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The total domination game is played on a simple graph G with no

isolated vertices by two players, named Dominator and Staller. They alternately

select a vertex of G; each chosen vertex totally dominates its neighbors. In this

game, each chosen vertex must totally dominates at least one new vertex not totally

dominated before. The game ends when all vertices in G are totally dominated.

Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is

to prolong it as much as possible. The game total domination number is the

number of chosen vertices when both players play optimally, denoted by γtg(G)

when Dominator starts the game and denoted by γ′
tg(G) when Staller starts the

game.

In this thesis, we show that for any graph G and a vertex v such

that G− v has no isolated vertex, we have γtg(G)− γtg(G− v) ≤ 2 and γ′
tg(G)−

γ′
tg(G − v) ≤ 2. Moreover, all such differences can be realized by some connected

graphs.
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Chapter 1

Introduction

A subset S of vertices in a graph G is called a dominating set if every vertex not in

S is adjacent to some vertex in S. The domination number of G is the minimum

cardinality among dominating sets for G, denoted by γ(G). Domination is one of

the most popular topics in graph theory. So far there are already over a thousand

papers on this topic. For more detail about domination we refer the readers to the

books by Haynes, Hedetniemi, and Slater [5, 6].

Domination has many practical applications such as the transportation

route planning, the security system design, and the wireless network installation.

Allocation of utilities efficiently in such a way that everybody has access to utilities

and the cost is minimum is an important objective to study in domination. There

are many variations of domination. In this thesis, we study a combination of

two variations, domination game and total domination, which is called the total

domination game. First we recall the notion of domination game.

The domination game was introduced by Brešar, Klavžar, and Rall [2]

in 2010, where the original idea was attributed to Henning in 2003. This game is

played on a graph G by two players, Dominator and Staller, who alternate taking

turns choosing a vertex from G. Playing a vertex will make all vertices in its
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closed neighborhood dominated. A vertex is valid to choose or legal if at least one

additional vertex is dominated by playing that vertex. The game ends when the

chosen vertices form a dominating set, i.e., all vertices are dominated. Dominator’s

goal is to finish the game as soon as possible, and Staller’s goal is to prolong it

as much as possible. Note that a domination game is a game without the winner

or loser, but the players want to play optimally according to their purposes. The

game domination number is the size of the dominating set of chosen vertices when

both players play optimally, denoted by γg(G) when Dominator starts the game

and denoted by γ′
g(G) when Staller starts the game.

Example 1.1. Let G be the graph in Figure 1.1. Then the set {c, d} is a domi-

nating set of G. Since there exists no vertex adjacent to all other vertices, we get

that γ(G) = 2. It implies that both games use at least 2 moves. Now let’s consider

the Dominator-start game. Dominator can play on vertex c. Then e is the only

undominated vertex and Staller is forced to dominate e in his turn. Therefore,

γg(G) ≤ 2. We can conclude that γg(G) = 2. Finally let’s consider the Staller-

start game. No matter how Staller starts the game, Dominator can end the game

by playing an appropriate vertex from {c, d}. Thus γ′
g(G) ≤ 2. We can conclude

that γ′
g(G) = 2.

Now we present the total version of domination. A vertex u totally

dominates another vertex v if they are adjacent. A set S of vertices of a graph

G is a total dominating set, abbreviated TD-set, if every vertex of G is totally

dominated by some vertex in S. Note that in total domination a vertex does not
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G :
a

b

c d e

Figure 1.1: Graph G

dominate itself, so it is required that there is no isolated vertex in a graph. All

graphs considered here have no isolated vertex. The total domination number of

a graph G is the minimum cardinality of a total dominating set of G, denoted by

γt(G). For any graph G which has no isolated vertex, γt(G) exists and γt(G) ≥ 2.

Finally we present a total domination game. A total domination game

was recently introduced in [7] as follows. Two players, named Dominator and

Staller, alternate taking turns choosing a vertex from a graph G. Each chosen

vertex must totally dominate at least one new vertex not totally dominated before.

