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ABSTRACT 

61404204 : Major (CHEMICAL ENGINEERING) 
Keyword : Artificial neural network, Neural network based model predictive control, 
Phase change material, Thermal energy storage 

MR. CHANACHAI PHUMCHA-EM : DESIGN OF NEURAL NETWORK BASED 
PREDICTIVE CONTROLLER FOR PCM THERMAL ENERGY STORAGE THESIS ADVISOR : 
ASSISTANT PROFESSOR VEERAYUT LERSBAMRUNGSUK, D.Eng. 

Phase change material (PCM) is a promising alternative for thermal energy 
storage. Due to its latent heat storage nature, large amount of heat can be stored with 
less change of temperature comparing with sensible heat storage. There are many 
applications of PCM as solar heat storage unit. In application of solar water heating, 
water as heat transfer fluid (HTF) is used to collect energy from sunlight during daytime. 
In case excess energy is available, it will be stored or charged to PCM, and released or 
discharged for use during night-time. In PCM charging process, there is usually no need 
of temperature control. However, in PCM discharging process, target temperature of 
hot water for indoor use is required. The objectives of this research are development 
of ANN model for the PCM discharging process, and design of temperature control of 
hot water in PCM discharging process for indoor use. In development of ANN model, 
two approaches were proposed. The first approach was to use feedforward neural 
network directly to predict PCM behavior. Inputs of the ANN includes time, HTF inlet 
temperature, mass flowrate, and initial PCM temperature. In the second approach, 
feedforward neural network was used to predict parameters of nonlinear 
autoregressive exogenous (NARX) model which was used to predict PCM behavior. In 
design of temperature control of hot water in PCM discharging process, a bypass was 
additionally installed and used as manipulated variable. PI and MPC controllers were 
designed. Although both controllers could control the temperature, MPC provided 
better control performance. 
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CHAPTER I  
INTRODUCTION 

 

1.1 Motivation 
The beneficial aspect of thermal energy storage technology is an important 

way in conserving accessible energy and improving its utilization for a decade. The 
phase change materials (PCMs), utilized as latent heat storage units (LHSU), are 
promising candidates for heat storage mediums. The PCMs are becoming important 
thermal energy storage because of their ability to store large amount of energy. 
Recently, PMC based LHSU have gained considerable attention in many applications 
such as waste heat recovery [1, 2] solar water heating system [3-6], energy storage in 
buildings [7, 8],etc.  

In solar thermal collectors, where heat transfer fluid (HTF) is used to collect 
solar energy from sunlight, PCMs can be used to store excess energy at day time and 
release it to HTF at night. In discharging of energy to HTF, temperature control of HTF 
is needed to ensure the requirement of use (such as water heater, or steam 
generation). However, phase change of PCMs during thermal charging/discharging can 
alter values of thermal properties (e.g., heat capacity, thermal conductivity, etc.) and 
this makes temperature control of HTF a challenging task.  

 In this work, packed bed PCM is one of the many types of PCMs commonly 
used in heating storage [9-12]. As stated previously, temperature control of HTF is 
needed, hence, model predictive control (MPC) will be designed for this purpose. MPC 
is widely used in industries and a large number of implementation algorithms has been 
presented. MPC use process model to predict the future behavior of a plant. The most 
important advantage of the MPC technology comes from the process model itself 
which allows the controller to deal with an exact replica of the real process dynamics. 
Furthermore, the constraints with respect to input and output signals are considered 
in the control calculation, resulting in very rare or even no constraint violation. The 
addition of the constraints is the feature that most clearly decides MPC from other 
process control techniques, leading to a tighter control and a more reliable controller. 
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To design of temperature control system, it is needed to understand dynamic 
behavior of the PCM system. Although dynamic models of PCM system have been 
proposed in literatures[13], the resulting models are quite complex and not able to be 
used in design of model-based controller (e.g., model predictive controller). This 
motivates a need of simplified input/output models using artificial neural network 
(ANN)  

Artificial neural network (ANN) is non-linear systems whose structures are based 
on principles stimulated by the biological nervous systems of humans. An ANN consists 
of a large number of simple processors linked by weighted connections. By analogy, 
the processing units are called neurons. This technique has been applied in many 
disciplines of science and has produced primary results in many areas of modeling 
system.  

In this research, ANN model for PCM packed bed heat storage unit will be 
developed. The model of Shuangmao will be simulated and used for generation of 
datasets for ANN training. After that the proposed ANN model will be incorporated into 
model predictive controller (MPC) where the MPC will be designed for temperature 
control of HTF during discharging stage of the PCM system.  

 
1.2 Objective 
- Develop artificial neural network (ANN) model for PCM based thermal energy 

storage 

- Design of neural network-based model predictive controller for PCM based thermal 

energy storage 

1.3 Scope of research 
- Simulate packed bed thermal energy storage of PCMs and generate a number of data 
for ANN training datasets where input data are time, inlet HTF temperature, mass 
flowrate and PCM initial temperature. An output data is outlet HTF temperature. 
- Develop ANN model for packed bed thermal energy storage that are applicable for 
prediction of the system behavior. 
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- Develop ANN model for packed bed thermal energy storage that is suitable for MPC 
controller. 
- Design PI control for packed bed thermal energy storage. 
- Design neural network predictive control for packed bed thermal energy storage.  
 
 
1.4 Contribution of Research 
- ANN models of PCM packed bed thermal energy storage. 

 - Neural network predictive controller for PCM packed bed thermal energy storage. 
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1.5 Definitions 
Parameters Definitions 

𝑨𝒄 Cross area of the cylindrical tank 
𝒂𝒑 surface area of PCM capsules per volume (𝐦−𝟏 )  
𝒂𝒘  convective wall area of packed bed tank per volume (𝐦−𝟏)  
𝒄𝒇  specific heat of HTF (kJ kg−1K−1 )  
𝒄𝒍  specific heat of liquid phase PCM (kJ kg−1K−1)  
𝒄𝒔  specific heat of solid phase PCM (𝐤𝐉 𝐤𝐠−𝟏𝐊−𝟏)  
𝒉 Coefficient convective heat transfer 

𝒉𝒆𝒇𝒇  effective coefficient of convective heat transfer (𝐖 𝐦𝟐𝐊−𝟏 ) 
𝒉𝒘 convective coefficient of heat transfer between packed bed and ambient 

(W m2K−1) 
𝒌𝒇  thermal conductivity of HTF (𝐖 𝐦−𝟏𝐊−𝟏)  
𝒌𝒍  thermal conductivity of liquid phase PCM (𝐖 𝐦−𝟏𝐊−𝟏)  
𝒌𝒔 thermal conductivity of solid phase PCM (𝐖 𝐦−𝟏𝐊−𝟏)  

L solidification latent heat of PCM (𝐤𝐉 𝐤𝐠−𝟏)  

𝒒𝒕𝒐𝒕𝒂𝒍 total flow rate of HTF (𝐤𝐠 𝐦−𝟏) 
𝒒𝟏 mass flow rate through packed bed (𝐤𝐠 𝐦−𝟏) 
𝒒𝟐 mass flow rate through mixer (𝐤𝐠 𝐦−𝟏) 
𝑻𝒇 temperature of HTF (𝐂°)  
𝑻𝒔 
𝑻𝒊 

solidification temperature of PCM (𝐂°)  
initial HTF temperature (𝐂°) 

𝑻𝒊𝒏 inlet temperature of HTF (𝐂°)  
𝑻𝑷 temperature of PCM (𝐂°)  

𝑻𝒔𝒖𝒓 temperature of surroundings ( 𝐂° ) 
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Parameters Definitions 
𝒕 time (𝐬)  
𝒖 the velocity of the fluid flow (𝐦 𝐬−𝟏 )  
𝒙 location of the flow direction (𝐦)  

𝝆𝒇 density of HTF (𝐤𝐠 𝐦−𝟑 ) 
𝝆𝒍 density of liquid phase PCM (𝐤𝐠 𝐦−𝟑)  
𝝆𝒔 density of solid phase PCM (𝐤𝐠 𝐦−𝟑)  
𝜺 void fraction of packed bed 
∅ the solid fraction of PCM 

𝑷𝒔 splitter percent size 
𝒕 time (𝐬)  

𝑵𝒖 Nusselt number  
𝑷𝒓 Prandtl number 
𝑹𝒆 Reynold number  
𝑴𝒔  The ratio of the thermal resistance of solidified PCM 
𝑴𝒄 the cover of capsules to the thermal resistance  
𝑵𝒖 Nusselt number  
𝑷𝒓 Prandtl number 
𝑹𝒆 Reynold number  
𝑴𝒔  The ratio of the thermal resistance of solidified PCM 
𝒓𝒊 inner radius of capsule (m) 
𝒓𝒐 outer radius of capsule (m) 
𝒓𝒑  solid-liquid interface (m) 

