =

2
0, G[9] is independent and thus G[S] is a complete graph. Because s is even,
ng = %5 = %3. So, by Equation 4.2 and the fact that mg > 1, ng = %s =
t(l+1—=mg—mg) = 5(1+1—mg) < § as required. By Equation 4.3, [ — m¢ =
mg + 2ns +is — 1 =ig— 1 and |ig — 1], = ig — 2 > 0 since ig = s is even.
It follows by Lemma 4.8(a) that G' = G — V(M) is (is — 2)-factor-critical. By
Lemma 4.11, there is a maximum matching F; in G’ — Ig saturates all except at
most 2 vertices in G’ — Ig.
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We next consider G. By Equation 4.4 and the fact that mg > 1, [ — (mg+
ng +ig) = mg+ng— 1> ng > 0. By Lemma 4.8(a), there is a perfect matching
in G — (V(MgU Ng)UI3), say Fg. Clearly, if Fg is a perfect matching in G’ — I,
then M U Fg U Fg is a perfect matching in GG as required.

We now suppose that Fg is not a perfect matching. Let x,y € V(G') — Is
where z and y are unsaturated by Fg. Clearly, zy ¢ E(G). So zy € E(G).
Because ng < é and [ > 4, it follows that mg +ng+1 = ng+1 < é+ 1<
L+ (£—1) <1—1. By Theorem 2.2(a), there is a perfect matching in G —V (MgU
NgU{zy}), say FL. Hence, MU FgU(F; —{2y})U{zZ,yy} is a perfect matching
in GG containing M as required. This proves Case 1.

Case 2 : sis odd. So ig and ig are also odd. We distinguish 3 subcases
according to mg + ns.

Subcase 2.1 : mgz = ng = 0. By Equation 4.3, | — (mg + (is — 1)) =
mg + 2ng = 0. Let i €' [s, by Lemma 4.8(a), there is a perfect matching in
G — (V(Mg) U (Is — {i})),; say Fg. Let iv € Eg. We now consider G. Since
ng = 0, G[S] is independent’ and thus G[S] is a complete graph of odd order s.
Therefore, ng = %(s —1) and ig = 1. By Equation 4.2,7 =mg +s—1. So
[ — (m§+n§+i§) =[]+ (n§+i§) =mg+s+1— (%(S— 1) +1) = mg+%(8—3).

We next show that me + 3(s —3). > 1. Suppose to the contrary that
meg + (s —3) = 0. Since m¢ > 1and s is a positive odd integer, it follows that
m¢g = 1 and s = 1. By Equation 4.2, {4+ 1=mg+mg+s=1+0+1=2. Thus
[ =1, contradicting the fact that-{ > 4. Hence, mg +%(s =.3) > 1 as required.

Therefore, | =(mg +ng +ig) =mg + 3(s=3) > 1. By Lemma 4.8(b),
G —(V(MgUNz)UIg) is 1-factor=critical. | Recall thativ. € Fg. Clearly, v ¢ V (Mg)
since mg = 0. So thete is a perfect matching in G~ (V/(MgUNg) U I5)U{v}), say
Fs. Hence, M U (Fg — {iv}) U FxU{vd} is a perfect matching in GG containing
M as required. This proves-Subcase 2.1.

Subcase 2.2 : mg+ng > 2. By Equation 4.3, | = (mg + ns + is) =
mg +ns — 1'>1. By Lemma 4.8(b), G — (V(Mq U Ng) U Ig).is 1-factor-critical.

We now consider. . By Equation 4.4, | — (mg +ng+ig)= mg + ng — 1.

We first suppose thatl — (mg+ng+ig)=mc+ng—=1>1. By Lemma
4.8(b), G — (V(Mg U Ng) U Ig) is 1-factorscritical.  Let x € V(G) such that
x,7 ¢ V(M). Clearly, x exists-because |V(MgUMg)U S| <2+ 1 and G and G
are of order at least 2[+2. Since G —(V(MgUNg)UIg) and G — (V(MzUNz)U I3)
are 1-factor-critical, it follows that there is a perfect matching in G—(V (MgUNg)U
IsU{x}), say Fg, and there is a perfect matching in G — (V (MzU Ng)U IzU{z}),
say Fi. Hence, M U Fg U Fg U {27} is a perfect matching in GG containing M
as required.