The game ends when the set of chosen vertices is a total dominating set of G.

Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is

to prolong it as much as possible. The game total domination number is the size

of the total dominating set of chosen vertices when both players play optimally,

denoted by γtg(G) when Dominator starts the game and denoted by γ′
tg(G) when

Staller starts the game.

There are many results about the effect of graph operations on dom-

ination game. In 2010, Brešar, Klavžar, and Rall [2] showed a lower bound on
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the game domination number of an arbitrary Cartesian product of two graphs. In

2014, Brešar, Dorbec, Klavžar, and Košmrlj [1] showed that removing an edge of a

graph can change the game domination numbers by at most 2. They also showed

that removing a vertex of a graph can decrease the game domination numbers by

at most 2 or increase them by any amount. In 2015, Dorbec, Košmrlj, and Re-

nault [4] showed how the game domination number of the union of two no-minus

graphs corresponds to the game domination numbers of the initial graphs. In

2018, Onphaeng, Ruksasakcha and Worawannotai [10] showed the game domina-

tion numbers of a disjoint union of paths and cycles.

Most recently, Iršič [8] studied the effect of a vertex removal on a total

domination game. In particular, she showed that removing a vertex of a graph

can decrease the game total domination numbers by at most 4 or increase them by

any amount. However, the results are not sharp. In this thesis, we also study the

effect of a vertex removal on a total domination game and obtain sharp bounds

(in fact, we were unaware of [8] until recently). In chapter 2, we recall some

definitions and known results of game total domination numbers. In chapter 3, we

show that removing a vertex of a graph can decrease the game total domination

numbers by at most 2 or increase them by any amount. Finally, in chapter 4,

we determine all pairs (a, b) such that there is a graph G and a vertex v with

(γtg(G), γtg(G − v)) = (a, b), and determine all pairs (c, d) such that there is a

graph G and a vertex v with (γ′
tg(G), γ′

tg(G− v)) = (c, d).



 

Chapter 2

Preliminaries

In this chapter, we recall some definitions and useful results.

First, we introduce some terminologies, backgrounds, and concepts of

graph theory. A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a

set E(G) of edges where each edge is identified with an unordered pair of vertices

(not necessary distinct vertices). Two vertices are adjacent if they are connected

by an edge; they are also the end vertices of the edge, and the edge is said to be

incident to each of its end vertices. Multiple edges are two or more edges that are

incident to the same two vertices. A loop is an edge connecting a vertex to itself.

A graph without loops or multiple edges is called a simple graph. From now on,

we only consider simple graphs.

For any graph G, the number of vertices in G is called the order of G

and it is denoted by |V (G)| or |G|. The open neighborhood of a vertex v of G is

the set of vertices adjacent to v, denoted by NG(v), and the closed neighborhood

of a vertex v of G is NG[v] = NG(v) ∪ {v}. The degree of v, denoted by deg(v), is

the number of edges incident with v, or equivalently, deg(v) = |NG(v)|. A vertex

of degree 1 is called a pendant vertex, and a vertex of degree 0 is called an isolated

vertex.
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Consider a graph G, a graph H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). For a subset S of V (G), the graph G−S is the graph obtained from

G by removing all vertices in S and all edges incident with vertices in S. Observe

that a graph G − S is a subgraph of G for all S ⊆ V (G). If S = {v}, we write

G− v. We say that a subset S of V (G) is an independent set if no two vertices in

S are adjacent. We say G is connected if for any pair u, v ∈ V (G), there exists a

sequence u0e1u1e2u2...ekuk of distinct vertices and edges where u = u0, v = uk and

ei = ui−1ui for all i = 1, 2, ..., k. Otherwise, G is disconnected.

Example 2.1. Let T be the graph in Figure 2.1. We see that T is connected,

{u, v} is an independent set, and T − {u, v} is a disconnected subgraph of T .