 
 
 
 
 
 
 
 
 
 



  6 

CHAPTER II  
LITERATURE REVIEWS 

2.1 Overview 
Energy storage can be accomplished using a variety of technologies. Various 

methods for capturing and harvesting energy are used depending on the type of energy 

stored. Energy can be stored in a variety of ways, including magnetic, mechanical, 

chemical, and thermal. Thermal energy storage is investigated for the purposes of this 

study. The mechanisms used in each category divide the methods for storing thermal 

energy into three categories. Sensible heat storage is the oldest and most widely used 

mechanism. During the charging or discharging process, sensible heat storage systems 

make use of the heat capacity and temperature change of the storing material. The 

temperature of the storage material rises when energy is absorbed during the charging 

process and falls when energy is released during the discharging phase. Phase Change 

Materials are the materials used as storage mediums in Latent Heat storage 

mechanisms. PCMs are substances that release or absorb energy as they transition 

from one phase to the next. Solid to liquid and solid to solid phase transitions are the 

most commonly used for heating, cooling, and domestic hot water (DHW) applications, 

whereas solid to gas and liquid to gas transitions have high energy transfer but are 

rarely used due to the large volume change during phase change. 

Heat transfer in phase change materials (PCMs) during melting and solidification 

is a highly nonlinear phenomenon that can only be solved analytically in very simple 

situations. The most common solution to the phase change problem is to use finite 

difference methods, which discretize both space and time. The timestep and space 

discretization size are directly related to the accuracy of these methods. Short 

timesteps and small space discretization are required to obtain accurate results, 

implying high computational costs. 
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Artificial Neural Networks (ANN) appear to be a viable alternative for dealing 

with this issue. ANNs are artificial neurons that mimic the behavior of biological 

neurons. Neurons are highly interconnected cells that perform simple tasks individually 

but can solve complex problems when connected together[14]. Artificial neurons 

follow this pattern and are made up of simple mathematical functions that are linked 

to other similar neurons. The neurons' outputs are used as inputs for neurons in the 

next layer, resulting in a powerful parallel computing scheme. ANNs can deal with non-

linear problems, learn from examples, are fault tolerant, can handle noisy and 

incomplete data, and can solve problems quickly once trained [15]. 

 

2.2 Phase change materials and application  
Phase change materials are the thermal energy storage materials used in LHS 

systems (PCM). A wide variety of phase change materials with a wide range of melting 

points have been identified and thoroughly investigated. Organics (paraffins and fatty 

acids), inorganics (salt hydrates and metallic), and eutectic combinations of organic and 

inorganic materials are among the PCMs. Figure 1 shows a detailed classification of 

PCM for latent heat storage applications. 

 

Figure  1 Classification of PCMs [16]. 
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The selection of the PCM, which plays an important role in the development 

of the latent heat storage unit (LHSU), has a significant impact on the LHSU's success. 

The feasibility of using a specific PCM for an LHSU is determined by some of the PCM's 

desirable thermophysical, kinetic, and chemical properties. Table 1 lists the desirable 

thermal, physical, kinetic, chemical, and economic properties of PCM. Because no 

single material can possess all of the properties required for an ideal thermal storage 

medium, one must make do with what is available and attempt to compensate for 

the lack of physical properties through system design. As a result, researchers face a 

challenge in selecting appropriate PCM. 

Table  1 Desired properties of PCM[16, 17] 
Kinetic properties: - When freezing, use little or no supercooling (supercooling of more than a 

few degrees interferes with proper heat extraction). 
- Extremely high nucleation and crystal growth rates. The melt should 
crystallize at its thermodynamic freezing point, in other words. 
- Efficient heat transfer, particularly at isothermal temperatures. 

Chemical properties: - Non-corrosiveness to the construction material  
- No chemical decomposition after multiple freeze/melt cycles 
- There is no toxicity. 
- Non-explosive, non-poisonous, non-flammable, non-polluting 

Physical properties: - Low volume change during phase transition  
- Low volume change during phase transition 
- Favorable phase equilibrium  
- High density for smaller container volume 
- Low vapor pressure to reduce the problem of containment 
- Consistency in the congruent throughout the entire thermal cycle 

Thermal properties: - High latent heat of fusion per unit volume for better heat transfer  
- High thermal conductivity of solid and liquid phases for better heat 
transfer 
- Increased specific heat for more sensible heat storage 

Economic criteria: - Sufficient supply 
- Low cost  
- Ease of recycling and treatment 
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PCM's application Shell-tube heat exchangers, flat plates, evacuated tubes, 

packed beds, and other devices can all benefit from it. In the next section, we'll go 

over the previous research. A heat storage system with PCM spherical capsules in a 

packed bed configuration was numerically studied by Yang et al.[18]. Natural 

convection was modeled using effective conductivity, and phase change was modeled 

using the apparent heat capacity method, which assumes a large heat capacity in the 

phase change region. An in-house code described the numerical model, and the 

tridiagonal matrix algorithm was used to solve the discretized equations. The capsules 

are connected to a flat plate solar collector in series, according to the PCM freezing 

temperature. The chosen HTF is heated in the collector before being transferred to 

the packed bed configuration. The finite differences method was used to model and 

calculate the heat transfer mechanisms between the HTF and the capsules. The energy 

and exergy efficiencies of different PCMs in a packed bed configuration were compared, 

and it was discovered that the multiple-type packed bed melts before the single-type, 

and the temperature is also higher. The collector efficiency of the multiple type is also 

higher. The tested methods for raising the performance of a solar-PCM apparatus are 

shown in Fig. 2. 

 

Figure  2. The tested methods for raising the performance of a solar-PCM apparatus. 
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Deng et al. [19] tested the performance of a prototype tank and an improved 

version of it, both of which had a sodium stearic trihydrate PCM layer, in the hot water 

tank of a solar DHW and auxiliary heating system. As shown in Fig. 3, the water volume 

was 148 l and the PCM mass was 35 kg, positioned around the tank between the water 

and the insulation. One spiral Heat exchanger (HE) was used for solar charging and the 

other for charging an electric heater. The solar HE must be about 10 m long, and the 

electric heater HE must be about 20 m long, according to the results. The PCM's heat 

content was lower than expected, and its properties remained stable over the course 

of a three-month test. Lastly, 

 

 

 

 

 

 

 

 

Figure  3 A 1.8 m tall water storage tank with a layer of PCM around it for DHW 
supply [19]. 
 

The addition of PCM to solar DHW systems is a topic of ongoing research, which can 

be done either in the collector itself (integrated solar collector) or separately from the 

collector (non-integrated). The two types of PCM addition in solar collector systems 

are shown in Fig. 4. 
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Figure  4 Solar DHW systems combined with PCM: (a) Integrated and (b) Non-
Integrated 
 

2.3 Solar thermal energy storage with PCM modelling 
Thermal energy storage (TES) has been highlighted as a technology that may 

assist in the management and control of these systems by resolving this mismatch or 

by using peak load shifting techniques Latent thermal energy storage systems have 

been widely explored and are regarded to be more energy dense, efficient, and 

compact [20, 21]. In this context, packed bed latent heat storage systems have 

garnered considerable attention due to the large area of contact between the storage 

(spheres of phase change material) and the heat transmission fluid (HTF). These packed 

bed TES systems have been applied to a variety of applications, including solar thermal 

energy storage [22], compressed air energy storage [23], solar cooling, combined heat 

and power plants (CPW), low temperature storage systems for central air conditioning, 
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energy efficient buildings, and waste heat recovery systems . Optimization of the design 

and control of such TES systems is required to overcome the technology's technical 

and economic constraints. Numerous experimental studies have been conducted in 

this area to determine the system's thermal properties during freezing and melting 

processes. Cho and Choi [24][conducted a parametric study based on Reynolds 

number and inlet temperature to compare the performance of paraffin in a packed 

bed system to that of a system using water as the storage material. They concluded 

that the average heat transfer coefficient for paraffin was up to 40% greater than that 

of water during both freezing and melting; additionally, they observed that the average 

heat transfer coefficient for paraffin was up to 40% greater than that of water. 

Nallusamy et al. [25] also used paraffin in a packed bed system to investigate the effect 

of porosity and HTF flow rate on the system's performance. The authors concluded 

that the use of packed bed phase change materials (PCM) results in a smaller storage 

tank when compared to conventional sensible storage tanks. Oró et al. [26] also 

explored stratification inside the tank experimentally, indicating that the use of a latent 

heat storage packed bed promotes stratification during the discharge process. 