So we next suppose that | — (mg + ng +ig) = mg+ng—1 = 0. It follows
that ng = 0 and mg = 1 since mg > 1. Thus ig = 5 and mg < mg = 1.
Put Mg = {zy}. Since G is ly-extendable, for I, > 4, by Theorem 2.2(b), G is
5-connected. So {Z,7} UV (Mg) is not a cutset of G since |{z,7} UV (Mg)| < 4.
Hence, there is an edge joining a vertex in V(G) — ({z,y} U V(Mg)), say 4, and
a vertex in S, say w. Because | — (mg + ng + i) = 0 and ig = 5, it follows that
l—(mg+ng+1+(ig—1) =l—(mg+ng+1+(5—1)) = 0. By Lemma
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4.8(a), there is a perfect matching in G — (V(MgU Ng U {aw}) U (S — {w})), say
Fg. Since G — (V(Mg U Ng) U Ig) is 1-factor-critical and u ¢ V(Mg), it follows
that there is a perfect matching in G — (V (Mg U Ng) U Is U {u}), say Fi. Hence,
M U FgU Fz U {uu} is a perfect matching in GG containing M as required. This
proves Subcase 2.2.

Subcase 2.3 : mg +ng = 1. By Equation 4.3 and the fact that ig is odd,
ma+ns =1+1— (mg+ng+is) <l —1. We distinguish 2 subcases according
to mg and ng.

Subcase 2.3.1 : mg = 0 and ng = 1. Observe that G[V (Mg U Ng)]
contains mg + ng < [ — 1 independent edges and |V (Mg U Ng)| = 2(mg + ng) =
(mg+ng)+mg+ng < l—14(mg+ng): It follows by Lemma 4.7 that V (MgUN5)
is not a cutset of G. Then there are a'vertex u € V(G) — (V(Mg) U S) and a
vertex z € Ig such that uz € F(G). Sincel — ((mg +ns +1) + (is — 1)) =
I — (mg + ns +is) = mg + ng — 1 =0,by Lemma 4.8(a), there is a perfect
matching in G — (V (Mg U Ng U{uz})U(Is={2})), say Fg. We now consider G.
We next show that mqg+mng > 2./Suppose to the contrary that mg+ng = 1. Since
mg > 1, ng = 0 and mg = 1. By Equation 4.3, [+1 = mg+mg+2ns+is = 3+ig.
Soig = [—2 > 4—2 = 2.1t follows that G[S] contains K3 as an induced subgraph.
Thus ng > 1, contradicting the fact that ng = 0. Hence, mqg 4+ ng > 2.

By Equation 4.4, | — (mg+ ng+ig) = mg+ng—1> 1. By Lemma 4.8(b),
G — (V(Mg U Ng) U Ig) is 1factorscritical. Recall'that mg = 0. So u ¢ V(Mz)
Therefore, there is a perfect matching-in G — (V(MgU Ng) U Iz U {u}), say Fx.
Hence, M U Fg U FzU{uu} is a perfect matching in GG containing M as required.
This completes the proof of Subcase.2.3.1.

Subcase 2.8.2 1 mz =1 and ng =0. Put.mg = {7172}. Note that
ma + ng > 2 since-jm| .=+ 1.>:5 and ng = 0. If-there is a vertex u €
V(GQ) — (V(Mg) U S U {ai;ws}) such that-uz € B(G) for some z.€ S, then by
applying similar argument as in the proof-of Subcase 2.3.1; there is a perfect
matching in' GG containing M as required._Se-we now suppose that there is no
vertex u € V(G) —(V(Mg).U S U{wy; z2})such that uz € E(G) for some z € S.
Thus V(Mg) U {2y, 22} isa cutset-of G and {xy, z2}is a cutset of G — V(Mg).
We next show that s.= 1. Suppose to the contrary that's > 3. By Equation
42, mg=14+1—-—mg—s=1[1—s <1=3: By Observation 2.10, G — V(Mg)
is (I — mg)-extendable. Because [ —m¢g > 3, by Theorem 2.2(b), G — V(Mg) is
4-connected, contradicting the fact that {1, 25} is a cutset of G —V (M¢). Hence,
s = 1. Put S = {z}. Therefore, zu ¢ E(G) foru € V(G)—(V(Mg)USU{x1, x2}).
So Ng(z) CV(Mg) U{xy,x0}

By Equation 4.2, mg =1+ 1—mg —s = [ — 1. By Observation 2.10, G' =
G — V(Mg) is l-extendable. By Theorem 2.2(b), G’ is 2-connected. Therefore,
Nei(2) = {x1, 22} and dege/(2) = 2. By Lemma 4.12, there is a vertex u € V(G’)
such that uz ¢ F(G’) and G’ — {u, z} contains a perfect matching, say Fg. We
now consider G. Since [ > 4, mz =1 and 5 = s = 1, it follows that [ — (mg+35) =
|—2>2 By Lemma4.38(b), G =G — V(MzUS) is 1-factor-critical. Then there
is a perfect matching in G — {a}, say Fg. Hence, M U Fg U FgU{uu} is a perfect
matching in GG containing M as required. This completes the proof of Subcase
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2.3.2. and thus completes the proof of our theorem. O]

We now turn our attention to studying the extendability of GG when G or
@G is l-extendable for 1 <[ < 3.