T : T − {u, v} :
u v

Figure 2.1: Graph T and graph T − {u, v}

Next, we introduce some families of graphs which are used in this work.

A path Pn is a graph whose vertices can be listed in the order v1, v2, ..., vn such that

vi and vi+1 are adjacent where i = 1, 2, ..., n− 1. A cycle Cn is a connected graph

of order n such that every vertex has degree 2. A connected graph with no cycles

is called a tree. A pendant vertex in a tree is called a leaf. Moreover, a disjoint

union of trees is called a forest. In Figure 2.1, the graph T is a tree, the vertex v

is a leaf and the graph T − {u, v} is a forest.



 7

A complete graph Kn is a graph of order n such that every two distinct

vertices are adjacent. A graph G is bipartite if its vertex set can be partitioned

into two disjoint sets X and Y such that each edge of G incident with one vertex

in X and the other in Y . The sets X and Y are called the partite sets and the

pair (X,Y ) is called a bipartition of the bipartite graph. A bipartite graph G with

bipartition (X,Y ) is a complete bipartite graph if each vertex of X is adjacent to

all the vertices of Y . In this case, G is denoted by Km,n, where |X| = m and

|Y | = n. As an example, the complete graph K4 and the complete bipartite graph

K2,3 are shown in Figure 2.2.

K4 : K2,3 :

Figure 2.2: The complete graph K4 and the complete bipartite graph K2,3

The corona of two graphs G1 and G2 is the graph G = G1 ◦G2 formed

from one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent

to every vertex in the ith copy of G2. In particular, the corona H ◦K1 is the graph

obtained from H by joining each vertex in H to a new vertex. Figure 2.3 shows

the corona of P4 and K1.

Finally, some significant definitions, theorems and lemmas for total dom-

ination games are shown below. In a total domination game, if Dominator starts



 8

P4 : K1 : P4 ◦K1 :

Figure 2.3: The corona P4 ◦K1

the game, this game is said to be a Domination-start game. Otherwise, it is said

to be a Staller-start game. By the definition of game total domination numbers,

we have the following lemma.

Lemma 2.2. Let G be a graph. Then the following statements hold.

(i) For a Dominator-start game, if Dominator has a strategy that can end the

game within k moves, then γtg(G) ≤ k.

(ii) For a Staller-start game, if Dominator has a strategy that can end the game

within k moves, then γ′
tg(G) ≤ k.

(iii) For a Dominator-start game, if Staller has a strategy that can end the game

with at least k moves, then γtg(G) ≥ k.

(iv) For a Staller-start game, if Staller has a strategy that can end the game with

at least k moves, then γ′
tg(G) ≥ k.

Lemma 2.2 is useful for determining game total domination numbers of

graphs. We can get the upper bound by presenting an appropriate Dominator’s

strategy and get the lower bound by presenting an appropriate Staller’s strategy.
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Example 2.3. Recall the graph G in Example 1.1. We see that the set {c, d}

is a minimum total dominating set of G. It follows that γt(G) = 2. Now let’s

consider the Dominator-start game. Dominator can try c first and then d. This

ensures that the game ends within 3 moves. Therefore γtg(G) ≤ 3. Observe that

Staller can always totally dominate at most one new vertex in his first turn and

thus prolong the game to at least 3 turns. Therefore γtg(G) ≥ 3. We can conclude

that γtg(G) = 3. Finally let’s consider the Staller-start game. Dominator can try

playing vertices from {c, d} and ensures that the game ends within 4 moves. Thus

γ′
tg(G) ≤ 4. Observe that Staller can totally dominate only one new vertex in each

of his first two moves. So he can prolong the game to at least 4 turns and thus

γ′
tg(G) ≥ 4. We can conclude that γ′

tg(G) = 4.

If Dominator plays his moves in a graph G by playing vertices in a

minimum TD-set of G, then he guarantees that the game will end within 2γt(G)−1

moves. By Lemma 2.2 (i), we have the following theorem.