Despite the experimental results, the complicated transient nature of the latent 

packed bed TES system, as well as the expensive cost of the setups, necessitates the 

use of numerical 3 models to further investigate the system's performance. Numerous 

models for numerically forecasting the thermal performance of a packed bed Latent 

Thermal Energy Storage (LTES) system (Figure 5) based on a cylindrical tank filled with 

spheres containing PCM have been developed. 
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(2.1) 

 

Figure  5 Sketch of a packed bed thermal storage system [27] 
 

Single phase models 

The fluid and solid phases were regarded as a single element in single phase 

models, hence both phases were discretized. The following is an example of an energy 

equation: 

 

The accumulative term of the heat transfer fluid and the PCM are the first two 

terms of the formula, respectively. The HTF's convective term is represented by the 

final term on the left, while the two terms on the right represent conduction in the 

axial and radial directions, respectively. In the border nodes, heat losses to the 

environment may be included. 
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(2.2) 

(2.3) 

The assumption that the HTF and PCM are at the same instantaneous temperature is 

only true when utilizing solid particles with extremely high thermal 6 conductivity, 

hence this technique is not often used for characterizing PCM packed bed systems. 

The restricted thermal conductivity of the PCM is well known, with paraffin and fatty 

acids having approximately 0.2 W/m.K and salts hydrate having roughly 0.6 W/m.K [28]. 

Schumann’s model[29]: 

This two-phase model is based on one-dimensional heat transfer and ignores 

heat conduction in both the fluid and solid phases. The energy conservation equations 

are stated separately for the HTF and the solid particles, as in all two-phase models, 

and must be solved concurrently. 

Heat transfer fluid: 

 

Phase change material: 

 

The primary limitation of Schumann's model is that it does not account for 

thermal diffusion within solid particles; as a result, no thermal gradients are considered 

in the spheres, and heat conduction is not taken into account in the model because 

only convection is used to drive the heat transfer process. However, as previously 

mentioned, PCMs have a poor thermal conductivity, which means that heat 

conduction thermal resistance plays a crucial role in heat transmission during both 

charge and discharge operations. As a result, some writers have modified Schumann's 

model to account for conductive thermal resistance by included the sphere's 

conductive thermal resistance in the convective heat transfer at the solid-fluid 
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(2.4) 

(2.5) 

(2.6) 

(2.7) 

interface. Regin et al. [30] utilized a modified version of Schumann's model to 

investigate the behavior of a packed bed latent heat thermal energy storage system 

utilized in a solar water heating system. Using an outer surface overall heat transfer 

coefficient U0, the model incorporates the conductive resistive layers of the shell and 

solid sections of PCM into the energy equation at the solid-fluid interface. This 

coefficient changes depending on whether the spheres are entirely liquid, totally solid, 

or in the middle of a phase transition. It's also defined as follows: 

 

Concentric dispersion model: 

The packed bed is treated as an isotropic porous medium consisting of 

independent spherical particles in this technique, which is based on a two-phase 

model. This is the sole method for resolving the temperature distribution inside solid 

particles. Axial heat conduction in the heat transfer fluid and/or the PCM are examples. 

As a result, the energy conservation equation is (PCM at border and PCM within the 

sphere, respectively): 

 

The cylindrical container is split into elements in the axial direction in 

concentric dispersion models, and the fluid temperature is assumed to be uniform. All 

spheres of the same height are assumed to act equally, and just one sphere is typically 

discretized and solved, as illustrated in Figure6. Furthermore, heat losses to the 

environment may be easily included in such models. 
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Figure  6 Sketch of discretized domain in Concentric Dispersion Method [36] 
 

2.4 PCM thermal energy storage with artificial neural network 
Al Abdallat [31] was studied performance of a thermal energy storage system with and 

without a phase change material was investigated using three Artificial Neural Network 

models (Feedforward, Elman, and Nonlinear Autoregressive Exogenous (NARX) 

networks). The neural network was trained using previously collected experimental 

data. The input layer of the network used time, mass of water, mass flow rate, number 

of balls containing the PCM, hourly solar radiation, ambient temperature, and inlet 

water temperature. The temperature of the outlet water was in the output layer. The 

architecture of ANN used for this study shown in Fig. 7. The obtained results were 

compared to experimental data previously obtained. The Elman, feedforward, and 

NARX models' coefficients of determination were found to be 0.95006, 0.99411, and 

0.88185, respectively, indicating that the Artificial Neural Network technique could be 

used to estimate the outlet temperature with excellent accuracy. The results revealed 

that the feedforward model had the best ability to estimate the required performance, 

while the NARX and Elman networks had the worst. 



  17 

 

Figure  7 The architecture of ANN used for this study [31]. 
 

Ermis [32], the author applied a feed-forward back-propagation artificial neural 
network (ANN) algorithm for heat transfer analysis of phase change process in a latent 
heat thermal energy storage system. ANNs are modeled as a multi-input, it consists of 
heat transfer area, inlet heat transfer fluid temperature, Reynold number and time. 
The output of ANN model is total energy storage show in figure 8. The trained ANN 
model with an absolute mean relative error shows good performance to predict the 
total amount of heat stored compares with experimental data. In 2007, I. Taymaz and 
Y. Islamoglu studied the ability of an artificial neural network (ANN) model for heat 
transfer analysis in a converging–diverging tube using back propagation learning 
method, the most common method for ANNs, was used in training and testing neural 
network that was trained by selected values of the Reynolds numbers, Prandtl 
numbers, half taper angle, aspect ratio and Nusselt number. This result showed a 
respectable neural network model for laminar air flow in converging-diverging tube. 
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Figure  8 A three-layer feed-forward back-propagation neural network for heat 
transfer analysis. 
 

Delcroix [33], The purpose of this article is to demonstrate how Artificial Neural 

Networks (ANNs) may be used to simulate the heat capacity of Phase-Change Materials 

(PCMs) using data from Differential Scanning Calorimetry (DSC) tests and experiments. 

Coefficients of determination of 0.99 and 0.66 are found utilizing two independent 

variables (DSC test) and four independent variables (experiments) to mimic the 

dependent variable, i.e., PCM heat capacity. The independent variables include the 

PCM temperature and heat transfer properties such as the rate of heating and cooling, 

the duration of heating and cooling, and the prior condition (temperature and heat 

capacity). These findings demonstrate that ANNs may be utilized to simulate PCMs 

when valid independent variables are included. 

 

 

 

 

Figure  9 The procedure for generating an ANN using experimental data 
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Baby and Balaji [34],The time required to attain a set-point temperature is 

determined for aluminum finned heat sinks loaded with the phase transition material 

n-eicosane. To forecast operation times, the collected results are combined using a 

feed-forward back-propagation artificial neural network. The optimal design that 

optimizes thermal performance is then determined using the artificial neural network 

prediction. Four distinct plate-fin heat sink designs filled with phase change materials 

with varying aluminum volume percentages were studied experimentally. 

 

Figure  10 the neuron architecture. (a color illustration is accessible online) [34] 
 

2.5 Neural network-based model predictive controller 
 



  20 

(2.8) 

(2.9) 

Draeger, Engell, and Ranke [35] demonstrated how to manage the pH in a 

laboratory-scale neutralization reactor using a neural network-based model predictive 

control technique. They manage the pH-value using a feedforward neural network as 

the nonlinear prediction model in an expanded DMC method. The training algorithm 

is a mixture of a backpropagation method and an adaptive backpropagation method. 

This combination has been fine-tuned to be very resilient against being trapped in local 

minima and to be completely oblivious to the initial settings of the network's weights.  

Lazar and Pastravanu [36], The design and implementation of a neural network-

based predictive controller for governing the dynamics of non-linear processes are 

investigated. The benefits of utilizing neural networks to describe non-linear processes 

are discussed, as well as how to design neural predictors. The author demonstrated 

that a neural predictive controller application may eliminate the difficulties associated 

with non-linear predictive control applications by simplifying the building of non-linear 

models and providing a rapid, reliable solution to the control algorithm. The controller 

is designed and implemented for a plant that is commonly referred to in the literature. 

The results of simulation tests are presented to illustrate the efficacy of the suggested 

strategy.  

Yu and Zhu [37] developed an intriguing way of nonlinear control using 

predictive controllers. The approach is based on a digital recurrent network (DRN) 

model of the controlled system, which is used to forecast the future behavior of the 

output variables, as seen in Figure 11. Where the network's output is located: 

    

ym(k) = ∑ ωivi + b
nH
i=1                      

The cost function that minimizes the difference between future object output values 

and intended output values is as follows:   

J(k) = ∑ [r(k + 1) − ym(k + 1)]2 + α ∑ Δu2(k + l − 1)
Nc
i=1

NH
i=1     
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Finally, the future object outputs and their intended values are stated by. The function 

ga of Matlab's Genetic Algorithm Optimization Toolbox is used to determine the 

optimal control signal values. 