We first provide an example of a graph G suchthat both G and G are 1-
extendable but GG is not 2-extendable. Let G be a graph where V(G) = {u;| for
1 <i<4}yUA{y| for 1 <i <6} and E(G) = {wusq| for 1 < i < 3} U {v0541]
for 1 < i < 6 where the subscript is read modulo 6} U {ujv;| for 1 < i < 6} U
{uzvy, ugve, ugvs}. Observe that G[{u;| for 1 < i < 4}] and G[{v;| for 1 < i < 6}]
are a path of order 4 and a cycle of order 6, respectively. It is routine to verify
that G and G are l-extendable. But GG is not 2-extendable since {uyiy, usiis}
cannot be extended to a perfect matching in GG.

We now scope our attention to extendability of GG where G is {;-extendable
and G is ly-extendable for Iy > 2/and {5->2.. We first consider the case where
Iy = 2 and [y > 2. We begin with the following lemma. Recall that if ¢ #
{z1,...,2;} CV(G), then {@, ! ... &:} € V(G)-is denoted by X and vice versa.

Lemma 4.16. Let G and G be 2-extendable non-bipartite graphs of order p > 10
and let M = {122, §11o, zz} be a matching of size-8-in. GG, where i:cl,m,z} C
V(GQ) and {41, 72,2} € V(G). Then there as a perfect matching in GG containing
M.

Proof. Suppose to the contrary that, there is no perfeet matching in GG containing
M. By Theorem 2.1, there is a cutset T-CV(GG) — V(M) such that c,(GG —
(V(M)UT)) > |T|. By parity, ¢,(GG—(V(M)UT)) > |T|42: Put S = TUV(M).
So ¢,(GG—S) >|S|—4. Put-A = SOWV/(G), B =SOV(G) and C = V(G)—(AUB).
Observe that |A| >3 and |B| > 3.

By Theorem 2.8, G-and G are bieritical. Thus, by Theorem 2.6, c,(G—A) <
|A] — 2 and ¢,(G = B) < |B] ~2."We first-show that c,(G < A) = |A| — 2 and
co(G — B) =|B|+ 2. Suppose to the contrary that cs(G'— A) <|A|—2. By parity,
co(G — A) < |A| — 4. It then follows by Lemma 4.13.that (GG~ S) < ¢,(G —
A) + ¢,(G — B) <|A[+|B| — 6, contradicting the fact-that c,(GG — S) > |S| — 4.
Hence, c,(G — A) = |A| —2./Similarly, ¢,(G -~ B) = |B| —2.

Since G and G are 2-extendable, by Theorem 2:5(b), G[A] and G[B] contain
at most one independent edge. Because {r1,29,2} C A and {71,%,2} C B,
G[A] and G[B] contain exactly 1 independent edge. By Lemma 4.9, G — A and
G — B contain no even components. If AU B # V(G), then, by Lemma 4.13,
co(GG — 8) = ¢,(GG — (AU B)) < |A| +|B| — 6 = |S| — 6, again a contradiction.
Hence, AU B = V(G). Observe that if ¢,(G — A) > 4, G[B] = G — A contains at
least 4 independence vertices and thus G[B] contains a matching of size at least
two, a contradiction. Hence, ¢,(G — A) < 3. Similarly, ¢,(G — B) < 3 and each
component of G — B is singleton otherwise G[A] = G — B contains at least 2
independent edges, a contradiction. Therefore, ¢,(G[B — A]) = ¢,(G—A) < 3 and
G[A—B] = ¢,(G—B) < 3. Since ¢,(G—A) = |A] =2 and ¢,(G — B) = |B| — 2, it
follows that |A| = 2+ ¢,(G — A) < 5 and |B| = |B| = 2+ ¢,(G — B) < 5. Because
z€ ANB, |[AUB|=|A|+ |B| = |[ANB| <5+5—1<9, contradicting the fact
that |V(G)| = p > 10. This completes the proof of our lemma. O
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_ The next theorem shows that if G is a 2-extendable non-bipartite graph
and G is a [-extendable non-bipartite graph of order p > 10 and [ > 2, then GG
is 3-extendable.