Theorem 2.4. If a graph G has at least two vertices, then γt(G) ≤ γtg(G) ≤

2γt(G)− 1.

For a graph G and a subset S ⊆ V (G), we denote by G|S the partially

totally dominated graph G where the vertices of S are considered already totally

dominated in the game. In particular, if S = {x}, we write G|x. We can find the

game total domination numbers of G|S by considering only the number of vertices

chosen after S is totally dominated.

In a partially totally dominated graph G, A vertex v in G is saturated if
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all vertices in its closed neighborhood are totally dominated. The residual graph of

a partially totally dominated graph G is the graph obtained from G by removing

all saturated vertices and all edges joining totally dominated vertices. Note that a

partially totally dominated graph and its residual graph have the same game total

domination numbers. In particular, for any graph G and a vertex v of G, we have

γtg(G|NG[v]) = γtg(G− v|NG(v)) and γ′
tg(G|NG[v]) = γ′

tg(G− v|NG(v)).

Example 2.5. Let G be the graph in Figure 2.4 and let S = {b, d, e, f}. Then

G|S is the partially totally dominated G with S totally dominated and vertex e is

saturated. And G|S − e is the residual graph of G|S.

a

G :

b c d

e f

a

G|S :

b c d

e f

a

G|S − e :

b c d

f

Figure 2.4: The graph G, partially totally dominated graph G, and residual graph

of G|S

Theorem 2.6 ([7, Lemma 2.1 (Total Continuation Principle)]). Let G be a graph

and A,B ⊆ V (G). If B ⊆ A, then γtg(G|A) ≤ γtg(G|B) and γ′
tg(G|A) ≤ γ′

tg(G|B).

Total Continuation Principle is proved by Henning, Klavžar, and Rall

[7]. It is useful for comparing certain choices of a move by a player. In Ex-

ample 2.5, we see that NG(a) ⊆ NG(e). By Total Continuation Principle, we
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have γtg(G|NG(e)) ≤ γtg(G|NG(a)) and γ′
tg(G|NG(e)) ≤ γ′

tg(G|NG(a)). So in

Dominator-start game, starting on e is better than or as good as starting on a

for Dominator. And in Staller-start game, starting on a is better than or as good

as starting on e for Staller. However, this principle may not be able to guarantee

that these vertices are optimal for the players. Henning, Klavžar, and Rall [7] also

showed a relationship of the two types of game total domination numbers.

Theorem 2.7 ([7, Theorem 2.2]). For any graph G, we have |γtg(G)−γ′
tg(G)| ≤ 1.

Moreover, we recall some useful results of the game total domination

numbers of some families of graphs.

Proposition 2.8 ([7, Proposition 2.3]). Let G0 be a graph. For positive integer

r, let Gi, 1 ≤ i ≤ r, be graphs with γtg(Gi) = γ′
tg(Gi) = 2. Then γtg(∪r

i=0Gi) =

γtg(G0) + 2r and γ′
tg(∪r

i=0Gi) = γ′
tg(G0) + 2r.

Consider a graph G with γtg(G) = γ′
tg(G) = 2, one of examples is a

graph G such that there is a vertex v adjacent to every other vertex. In this case,

we say that v is a universal vertex. For Dominator-start game, Dominator can

start on a universal vertex v so only v is still undominated and γtg(G) ≤ 2. For

Staller-start game, Dominator can end the game by replying on v if Staller does

not start on v. So γ′
tg(G) ≤ 2. Since γtg(G) ≥ 2 and γ′

tg(G) ≥ 2, it implies that

γtg(G) = γ′
tg(G) = 2. For Dominator-start game, we characterize graphs G with

γtg(G) = 2 in Chapter 4.

In 2016, Dorbec and Henning [3] determined the game total domination

numbers for cycles and paths as follows.