 
 

Figure  11 Digital recurrent network (DMC). 
 

Hang, Hao, and Yu-He [38], The NARX network is a dynamical neural design that 

is often used to describe nonlinear dynamical systems' input-output relationships. 

When used for time series prediction, the NARX network is implemented as a 

feedforward time delay neural network (TDNN), which eliminates the feedback loop of 

delayed outputs, significantly lowering its predictive ability. The purpose of this 

research is to demonstrate how the NARX network's original design can be readily and 

effectively used to time series prediction by using embedding theory to rebuild the 

NARX network's input. We assess the suggested methodology using real-world data 

from a Co2 compressor. The findings demonstrate that the suggested technique 

outperforms established neural network-based predictors, such as the TDNN design, 

on a consistent basis. 
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Figure  12 NARX network with du delayed inputs and dy delayed outputs (z-1 is the 
unit time delay). 
 

 

CHAPTER III  
THEORY 

3.1 Solar thermal energy storage with PCM 
Due to its increased heat storage capacity and more isothermal behavior during 

charging and discharging, latent heat storage or thermal energy storage with PCM is one 

of the most efficient ways for storing thermal energy. As a consequence, phase change 

materials are now frequently used in practice to improve the storage capacity of a 

variety of thermal energy systems. Latent heat storage materials are phase change 

materials (PCMs). The chemical bonds inside the PCM break apart when the source 

temperature increases, causing the material to transition from solid to liquid (as is the 

case for solid-liquid PCMs). Because the phase transition is an endothermic (heat-

seeking) process, the PCM absorbs heat. When the phase transition temperature is 

achieved, the heat stored in the storage medium starts to melt. The temperature is 

then maintained at the same level until the melting process is completed. The heat 

accumulated during a material's phase shift (melting process) is referred to as latent 

heat. The advantages of latent heat storage are as follows: a) it is possible to store 

large amounts of heat with only small temperature changes, resulting in a high storage 

density; and b) because the change of phase at a constant temperature takes some 

time to complete, temperature variations can be smoothed. When comparing latent 
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(3.1) 

and sensible heat storage, it can be shown that latent heat storage may achieve storage 

densities that are generally 5 to 10 times greater. The volume of PCM storage is two 

times that of water. In a broad temperature range, latent heat storage may be 

exploited. A vast variety of PCMs have been found to melt at any needed heat of 

fusion. The PCM utilized in thermal storage system design should have appropriate 

thermophysical, kinetics, and chemical characteristics. 

 

3.2 Numerical optimization problem 
3.2.1 Levenberg–Marquardt backpropagation algorithm 
The Levenberg-Marquardt algorithm combines these two approaches and 

alternates between them based on the requirements and progress toward reducing 

the Least Mean Squares goal function defined in below. 

 

When a Gauss-Newton Method is used for small values of the parameter and 

a gradient descent update is used for big values of the same parameter. That 

parameter is first set to a big value, resulting in short steps in the sharpest descent 

direction. If one iteration's approximation causes a worse mistake, then is raised. The 

Levenberg-Marquardt algorithm approaches the Gauss-Newton technique, converging 

quicker to a local minimum of the objective function as the solution approaches [39].If 

any of the following circumstances are satisfied, the Matlab implementation of the LM 

technique will come to a halt: 

1. The maximum number of epochs (iterations of training) has been achieved. 

2. The time limit has been exceeded 

3. The performance objective has been accomplished. 

4. The performance gradient falls below a certain threshold. 
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5. λ exceeds λmax 

6. Validation performance has improved for an extended period of time. 

This strategy has shown to be quite practical, and it has become the de facto 

standard for optimizing medium-sized nonlinear models. It will be significantly quicker 

than the gradient descent approach for medium-sized networks with a few hundred 

parameters. However, since each iteration involves a matrix inversion, the expense of 

the inversion exceeds the method's benefits for bigger networks with more parameters. 

Despite the fact that it approximates the Hessian matrix, the cost of the inversion (O 

(N3), where N is the number of parameters) demands a lot of memory for large 

matrices [39]. 

3.2.2 Bayesian regulation backpropagation algorithm 
The backpropagation neural network (BPNN) and Bayesian regularization learning 

technique are discussed in this section. A classical neural network design is modeled 

after the human brain's function. The neurons in the brain and their connections create 

an equivalence relation with the neurons in the neural network and their associated 

weight values (w ). In a single layer network with many neurons, each element ju  of 

the input vector is assigned a weight ijw  and is linked with each neuron i . Generally, 

a constant scalar component termed bias ib corresponding to each neuron is provided 

to boost the network's flexibility. This bias ib  is multiplied by a scalar input value (in 

this case 1,) and added to the weighted sum ij jw u of the vector components ju  to 

get a net input in . This net input I is then given to an activation function f  

(alternatively referred to as a transfer function), which generates the output value ia . 

A neural network, in general, consists of two or more layers. By including a hidden 

layer of neurons between the input and output layers, a multi-layer neural network, 

also known as a shallow neural network, is formed. Additionally, the addition of several 

hidden layers to a multi-layer neural network is referred as be a deep neural network. 
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(3.2) 

(3.3) 

Traditionally, a BPNN model, which is a kind of multi-layer neural network, 

consists of three levels: an input layer, one or more hidden layers, and an output layer, 

as seen in Figure 13. The input layer links the R-element input vector u with the input 

weight matrix 1W  and the first bias vector 1b to provide an effective input 1n for the 

activation function lf , which generates an output vector la . The first layer's output 

vector la serves as the input to the hidden layer, where it is coupled with the hidden 

layer's weight matrix 2W  and bias vector 2b . Finally, the output of the hidden layer is 

fed into the output layer, which produces a predicted output 3a  with weight matrix 
3W  and bias vector 3b . The weight matrix lW  and bias vector lb  for layer l (where = 

1, 2,…,n) of a neural network with a total of l layers may be expressed as: 

 

where lN  signifies the number of neurons in layer l and ln  signifies the effective input. 

 

The number of input ( 1N ) and output ( 3N ) neurons is proportional to the 

number of input and output vectors, respectively. The quantification of the weights 

and biases is, however, determined by the number of neurons in the hidden layer     (
2N ). The best network topology is indicated as 1 2 3N N N− − by the optimum number 

of neurons in each layer needed for training. Backpropagation neural networks utilize 

a variety of activation functions, including hard limit, linear, sigmoid, log-sigmoid, and 

hyperbolic tangent sigmoid. In the present study, linear activation functions are used 

in all layers to ensure that the output equals the input, i.e. la  = ln . 
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.  

 

. 

Figure  13 A characteristic backpropagation neural network with input, hidden, and 
output layers[40].  
 

3.3 Artificial Neural Networks 
The single-input neuron, as seen in Fig.14, is the most basic building block for 

neural networks. In this neuron model, there are three distinct operations that take 

place. The transition function, the weight function, and the biased net input function. 

To begin, the scalar input p is multiplied by the scalar weight w to produce the scalar 

product wp. Second, the net input n is formed by adding the weighted input wp to 

the scalar bias b. The prejudice acts as a weight by shifting the feature f to the left by 

a number b. Finally, the net input is fed into the transfer function f, which generates 

the scalar output a. The weight function, net input function, and transfer function are 

the names provided to these three processes. Some networks calculate the difference 

between them, |w-p|, rather than calculating the weight times the data. Instead of 

summing the bias to the weighted input, most networks use multiplication. However, 

the method we mentioned is the most widely known, and it is the one we would use 

in this project. Training should be used to change the weight w and the bias b. The 

teaching of a neural network is based on this foundational principle. We can get 

optimal behavior from the neural network by changing these parameters in order to 

estimate or match a complicated goal feature. Figure 15 shows the structure of a single 

neuron with a vector input p rather than the scalar input mentioned previously. The 

scale of the variable is described by R. The weight W is an R-dimensional column matrix 

that multiplies the input vector p in a dot product. 

1,1 1 1,2 2 1,... R Rn w p w p w p b= + + + + would be the corresponding scalar. The majority 
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of the systems continue to operate as they did in the single neuron model. The bias 

is applied to the weighted input before being sent to the output a through the desired 

transfer feature. The contribution of a cell with more than one neuron is a vector. This 

creates a layer with the weighting, bias, and transfer mechanism defined. This layer 

usually does not have the input layer or the vector p. The same processes occur in 

each layer of a multi-layered network, except that the output of the first layer is now 

bound to the input of the second, and the adjustable weights shape a matrix rather 

than a vector. 