Theorem 4.17. Let G be a 2-extendable mon-bipartite graph of order p > 10.
If G is l-extendable non-bipartite for some positive integer I > 2, then GG 1s
3-extendable.

Proof. By Theorem 2.2(b), G is 2-extendable non-bipartite graph. Let M be
a matching of size 3 in GG. Put Mg = M N E(G), Mz = M N E(G) and
MG@ = M—(MgLJMa). Further, put mg = |Mg‘, meg = |M§| and Maa = |MG5L
If mez = 0 or mgg = 3, then, by Lemma 4.14, there is a perfect matching in GG
containing M as required. So we now consider 1 < m gz < 2. We distinguish 2
cases according to mqg.

Case 1: my g = 1. If mg = mg =1, then, by Lemma 4.16, there is a
perfect matching in GG containing M as required. So we suppose without loss of
generality that mg = 2, mgz = 0. By applying similar arguments as in the proof
of Subcase 2.1 in Theorem 4.15, there is a perfect matching in GG containing M
as required.

Case 2: myz = 2. By applying similar arguments as in the proof of Case
1 in Theorem 4.15, there is-a perfect. matching in GG containing M as required.
This completes the proof of our theorem. O

We point out here that the bound on the order of graphs in Theorem 4.17
is best possible and the hypothesis that G-and G-are non-bipartite is essential.
Let G be a 3-regular bipartite graph of order 8 with bipartition (X,Y’) where
X = {z]1 <i<djand ¥V = {|L<i < 4} and B(G) =H{ziy;|1 <i#j <4}
It is not difficult to show that G =2 K x K5 and both Grand G are 2-extendable.
However, GG is not 3-extendable since {z1%152971, y2y3} cannot be extended to a
perfect matching in GG.

We finally turn our attention to 3-extendable graphs.

Lemma 4.18. Suppose-G ‘and G are 3-éxtendable non-bipartite graphs of or-
der p > 8. Let {x,y,21,2,230.C V(G) and{Z, 2, 23} C V(G) such that
G[{z1, 292,23} = Ks. Further, let M = {xy, 2121, 2229, 2323} be a matching of

size 4 in GG. Then there is a perfect matching in GG containing M.

Proof. Suppose there is no perfect matching in GG — V(M). Then by Theorem
2.1, there is a cutset T C V(GG) — V(M) such that ¢,(GG — (T UV(M))) >
IT|. By parity, ¢,(GG — (T UV(M))) > |T|+2. Put S = TUV(M). So
co(GG — S) > |S| — 6. Since GG contains a perfect matching, by Theorem 2.1,
co(GG — S) < |S|. Thus |S| —6 < ¢,(GG — S) < |S]. Put A = SNV(Q),
B=SNV(G)and C = V(G) — (AUB). Clearly, {21, 22, 23} € AN B. By Lemma
3.2(b), c,(GG — S) < |S| —6. So ¢o(GG — S) =|S| — 6.

Since zy, 2122 € E(G), by Lemma 4.9, ¢,(G — A) < |A| — 4. On the other
hand, since G is 3-extendable non-bipartite graph, by Theorems 2.2(a) and 2.8,
G is bicritical. Therefore, by Theorem 2.6, c¢,(G — B) < |B| — 2. We first show
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that c¢,(G — A) = |A| — 4 and ¢,(G — B) = |B| — 2. Suppose to the contrary
that ¢,(G — A) # |A| — 4. By parity, ¢,(G — A) < |A| — 6. By Lemma 4.13(a),
co(GG — S) = ¢,(GG — (AUB)) < |A| — 6+ |B|] — 2 = |S| — 8, a contradiction.
Hence, co(G — A) = |A| — 4. By similar argument, c,(G — B) |B| — 2. By
Lemma 4.9, G — A contains no even components. We next show that G —
contains no even components. Suppose this is not the case. Then G — B contams
an even component, say D. Let bd € E(G) such that b € B and d € V(D). By
Corollary 2.13, G=G- {b, d} is 2-extendable non-bipartite. By Theorem 2.8, G
is bicritical. Since ¢,(G — (BU{d})) = |B| = 1, ¢o(G' — (B — {b})) = |B — {b},
contradicting Theorem 2.6. Hence, G — B contains no even components.