 12

Theorem 2.9 ([3]). For n ≥ 3,

γtg(Cn) =


⌊
2n+1

3

⌋
− 1; n ≡ 4 mod 6

⌊
2n+1

3

⌋
; otherwise,

γ′
tg(Cn) =


⌊
2n
3

⌋
− 1; n ≡ 2 mod 6

⌊
2n
3

⌋
; otherwise,

γtg(Pn) =


⌊
2n
3

⌋
; n ≡ 5 mod 6

⌈
2n
3

⌉
; otherwise,

γ′
tg(Pn) =

⌈
2n

3

⌉
.



 

Chapter 3

Vertex removal

In this chapter, we show that removing a vertex can increase the total game dom-

ination numbers by at most 2 or decrease them by any amount.

Theorem 3.1. For any graph G and a vertex v ∈ V (G) such that G − v has no

isolated vertex, we have γtg(G)− γtg(G− v) ≤ 2.

Proof. We show that Dominator has a strategy that can end the game in G within

γtg(G− v)+2 moves. His strategy is to play the game on G as follows. Dominator

imagines playing another game on G− v by copying every move of Staller to this

game and responds in G − v. Each response of Dominator in the imagined game

is copied back to the real game in G. In G, Staller plays using an optimal strategy

while Dominator is responding optimally in G− v. For any vertex u in G− v, we

have NG−v[u] ⊆ NG[u] so Dominator can always copy the move into G. Consider

the following possibilities:

Case 1 all the moves are legal in both two games. By Lemma 2.2, the number of

moves for G− v is less than or equal to γtg(G− v). In G, after γtg(G− v) moves

all vertices except maybe v are totally dominated. So in G at most γtg(G− v) + 1

moves are played.

Case 2 Staller played the k-th move in G but this move is not legal in G− v. Let
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X be the set of totally dominated vertices after k − 1 moves in G− v.

In G− v, we have

(k − 1) + γ′
tg(G− v|X) ≤ γtg(G− v). (3.1)

Subcase 2.1 Staller played the k-th move such that only v was totally

dominated among vertices that have not yet been totally dominated in G. Then

the set of totally dominated vertices after k − 1 moves are played in G is equal to

X.

If NG(v) ⊆ X, then we get

γtg(G) ≤ k + γtg(G|X ∪ {v})

= k + γtg(G− v|X) (since v is saturated in G|X ∪ {v})

≤ k + γ′
tg(G− v|X) + 1 (by Theorem 2.7)

≤ γtg(G− v) + 2. (by (3.1))

If there is a vertex in NG(v) which is not totally dominated after the k-th move,

then Dominator can reply with the (k + 1)-th move on v in G. Therefore

γtg(G) ≤ k + 1 + γ′
tg(G|X ∪NG[v])

= k + 1 + γ′
tg(G− v|X ∪NG(v)) (since v is saturated in G|X ∪NG[v])

≤ k + 1 + γ′
tg(G− v|X) (by Total Continuation Principle)

≤ γtg(G− v) + 2. (by (3.1))

Subcase 2.2 Staller played the vertex v in the k-th move.
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If v was totally dominated, then we get

γtg(G) ≤ k + γtg(G|X ∪NG[v])

= k + γtg(G− v|X ∪NG(v)) (since v is saturated in G|X ∪NG[v])

≤ k + γtg(G− v|X) (by Total Continuation Principle)

≤ k + γ′
tg(G− v|X) + 1 (by Theorem 2.7)

≤ γtg(G− v) + 2. (by (3.1))

If v is not totally dominated, then Dominator can reply with the (k + 1)-th move

on a vertex adjacent with v, say w, in G. Therefore

γtg(G) ≤ k + 1 + γ′
tg(G|X ∪NG[v] ∪NG[w])

= k + 1 + γ′
tg(G− v|X ∪NG(v) ∪NG[w]) (since v is saturated in

G|X ∪NG[v] ∪NG[w])

≤ k + 1 + γ′
tg(G− v|X) (by Total Continuation Principle)

≤ γtg(G− v) + 2. (by (3.1))

In the Staller-start game, we have a similar result and the proof uses a

similar argument.