 

 

 

 

 

 

 

 
Figure  14 Single Neuron Model  
 

 

 

 

 

 

 

 

 

 

 

Figure  15 Layout of a single neuron with a vector input  
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3.3.1 Transfer function 
The Linear Transfer Function shown in Fig. 16 and the Hyperbolic tangent sigmoid 

transfer function shown in Fig. 17 are two of the more widely used transfer functions 

defined and used by the Matlab program, which we use for this work. Since it is 

differentiable, the Log-Sigmoid transfer feature is commonly used in the inner secret 

layers. It compresses the inputs, which could vary from 0 to 1, to a range of 0 to 1. In 

the output layer, the Linear Transfer mechanism is used. 

 

 

 

 

 

 
Figure  16 Linear Transfer Function  
 

 

 

 

 

 

Figure  17 Tan-Sigmoid Transfer Function  
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3.3.2 Feed-forward neural network 
Artificial neural networks, as their name suggests, are modeled after their 

biological counterparts, the brain and nervous system. In terms of structure and 

information processing, the biological brain differs significantly from the ordinary digital 

computer. In many aspects, the biological brain (or, more specifically, the human brain) 

is significantly more powerful and superior than traditional computers. The capacity to 

"learn" and "adapt" is the most fundamental distinguishing attribute of a living brain, 

which a traditional computer lacks. Traditional computers carry out particular tasks 

depending on the instructions, sometimes known as "programs" or "software," that are 

placed into them. A "neuron" is the basic building unit of neural networks. A neuron 

may be thought of as a kind of processing unit. Neurons in a neural network are linked 

together by "synaptic weights," or "weights" for short. Each neuron in a network receives 

"weighted" information from the neurons to which it is connected via these synaptic 

connections, and produces an output by passing the weighted sum of those input 

signals (either external inputs from the environment or outputs from other neurons) 

through a "activation function." “Feed-forward neural networks” and “recurrent neural 

networks” are the two basic types of network topologies based on the kind of 

connections between the neurons. The network is referred to as a "feed-forward neural 

network" if there is no "feedback" from the outputs of the neurons to the inputs 

throughout the network. Otherwise, the network is referred to as a "recurrent neural 

network" if there is a synaptic link from the outputs to the inputs (either their own 

inputs or the inputs of other neurons). Layers are often used to organize neural 

networks. Feed-forward neural networks are classified as either "single layer" or "multi-

layer" based on the number of layers. 

3.3.3 Nonlinear Autoregressive Model with Exogenous Inputs (NARX) 
The NARX (Nonlinear Autoregressive Model with Exogenous Inputs) is a kind of 

discrete-time nonlinear system that can be expressed mathematically as 
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(3.4) 

(3.5) 

(3.6) 

 

where ( )u n  and y( )n   denote the model's input and output at discrete 

time step n , respectively, and ud +1 and yd +1, ud and yd , denote the input-memory 

and output-memory orders. The previous equation can be written as following 

equation in a compact shape. 

 

The nonlinear mapping [ ]f   is commonly unknown and can be approximated 

using a regular Multi-Layer Perceptron (MLP) network, for example. This gives rise to 

the NARX network, an influential family of dynamical models that has been shown to 

be computationally equivalent to Turing machines[41].  The preparation of the NARX 

network will take place in one of two ways: 

Series-Parallel (SP) Mode; Open Loop 

In this approach, the output regressor is built only by the system's actual values. 

Output: 
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(3.7) 

 

Figure  18 Architecture of the NARX network in open loop mode [41] 
 

Parallel (P) Mode; Closed Loop 

Estimated outputs are sent back and incorporated in the output's regressor in this case: 

 

The structure of a one hidden layer NARX network in closed loop mode, which is 

generally used for testing or multi-step prediction, is shown in Fig. 20. As part of the 

conventional NARX design, the output is transmitted back to the feedforward neural 

network's input. The series-parallel architecture may be used to train the network in 

the open-loop mode, as illustrated in Fig. 19, since the network output is accessible 
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during training. You can only obtain one-step ahead predictions in prediction mode 

with an open-loop architecture, but if you want a more dynamic multi-step ahead 

prediction, where the first output yt+1 is fed back into the input and the process 

repeats for a set number of cycles, you can achieve a multi-step ahead prediction, 

however the accuracy will drop as the number of steps increases. All of the training, 

including validation and testing, is done in an open loop. We can convert the network 

to a closed-loop mode to conduct multistep-ahead predictions when we've finished 

building it in this manner. In order to improve the accuracy of multi-step forward 

predictions, the network's training in the open-loop mode must reduce mistakes (one-

step-ahead). 

 
 

Figure  19 Architecture of the NARX network in closed loop mode [41] 
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3.4 proportional–integral–derivative (PID) controller 
PID controller is combination of proportional, integral and derivative control 

actions, also called three-mode controller.  

Proportional (P) Control: In this control action the output of controller is 

proportional to the error. A proportional controller continuously changes the 

manipulated variable according to error. The main disadvantage of proportional 

only control action is that it cannot keep the process variable on set point. The 

difference between controlled variable and desired set point is called steady state 

error or offset. 

Integral (I)/Reset Control Action: The steady state error of proportional 

controller is removed (reset) in an integral controller. In integral control action the 

controller output is changed at a rate proportional to error signal. The integral 

control action continuously looks at the total past history of error by continuously 

integrating the area under the error curve. 

Derivative (D) Control Action:  In this control action, the controller output is 

function of the rate at which the error is changing. An advantage of using derivative 

control action is that it responds to the rate of change of actuating error and can 

produce a significant correction before the magnitude of actuating error becomes too 

large. The proportional mode considers the present state of the error, and integral 

control looks at its past history, while the derivative mode anticipates its future state 

and acts on that prediction. Derivative control anticipates process error before they 

have evolved and takes corrective action in advance.  

Proportional-Integral-Derivative (PID) Controller: A standard PID controller is 
represented as: 

𝑚 = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇
∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+ 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) 
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(3.9) 

(3.10) 

Transfer function of PID controller is given by 

𝐺(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) = 𝐾𝑝 + 𝐾𝑖

1

𝑠
+ 𝐾𝑑𝑠 𝑊ℎ𝑒𝑟𝑒, 

Kp = Proportional gain 
Ki = Proportional gain, 
Kd = Proportional gain, 
Ti = Integral time constant and 
Td = Derivative time constant 

3.5 Model predictive controller 
Model predictive control can ensure optimal process under input/output 

constraints. MPC uses a dynamic model of the process system under consideration to 

predict and optimize the future behavior of the process over a moving horizon. The 

optimization block calculates a sequence of control actions at each time instant. As 

new process measure at each sampling instant, model parameters are updated and 

then, the optimization block is implemented. The facility of the MPC to handle 

constraints and operate with multiple inputs and outputs analytically 

The MPC regularly minimizes the cost function J was calculated by  

𝐽 = ∑ (𝑦𝑟(𝑡 + 𝑗) − 𝑦̂(𝑡 + 𝑗))2 + 𝜌 ∑(𝑢(𝑡 + 𝑗 − 1) − 𝑢(𝑡 + 𝑗 − 2))2

𝑁𝑢

𝑗=1

𝑁𝑚𝑎𝑥

𝑗=𝑁𝑚𝑖𝑛

 

where 𝑡 is the current sampling interval, 𝑡 + 1 is a future sampling,𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥 

and Nu are defining the horizons over which the tracking error and the control 

increments are estimated. The u variable is the manipulated plant input, yr is the 

reference trajectory, and 𝑦̂ is the process model response. The ρ value is contribution 

that the sum of the squares of the control increments. The process constraints on the 

manipulated and controlled variables as follows: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡 + 𝑗 − 1) ≤ 𝑢𝑚𝑎𝑥         𝑗 = 1, … , 𝑁𝑢 

∆𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡 + 𝑗 − 1) ≤ ∆𝑢𝑚𝑎𝑥         𝑗 = 1, … , 𝑁𝑢 

Output variable constraint is given as: 

𝑦𝑚𝑖𝑛 ≤ 𝑦̂(𝑡 + 𝑗 − 1) ≤ 𝑦𝑚𝑎𝑥         𝑗 = 𝑁𝑚𝑖𝑛, … , 𝑁𝑚𝑎𝑥 
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CHAPTER IV  
RESEARCH METHODOLOGY 

4.1 Equipment and Software 
4.1.1 Laptop (ACER inter(R) core (TM) i5-8300H CPU @ 2.30GHz 8.00Gb) 

4.1.2 MATLAB  

4.2 PCM thermal energy storage modelling 
4.2.1. Model description 
The schematic diagram of the solar heat storage system is shown in Fig. 20. The 

TES model was designed by Shuangmao Wu et al. Based on a packed bed, a cylindrical 
storage tank containing spherical capsules filled with PCM (paraffin). The process is 
developed by adding a splitter, mixer, and domestic electric water heater to control 
the packed bed's temperature outlet. The splitter was split HTF into two streams to 
receive energy at a packed bed and then combined with another stream at the mixer. 
After that, the mixer's output temperature is measured to adjust the splitter faction to 
the control process. 