If AUB # V(G), then by Lemma 4.13, ¢,(GG — S) = ¢,(GG — (AUB)) <
co(G — A) + ¢o(G — B) —2 = |A|4|B| = 8 = |S| — 8, a contradiction. So
AU B =V(G).

Note that G[A — B] contains the edge xy. We first show that G[A — B]
contains exactly one independent edge. Suppose G[A — B| contains 2 independent
edges. Since z129 € FE(G[A N B}, there are at least 3 independent edges in
G[A]. Therefore, by Lemma 4.9; c,(G — A) < |A| = 6, contradicting the fact
that ¢,(G — A) = |A| —4.Hence, G[A — B] contains exactly one independent
edge. We next show that G[B] contains no edges. Suppese to the contrary that
B contains an edge uqtiy. By Corollary 2.13, {4 {@y, 2} is 2-extendable non-
bipartite graph. By Theorem 2.8, G — {ul,ug} is bieritical. Then, by Theorem
2.6, ¢o(G = B) = ¢o((G={us; is}) = (B—{un, p})) £AB ~{uy, ur}| -2 = [B| -
contradicting the fact-that ¢,(G. —~ B) ="{B| ~ 2. Hence, G[B]-contains no edges
and G[B] is independent. So G[B] and B— A areclique and thus c,(G[B—A]) < 1

Therefore, |All—4,/="6,(G.= A) = cs(G[B~A|)1<1./So |A] < 5. If
G[A — B] contains_at least 4 components, then G[A= B] contains at least two
independent edges. But this contradicts the fact-that G[A— B| contains exactly one
independent edges. ‘Hence, G[A ~ B] contains at most 3 'components. Therefore,
co(G[A — B)).=¢,(G =B)="|B}.~ 2 < 3. Hence, |B| = |B| <5 It follows that
V(@) =|AUB| =|A| +|B| — AN B| <5+ 5 —3= 7; a contradiction. This
proves our lemma. O

Lemma 4.19. Suppose G-.and G are: 3-extendable non-bipartite graphs of or-
der p > 8. Let {x,y,21,2, 23} ©V(G)and {z, 2,2} C V(G) such that
G[{z1,22,23}] 2 Ks. Further, let M = {xy, 2121, 2022, 2323} be a matching of
size 4 in GG. Then there is a perfect matching in GG containing M.

Proof. Suppose M = {xy, 2121, 2222, 2323} where z,y € V(G). Since G[{z1, 22, 23}]
2 K3, we may suppose that 2129 ¢ E(G). Since zy € E(G), by Lemma 4.8(a),
there is a perfect matching in G — {z,y, 21, 22}, say Fg. Let z3w € Fg. Again,
because 7%, € F(G), by Lemma 4.8(a), there is a perfect matching in G —
{%1, %2, w, Z3}, say Fz. Thus M U (Fg — {z3w}) U FgU{ww} is a perfect matching
in GG containing M as required. This completes the proof of our lemma. O]

Theorem 4.20. Let G be a 3-extendable non-bipartite graph of order p > 8. If
G 1s l-extendable non-bipartite for some positive integer | > 3, then GG 1is 4-
extendable.
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Proof. By Theorem 2.2(b), G is 3-extendable non-bipartite graph. Let M be
a matching of size 4 in GG. Put Mg = M N E(G), Mz = M N E(G) and
Mgz = M — (Mg U Mg). Without loss of generallity, suppose |M¢q| > |Mg|. If
Mgz = ¢ or Mz = M, then, by Lemma 4.14, there is a perfect matching in GG
containing M as required. So we now suppose that M,z # ¢ and Mgz # M.
Therefore, 1 < |M.g| < 3. We distinguish 3 cases according to | M g|.

Case 1: |M.z| = 1. By applying similar arguments as in the proof of
Subcase 2.1 (if |Mg| = 0) or Subcase 2.3 (if |[Mg| = 1) in Theorem 4.15, there is
a perfect matching in GG containing M as required.

Case 2: |M | = 2. By applying similar arguments as in the proof of Case
1 in Theorem 4.15, there is a perfect matching in GG containing M as required.

Case 3: |M | = 3. Then, |Mg|'=1 and |Mg| = 0. So, by Lemmas 4.18
and 4.19, there is a perfect matching in GG containing M as required.

This completes the proof of our theorem. n

The next Theorem follows-by Theorems-4.15, 4.17 and 4.20.

Theorem 4.21. For positive integers Iy > 2, lo'> 2, let G @d@ be l1-extendable
and ly-extendable non-bipartite graphs, respectively.Then GG-is (I+1)-extendable,
where | = min{ly, 5 }.
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