Theorem 3.2. For any graph G and a vertex v ∈ V (G) such that G − v has no

isolated vertex, we have γ′
tg(G)− γ′

tg(G− v) ≤ 2.

Proof. We show that Dominator has a strategy that can end the game in G within

γ′
tg(G− v)+2 moves. His strategy is to play the game on G as follows. Dominator
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imagines playing another game on G− v by copying every move of Staller to this

game and responds in G− v. Each response of Dominator’s in the imagined game

is copied back to the real game in G. In G, Staller plays using an optimal strategy

while Dominator is responding optimally in G− v. For any vertex u in G− v, we

have NG−v[u] ⊆ NG[u] so Dominator can always copy the move into G. Consider

the following possibilities:

Case 1 all the moves are legal in both two games. By Lemma 2.2, the number of

moves for G− v is less than or equal to γ′
tg(G− v). In G, after γ′

tg(G− v) moves

all vertices except maybe v are totally dominated. So in G at most γ′
tg(G− v) + 1

moves are played.

Case 2 Staller played the k-th move in G but this move is not legal in G− v. Let

X be the set of totally dominated vertices after k − 1 moves in G− v.

In G− v, we have

(k − 1) + γ′
tg(G− v|X) ≤ γ′

tg(G− v). (3.2)

Subcase 2.1 Staller played the k-th move such that only v was totally

dominated among vertices that have not yet been totally dominated in G. Then

the set of totally dominated vertices after k − 1 moves are played in G is equal to

X.
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If NG(v) ⊆ X, then we get

γ′
tg(G) ≤ k + γtg(G|X ∪ {v})

= k + γtg(G− v|X) (since v is saturated in G|X ∪ {v})

≤ k + γ′
tg(G− v|X) + 1 (by Theorem 2.7)

≤ γ′
tg(G− v) + 2. (by (3.2))

If there is a vertex in NG(v) which is not totally dominated after the k-th move,

then Dominator can reply with the (k + 1)-th move on v in G. Therefore

γ′
tg(G) ≤ k + 1 + γ′

tg(G|X ∪NG[v])

= k + 1 + γ′
tg(G− v|X ∪NG(v)) (since v is saturated in G|X ∪NG[v])

≤ k + 1 + γ′
tg(G− v|X) (by Total Continuation Principle)

≤ γ′
tg(G− v) + 2. (by (3.2))

Subcase 2.2 Staller played the vertex v in the k-th move.

If v was totally dominated, then we get

γ′
tg(G) ≤ k + γtg(G|X ∪NG[v])

= k + γtg(G− v|X ∪NG(v)) (since v is saturated in G|X ∪NG[v])

≤ k + γtg(G− v|X) (by Total Continuation Principle)

≤ k + γ′
tg(G− v|X) + 1 (by Theorem 2.7)

≤ γ′
tg(G− v) + 2. (by (3.2))

If v is not totally dominated, then Dominator can reply with the (k + 1)-th move
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on a vertex adjacent with v, say w, in G. Therefore

γ′
tg(G) ≤ k + 1 + γ′

tg(G|X ∪NG[v] ∪NG[w])

= k + 1 + γ′
tg(G− v|X ∪NG(v) ∪NG[w]) (since v is saturated in

G|X ∪NG[v] ∪NG[w])

≤ k + 1 + γ′
tg(G− v|X) (by Total Continuation Principle)

≤ γ′
tg(G− v) + 2. (by (3.2))



 

Chapter 4

Realization

In this section, we show that all possibilities in Theorem 3.1 and Theorem 3.2

can be realized by infinite families of connected graphs. More precisely, we find

all pairs (a, b) such that there is a graph G and a vertex v with (γtg(G), γtg(G −

v)) = (a, b), and all pairs (c, d) such that there is a graph G and a vertex v with

(γ′
tg(G), γ′

tg(G − v)) = (c, d). First we consider the Dominator-start game. We

begin by characterizing graphs G with γtg(G) = 2.