 
 
 
 
 
 
 
 
 
 
 

 
 Figure  20 Solar thermal energy storage using PCM system 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

4.2.2 PCM thermal energy storage 
    The PCM for TES is a cylindrical packed bed tank modeled as a state of the 
discharging process. The spherical capsules in the packed bed are received energy by 
cool water as HTF, and the PCM in the spherical capsules change the state previously 
from liquid to solid. The energy equations of packed bed modeling are based on the 
following assumptions: 
    -The physical properties of the PCM and HTF are constant. 
    -Temperatures of PCM and HTF only differ along the axial direction. 
    -The natural convection in the PCM is neglected. 
    -The PCM does not change the temperature during phase change. 
    -The velocity profile is considered fully developed flow in an axial direction.  
The temperature behavior of packed bed is explained through main equations which 

presented below. 

    Heat transfer fluid: 

𝜌𝑓 ∙ 𝑐𝑓 ∙ 𝜀
𝜕𝑇𝑓

𝜕𝑡
+ 𝜌𝑓 ∙ 𝑐𝑓 ∙ 𝜀 ∙ 𝑢

𝜕𝑇𝑓

𝜕𝑥
= 𝑘𝑓 ∙ 𝜀

𝜕2𝑇𝑓

𝜕2𝑥
+ ℎ𝑒𝑓𝑓 ∙ 𝑎𝑝(𝑇𝑝 − 𝑇𝑓) − ℎ𝑤 ∙ 𝑎𝑤(𝑇𝑓 − 𝑇𝑠𝑢𝑟)    

Phase change material (PCM): 

    Liquid phase: 

𝜌𝑙 ∙ 𝑐𝑙(1 − 𝜀)
𝜕𝑇𝑝

𝜕𝑡
= ℎ𝑒𝑓𝑓 ∙ 𝑎𝑝(𝑇𝑓 − 𝑇𝑝)       

    

    Solidification process: 

𝜌𝑠 ∙ 𝐿(1 − 𝜀)
𝜕∅

𝜕𝑡
= ℎ𝑒𝑓𝑓 ∙ 𝑎𝑝(𝑇𝑠 − 𝑇𝑓)       

  

    Solid phase: 

𝜌𝑠 ∙ 𝑐𝑠(1 − 𝜀)
𝜕𝑇𝑝

𝜕𝑡
= ℎ𝑒𝑓𝑓 ∙ 𝑎𝑝(𝑇𝑓 − 𝑇𝑝)       

 The following are the beginning and boundary conditions for the above 

equations. The temperatures of HTF and PCM are above the solidification temperature 

at the start of the discharging procedure. So, 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(t 0) Tf iT = =  

(t 0) Tp iT = =  

where Ti  denotes the PCM and HTF starting temperatures. The fluid is 
expected to be at constant temperature at the packed bed's input. Therefore, 

(x 0) Tf inT = =  

HTF's inlet temperature is denoted by Tin . In the case of x> H, the temperature 
of HTF at the bed exit is assumed to be constant. Therefore, 
Beek [42] created the form of correlation employed in this study for the heat transfer 
coefficient of spherical capsules and HTF for the situation of capsules placed in a 
random pattern. 

1/3 1/3 0.8 0.83.22Re Pr 0.117Re PrNu = +  
where Nu, Re, Pr are Nusselt number, Reynolds number and Prandtl number 

of HTF, respectively. Finally, the convective heat transfer coefficient was calculated. 

fk Nu
h

d


=  

The mean velocity in the bed was determined by 

total

c

q
u

A
=


 

where Ac and qv are the cross area of the cylindrical tank and flow rate of HTF, 
respectively. 

Heat transmission to HTF should flow via the lid of spherical capsules during the 
discharging process. The thermal resistance of solidified PCM and the spherical capsule 
must be taken into account when calculating the heat transfer between the HTF and 
PCM. As a result, the effective coefficient is shown. 

1eff
c s

h
h

M M
=

+ +
 

(r )c o o i
c

h c i

R h r r
M

R k r

 −
= =


 

2 (r )o i ps
s

h s i p

h r rR
M

R k r r

 −
= =

 
 



  38 

(4.11) 

(4.12) 

(4.14) 

where Ms and Mc are the thermal resistance of solidified PCM and capsule 
covers, respectively, to the thermal resistance owing to convection on the capsules' 
exterior surface. 
 

4.2.3 Splitter and mixer 
As the dynamic behavior of HTF temperature in PCM heat storage unit is quite 

fast, use of mass flow rate of HTF for control of the HTF temperature seems to be 

inappropriate. Furthermore, change of the mass flow rate can affect the indoor use. 

Therefore, a bypass is installed for temperature control. The bypass can be modelled 

by introducing energy balances around the splitter and mixer. As the dynamic of the 

splitter and mixer is very fast, steady-state models can be used and written as, 

  Splitter main stream into two streams: 

𝑞1 =
(100−𝑃𝑠)𝑞𝑇𝑜𝑡𝑜𝑙

100
                                                                                                                      

𝑞2 =
𝑃𝑠∙𝑞𝑡𝑜𝑡𝑜𝑙

100
                                         

    Mixer modeling: 

𝑇𝑚𝑖𝑥 =
𝑇𝑓∙𝑞1+𝑞2∙𝑇𝑖𝑛

𝑞𝑡𝑜𝑡𝑎𝑙
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    The parameters used in the simulation and operation of PCM thermal energy storage 

are listed in Table 2.  

Table  2 Parameters used in PCM thermal energy storage simulation [18] 
Parameter Value 

ρf 997 kg/m3 
Cf 4.186 kJ/ (kg K) 
ρl 778 kg/m3 
Cl 2.38 kJ/ (kg K) 
ρs 861 kg/m3 
Cs 1.85 kJ/ (kg K) 
ks 0.4 W/ (m K) 
kl 0.15 W/ (m K) 
Ts 60 ℃ 
L 213 kJ/kg 
ε 0.45 

qtotal 10 kg/min 
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(4.15) 

(4.16) 

4.3 Design of Artificial neural network model 
4.3.1 Feed-forward neural network model 

The development of ANN is to mimic the biological neural network of the human brain 

in problem solving processes. ANN is a black box model that connects the inputs to 

the outputs where the relationship between them is defined by their weights. ANN can 

be used for the nonlinear mapping between inputs and outputs to find model relatives 

or detect patterns among them.  

      The three-layer feed-forward neural network is a general neural network, which 

consists of an input layer, hidden layer, and output layer. Each input is multiplied by 

weight. After that, input product is then combined with the bias in a summation form 

and directed to the activation function to calculate the output signals.                The 

procedures for the calculation can be expressed as,  

=

= + 
1

n

i i
i

sum b x w  

 

Where iw  and b  are the weight and the bias coefficient of the neuron. ix refers to the 

input of each layer. The net output signal of each neuron is transferred to the 

activation function.  Sigmoid tangent function is shown in Eq. (9). 

( )
sum sum

sum sum

e e
n f sum

e e

−

−

−
= =

+
 

4.3.2 Proposed feed-forward neural network model for the prediction of the 
HTF outlet temperature 

The proposed ANN model is based on a multi-layer perceptron (MLP) consisting of four 

inputs (time, HTF inlet temperature, HTF mass flow rate, and initial PCM temperature) 

and one output (HTF outlet temperature) as shown in figure 21. The data for ANN 

training was generated by performing the simulation of the PCM heat storage unit under 

various input conditions, 25-35 ° C for HTF inlet temperatures, 1-10 kg /min for HTF 
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mass flow rates, and 70-90 °C for initial PCM temperatures and then observing changes 

of HTF outlet temperatures under time span 0-12,500 seconds.  Random white noises 

± 2% are added into the data. The data are divided into three sets, 70% for training, 

15% for validation, and 15% for testing. 

 

 

 

 

 

 

 

 

 
Figure  21 The structure of the proposed feed-forward neural network model. 
 

4.3.3 Design nonlinear autoregressive network with exogenous inputs (NARX) 
In terms of the number of hidden layers in the model, the number of neurons in each 

layer, the transfer function used in each layer, the training algorithm, and the number 

of delays in the NARX model, several configurations were tested to determine the 

optimal NARX recurrent neural network architecture. The best correlation coefficient 

(R) and the smallest root mean square error should be found in the best model (RMSE). 

The difference between the predicted and measured data is measured using RMSE. 

The R value denotes the relationship between the predicted output and the desired 

outcome. The R value is in the [-1, 1] range. If R = 1, the output and the targets have 

a very strong positive relationship. The feed forward neural network was used in this 

study. There are two layers in this network: a single hidden layer and an output layer. 

The tangent sigmoid function in the hidden layer and the linear function in the output 

layer are the transfer functions used in the network. In addition, the delays of each 
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input must be identified in relation to the number of neurons in the hidden layer in 

order to design the network architecture. In addition, the Levenberg-Marquardt (LM) 

training algorithm was used in the recurrent neural network's training phase. 

4.4 Design controller of HTF temperature 
For application of PCM heat storage unit to domestic water heating, the HTF 

temperature need to be satisfied. A bypass is installed and the split fraction is used as 

manipulated variable for the temperature control. Furthermore, for simplicity PI 

control is used. 

4.4.1 PI controller with optimization method 
As the model of PCM heat storage unit is quite complex, no simple transfer 

function is available for tuning of PI controller. Although online trial-and-error tuning 

method such as Ziegler-Nichols method requires no knowledge of the model, it is 

quite tedious. In this work, an optimization approach was used for the controller tuning. 

The proposed ANN model was used for the prediction of control performance, i.e., 

integral square error (ISE), under various sets of proportional gain and integral time 

constant. The tuning set that minimizes the ISE is chosen. 

 

 

 

 

 

 

 

 

Figure  22 The structure of PI controller using optimization method with ANN model 
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(4.17) 

4.4.2 Neural network-based model predictive controller (NNMPC) 
Model predictive control begins with the training of a neural network to reflect the 

plant's forward dynamics. The neural network training signal is the prediction error 

between the plant output and the neural network output. The neural network plant 

model predicts future plant output values based on prior inputs and plant outputs. 

Using data obtained from the plant's operation, this network may be taught offline in 

the PCM thermal energy storage model. The receding horizon approach is used in the 

model predictive control approach. The plant reaction is predicted by a neural network 

model over a certain time horizon. A numerical optimization software uses the 

predictions to find the control signal that minimizes the following performance criteria 

over the chosen time horizon. For more information about MPC, go here. It was 

discussed before in this section. 

 

𝐽 = ∑ (𝑦𝑟(𝑡 + 𝑗) − 𝑦̂(𝑡 + 𝑗))2 + 𝜌 ∑(𝑢(𝑡 + 𝑗 − 1) − 𝑢(𝑡 + 𝑗 − 2))2

𝑁𝑢

𝑗=1

𝑁𝑚𝑎𝑥

𝑗=𝑁𝑚𝑖𝑛

 

 

 

Figure  23 Neural network-based model predictive control loop 
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CHAPTER V  
RESULT AND DISCUSSION 

5.1 Open-loop simulation of PCM system 
To understand the behavior of PCM heat storage unit, an open-loop simulation 

was firstly performed. The mass flow rate and inlet temperature of HTF used are 10 

kg/min and 30 𝐶°, respectively. Initial temperatures of HTF and PCM are assumed as 

70 𝐶°. As shown in figure 24, there are three stages during discharging process including 

liquid cooling where the temperature of PCM gradually decreases, solidification (liquid-

solid phase change) where the temperature of PCM remains constant at the 

solidification temperature, and solid cooling where the temperature of PCM decreases 

rapidly to the inlet temperature of HTF. For the temperature of HTF, it follows the 

temperature of PCM very closely, except during the stage of solid cooling as the heat 

transfer decreases due to less temperature difference between PCM and HTF. 

 

 

 

 

 

 

 

 

Figure  24 HTF temperature outlet behavior for 10 kg/min of mass flow rate 
 

Figure 25 shows the effects of HTF mass flow rate (ranging from 10 to 20 kg/min) 

on HTF temperature outlet. As the HTF mass flow rate increases, the operating time 

for liquid cooling and solidification phase reduces. Due to this, the period that is 

allocated to the use of solar energy storage is used quicker. 
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Figure  25 HTF temperature outlet evolution for different mass flow rate 
 

5.2 ANN modeling of PCM system 
5.2.1 Feed-forward neural network model 

In developing ANN model, the number of hidden layers and the number of hidden 

neurons need to be determined. In this work, the number of hidden layers chosen is 

one for simplicity and as it can represent most of the data quite well. In finding the 

number of hidden neurons, the ANN with various number of hidden neurons is trained 

and the smallest one that provides acceptable statistical accuracy indices, i.e., mean 

square error (MSE) and regression coefficient (R2) is chosen. 

      As shown in Table 3, the performance of ANN model continuously increases as 

the number of hidden neurons increases until up to sixteen. Thus, the sixteen-hidden 

neuron is an optimal number of hidden neurons and the selected ANN structure is 4-

16-1(input-hidden-output). For training algorithms, Table 4 showed that Levenberg-

Marquardt was the best as it provided the least MSE. 

      In testing the performance of the proposed ANN model, simulation results 

generated from the PCM heat storage model with white noise ± 2% and the ANN 

model are compared as shown in figure 26. The conditions used in this simulation are 

random 30-40 𝐶°for the HTF inlet temperature, 10 kg/min for HTF mass flow rate, and 

70 𝐶°for initial PCM temperature. Good agreement in the results can be found. 

Table  3 Determination of the best topology of the ANN feed-forward model with 
different number of hidden neurons 
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Number of hidden 
neurons 

Train Test 
MSE R2 MSE R2 

1 1.92×10-2 0.833033 1.89×10-2 0.830946 
2 1.52×10-2 0.871209 1.52×10-2 0.870539 
3 5.15×10-3 0.958062 5.05×10-3 0.958225 
4 4.16×10-3 0.966372 4.28×10-3 0.965918 
5 3.94×10-3 0.968395 3.85×10-3 0.967900 
6 3.57×10-3 0.971103 3.65×10-3 0.970540 
7 3.06×10-3 0.975477 3.07×10-3 0.975142 
8 2.87×10-3 0.976941 2.88×10-3 0.975932 
9 2.73×10-3 0.977955 2.79×10-5 0.978040 
10 2.60×10-3 0.978864 2.67×10-3 0.977964 
11 2.43×10-3 0.980281 2.48×10-3 0.980235 
12 2.28×10-3 0.981598 2.33×10-5 0.980799 
13 2.25×10-3 0.981824 2.32×10- 0.981499 
14 2.19×10-3 0.982331 2.21×10-3 0.981770 
15 2.15×10-3 0.982578 2.15×10-3 0.982757 
16 2.14×10-3 0.982824 2.14×10-3 0.982814 
17 2.16×10-3 0.982696 2.17×10-6 0.982596 
18 2.17×10-3 0.982664 2.19×10-3 0.982410 
19 2.17×10-3 0.982573 2.19×10-3 0.982275 
20 2.19×10-3 0.982430 2.20×10-3 0.982074 
Note: The best-obtained results among 30 various are trained networks per each hidden 
neuron. 

 

Table  4 Determination training algorithm of the ANN feed-forward model  
Training algorithm MSE R2 Processing time 

(s/epochs) 
Bayesian regulation backpropagation 2.25×10-3 0.981844 0.0253 
Levenberg-Marquardt backpropagation 2.14×10-3 0.982824 0.0238 
Scaled conjugate gradient backpropagation 2.37×10-3 0.980517 0.0182 
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Figure  26 The prediction of HTF outlet temperature using the proposed ANN model 
 

5.2.2 Nonlinear autoregressive network with exogenous inputs (NARX) 
In NARX NN model, feedforward neural network was used to predict the 

parameters of the NARX model of the PCM. The NARX model has two inputs (HTF inlet 

temperature, % of bypass) and one output (HTF outlet temperature). As demonstrated 

in Table 5, the performance of the ANN model improves linearly with the number of 

hidden neurons until it reaches eleven.  Thus, the optimum number of hidden neurons 

was eleven. Following that, we evaluate several training methods to determine the 

best one. These algorithms include Levenberg–Marquardt, Bayesian regulation, and 

Scaled conjugate gradient backpropagation. Then, by varying model delay from 2 to 

18, we can get the NARX model's optimum delay value. Table 6 showed the 

Levenberg–Marquardt method was the best while Table 7 showed 12 delays was the 

optimum number of delays.  NARX model was firstly developed as an open-loop 

version where the current output was function of past outputs and past inputs. After 

that it was transform to a closed-loop version where the current output was function 

of past inputs only. Both open-loop and closed-loop NARX forms were tested with a 

set of new generated data and the results showed the good prediction could be 

expected. 
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Table  5 Determination of the best topology of the NARX model with different 
number of hidden neurons 
 

 
 

 

 
Table  6 Determination of the best delay of the NARX model with different number 
of delays. 