Lemma 4.1. For any graph G, we have γtg(G) = 2 if and only if G is a complete

bipartite graph or is obtained from a complete bipartite graph with nonempty partite

sets by adding edges to one of the partite sets.

Proof. Let G be a graph. If G is a complete bipartite graph, then γtg(G) = 2.

Assume that G is obtained from a complete bipartite graph with nonempty partite

sets by adding edges to one of the partite sets. Let A be the partite set of G without

edges and let B be the other partite set of G. If Dominator plays his first move

on a vertex in A, then all vertices in B are totally dominated. Since A is an

independent set, Staller is forced to play a vertex in B and then all vertices in A

are totally dominated. Therefore γtg(G) ≤ 2. Since γtg(G) ≥ 2, it implies that

γtg(G) = 2.
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Assume that γtg(G) = 2. We show that G is a complete bipartite

graph or is obtained from a complete bipartite graph with nonempty partite sets

by adding edges to one of the partite sets. Let x be an optimal first move of

Dominator. Since γtg(G) = 2, each vertex in NG(x) is adjacent to all remaining

undominated vertices. Suppose that there are two vertices y, z in GrNG(x) which

are adjacent. Then Staller can play y and y is still undominated. So γtg(G) ≥ 3.

It is a contradiction with γtg(G) = 2. Therefore there are no edges in GrNG(x).

If NG(x) has no edges, then G is the complete bipartite graph with bipartition

(NG(x), V (G)rNG(x)). Otherwise, G is obtained from a complete bipartite graph

with nonempty partite sets by adding edges to one the partite sets.

4.1 γtg(G)− γtg(G− v) = 2

Proposition 4.2. For any positive integer l ≥ 5, there exists a graph G with a

vertex v such that γtg(G) = l and γtg(G−v) = l−2. In particular, γtg(G)−γtg(G−

v) = 2.

xxv y y

H0 : Hk :

v
k

Figure 4.1: Graph H0 and Graph Hk
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Proof. Let H0 and x be the graph and the vertex shown in Figure 4.1. For k ≥ 1,

the graph Hk is obtained from H0 by identifying the left end vertices of k copies

of P3 with x, see Figure 4.1. Let l = k + 4 and G = Hk. We claim that γtg(Hk) =

k + 4 = l and γtg(Hk − v) = k + 2 = l − 2. By Theorem 3.1, it suffices to show

that γtg(Hk) ≥ k + 4 and γtg(Hk − v) ≤ k + 2.

First, we show that Dominator has a strategy that can end the game

in Hk − v within k + 2 moves as follows. Dominator plays his first move on x.

Then any first move of Staller totally dominates at least two vertices. After that,

there are k undominated vertices any two of which have no common neighbors.

Therefore the number of moves for this graph is at most k + 2. It implies that

γtg(Hk − v) ≤ k + 2.

Lastly, we show that Staller has a strategy that can end the game in Hk

using at least k + 4 moves as follows. If Dominator starts on x, then Staller plays

on v. Excluding x, there are k + 2 undominated vertices any two of which have

no common neighbors. So at least k + 4 moves are played. If Dominator does not

start on x, then Staller can force at least 3 moves to totally dominate H0. Since

at least k + 1 moves are played in k copies of P3, this strategy can end the game

using at least k + 4 moves. Therefore γtg(Hk) ≥ k + 4.