Number of hidden 
neurons 

Train Test 
MSE R2 MSE R2 

1 1.45×10-2 0.999523 1.50×10-2 0.999510 
2 1.41×10-2 0.999538 1.42×10-2 0.999535 
3 1.42×10-2 0.999533 1.34×10-2 0.999570 
4 1.41×10-2 0.999540 1.38×10-2 0.999532 
5 1.34×10-2 0.999558 1.34×10-2 0.999564 
6 1.34×10-2 0.999554 1.35×10-2 0.999562 
7 1.34×10-2 0.999558 1.33×10-2 0.999565 
8 1.35×10-2 0.999559 1.31×10-2 0.999579 
9 1.33×10-2 0.999561 1.31×10-2 0.999577 
10 1.33×10-2 0.999565 1.35×10-2 0.999560 
11 1.31×10-2 0.999572 1.31×10-2 0.999579 
12 1.31×10-2 0.999570 1.32×10-2 0.999566 
13 1.32×10-2 0.999567 1.34×10-2 0.999531 
14 1.32×10-2 0.999563 1.33×10-2 0.999561 
15 1.30×10-2 0.999573 1.33×10-2 0.999557 
16 1.31×10-2 0.999569 1.34×10-2 0.999561 
17 1.33×10-2 0.999564 1.33×10-2 0.999561 
18 1.33×10-2 0.999559 1.34×10-2 0.999549 
19 1.32×10-2 0.999565 1.35×10-2 0.999545 
20 1.32×10-2 0.999566 1.33×10-2 0.999572 
Note: The best-obtained results among 30 various are trained networks per each hidden 
neuron. 
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Number of delays MSE R2 Processing time 
(s/epochs) 

2 0. 01314 0.999579 0.024 
4 0.01284 0.999589 0.048 
6 0.01124 0.999624 0.083 
8 0.01142 0.999618 0.157 
10 0.01021 0.999639 0.193 
12 0.01007 0.999652 0.214 
14 0.01050 0.999650 0.291 
16 0.01082 0.999646 0.333 
18 0.01076 0.0999637 0.370 

 

Table  7 Determination of the best training algorithm of the NARX model  
Training algorithm MSE R2 Processing time 

(s/epochs) 

Bayesian regulation backpropagation 0.01164 0.999622 0.241 
Levenberg-Marquardt backpropagation 0.01007 0.999652 0.214 
Scaled conjugate gradient 
backpropagation 0.01191 0.999640 0.0187 
    

 

 

 

 

 

 

 

 

 

Figure  27 The comparison between actual and prediction value of NARX model 
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(a) 
(b) 

5.3 Application PCM in water heating 
5.3.1 Neural-network-based PI controller  

As there was no steady-state of the system, a normal tuning method of PI 

controller could not be applied. Hence, an optimization approach was used. By varying 

a set of tuning parameters of PI, the set of parameters providing the best ISE was 

chosen. 

Under a given set of Kc and Ti in the ranges of -5 to 0 (negative effect required) 

and 0 to 5, respectively, the proposed ANN model combing with the mixer model was 

used to predict the closed-loop response of HTF temperature. Figure 28 shows the 

plot between integral square error (ISE) and PI parameters. Less ISE can be obtained in 

the dark blue region. As no significant difference of ISE in this region, Kc = 1 and Ti = 1 

were chosen as our choice. 

 

 

 

 

 

 

 
 

 

 

Figure  28 Effect PI parameters to ISE predicted from the proposed ANN model in (a) 
3D plot and (b) contour plot 
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a) 

b) 

The PI controller tuned in the previous section was used in control test of the 

water heating system with PCM as heat storage unit for both setpoint tracking and 

disturbance rejection as shown in figures 29 and 30. In figure 29, +5 𝐶°step change of 

the setpoint was made while in figure 30, +5 𝐶°  step change of the HTF inlet 

temperature was introduced. The results showed that with a bypass installed to the 

system, the HTF temperature was controlled very well as the fast response could be 

expected.  

Figure 31 showed the response of the HTF temperature under a long period 
operation. Note that after a long run, the HTF temperature could not be kept at the 
setpoint. This was because the heat storage in the PCM was over. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  29 PI controller plot of (a) HTF temperature and (b) percent of bypass under 
closed-loop simulation of setpoint tracking case. 
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a) 

b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  30 PI controller plot of (a) HTF temperature and (b) percent of bypass under 
closed-loop simulation of disturbance rejection case 

 

 

 

 

 

 

 

Figure  31 PI controller response of HTF temperature operated under a long period 
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a) 

5.3.2  MPC controller of water heating system 
In development of MPC, as the model of PCM was quite tedious and complex, 

hence NARX neural network was used for model prediction in MPC. This would be 

called neural network MPC (NNMPC) in this work. 

In tuning of the MPC, the number of control horizon, prediction horizon, and 

weight coefficients of the input need to be determined. In variation of these 

parameters, as the control horizon (Nu) = 1 could provide satisfied performance, 

hence, the number of prediction horizon (Np) was also set to 1 as it could not be more 

than Nu. The Np = 1 was equivalent to Nmin = Nmax = 1 in the section 4.4.2. The 

weight coefficient of the input in the cost function was chosen as 0.6. 

The NNMPC controller tuned in the previous section was used in control test of 

the water heating system with the PCM as heat storage unit for both setpoint tracking 

and disturbance rejection as shown in figures 32 and 33. In figure 32, +10 𝐶°step 

change of the setpoint was made while in figure 33, +5 𝐶° step change of the HTF 

inlet temperature was introduced. The results of NNMPC showed that with a bypass 

installed to the system, the HTF temperature was controlled very well as the fast 

response could expected. Finally, the NNMPC and the PI controller were evaluated in 

terms of set point tracking performance. Figure 34 shows that, even with little 

oscillation,  NNMPC was able to move the system to the new setpoint more rapidly. 
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b) 

a) 

 

 

 

 

 

 

 

 

 

Figure  32 NNMPC controller plot of (a) HTF temperature and (b) percent of bypass 
under closed-loop simulation of setpoint tracking case. 
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b) 
 

 

 

 

 

 

 

 

Figure  33 NNMPC controller plot of (a) HTF temperature and (b) percent of bypass 
under closed-loop simulation of disturbance rejection case 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  34 The comparison step responds between NNMPC and PI controller. 
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CHAPTER VI 
CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusions 
PCMs are a potential option for thermal energy storage. Due to the nature of latent 

heat storage, it is capable of storing a significant quantity of heat with less temperature 

change than sensible heat storage. PCM may be used in a variety of ways as a solar 

heat storage unit. Solar water heating utilizes water as a heat transfer fluid (HTF) to 

absorb energy from the sun throughout the day. Excess energy will be stored or 

charged to PCM and then released or discharged for usage during the night. 

Temperature management is often not required during the PCM charging procedure. 

However, the PCM discharge method requires a goal temperature of hot water for 

interior usage. The goals of this study are to create an artificial neural network model 

for the PCM discharging process and to design a temperature control system for the 

hot water discharged by the PCM for indoor usage. Two methods were suggested for 

the creation of the ANN model. The initial method tried to directly anticipate PCM 

behavior using a feedforward neural network. Time, HTF inlet temperature, mass 

flowrate, and starting PCM temperature are all inputs to the ANN. The second method 

utilized a feedforward neural network to forecast the parameters of a nonlinear 

autoregressive exogenous (NARX) model that was used to anticipate PCM behavior. A 

bypass was also built and utilized as a manipulated variable in the design of the 

temperature regulation of hot water in the PCM discharge process. We developed PI 

and MPC controllers. While both controllers were capable of controlling the 

temperature, MPC demonstrated superior control capability. 

 

 



  57 

6.2 Recommendations 
1. A more analysis for the comparison between the two proposed ANN models should 

be performed as in this work, the data sets for training for each model were different. 

2. A data set for the training of the ANN model 1 (for direct prediction the PCM 

behavior) was quite big as the number of data depended strongly on the time step 

generated from ODE solvers. Some methods to reduce the unnecessary data might be 

useful. 

3. As the closed-loop response of the system was very fast and an offset was found 

under operation using NNMPC. This caused more ISE value for the more number of 

prediction horizon (Np) resulting in the best Np = 1. In general, if there was no offset, 

the more Np should provide better control performance. 
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