Next, we show that there exists no graph G and a vertex v with γtg(G) =

4 and γtg(G− v) = 2. Indeed, we have the following:

Lemma 4.3. Let G be a graph and let v be a vertex in G. If γtg(G) = 4, then

γtg(G− v) ≥ 3.
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Proof. Let G be a graph with γtg(G) = 4. Suppose that γtg(G−v) = 2. By Lemma

4.1, the graph G− v is a complete bipartite graph or is obtained from a complete

bipartite graph with nonempty partite sets by adding edges to one of the partite

sets. Then there are adjacent vertices x and y in G such that x is adjacent to v

and NG(x) ∪ NG(y) = V (G). Dominator can play x and then y (if the game has

not ended) so the game ends within 3 moves. So γtg(G) ≤ 3, a contradiction.

4.2 γtg(G)− γtg(G− v) = 1

For k ≥ 2, let v be a pendant vertex on Kk ◦ K1, see Figure 4.2. We

show that γtg(Kk ◦K1) = k + 1 and γtg((Kk ◦K1) − v) = k. Let x be the vertex

in Kk ◦K1 that is adjacent to v.

Kk ◦K1 :

v

Kk Kk

(Kk ◦K1)− v :

Figure 4.2: Graph Kk ◦K1 and Graph (Kk ◦K1)− v

In graph Kk ◦K1, by Total Continuation Principle we can assume that

Dominator plays his first move on x and then Staller plays his first move on v. So

there are k−1 undominated vertices any two of which have no common neighbors.

Hence γtg(Kk ◦K1) = k + 1.
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We show that Dominator has a strategy that can end the game in (Kk ◦

K1)− v within k moves as follows. Dominator starts on x. Then Staller is forced

to totally dominate two new vertices. After that there are k − 2 undominated

vertices left. Thus γtg((Kk ◦K1)− v) ≤ 2 + (k − 2) = k.

We show that Staller has a strategy that can end the game in (Kk ◦

K1) − v using at least k moves as follows. If Dominator starts on x, then the

number of moves for (Kk ◦K1) − v is equal to k. Otherwise, Staller responds by

playing a pendant vertex. Then there are at least k− 2 undominated vertices any

two of which have no common neighbors. Thus γtg((Kk◦K1)−v) ≥ 2+(k−2) = k.

Hence γtg((Kk ◦K1)− v) = k.

4.3 γtg(G)− γtg(G− v) = 0

x

v
G : G− v :

xk

k − 1

Figure 4.3: Graph G and Graph G− v

For k ≥ 1, let G be the graph obtained from k copies of P3 by identifying

the left end vertices with the vertex x, see Figure 4.3. We claim that γtg(G) =

γtg(G−v) = k+1. Since γt(G) = k+1, we have γtg(G) ≥ k+1. If Dominator plays

first move on x, then Staller is forced to totally dominate x and one end vertex. So
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there are k− 1 undominated vertices left. Therefore γtg(G) ≤ 2 + (k− 1) = k+ 1.

Hence γtg(G) = k + 1.

In graph G − v, we show that Dominator has a strategy that can end

the game in G − v within k + 1 moves as follows. Dominator starts on x. Then

there are k undominated vertices left. Therefore γtg(G− v) ≤ k + 1.

If k = 1, then γtg(G − v) = γt(G) = 2. Suppose k ≥ 2. If Dominator

starts on x, then Staller replies by playing the leaf adjacent to x. Otherwise, Staller

replies by playing an end vertex. In both case, there are k−1 undominated vertices

any two of which have no common neighbors. So at least k + 1 moves are played

in G− v. Therefore γtg(G− v) ≥ k + 1. Hence γtg(G− v) = k + 1.

4.4 γtg(G)− γtg(G− v) < 0

Proposition 4.4. For any positive integers k > l ≥ 1, there exists a graph G with

a vertex v such that γtg(G) = k − l + 1 and γtg(G − v) = k + 1. In particular,

γtg(G)− γtg(G− v) = −l.

Proof. For positive integers k > l ≥ 1, let Gk,l be the graph obtained from Kk ◦K1

by adding one vertex v and joining v to all vertices of Kk and l+1 pendant vertices,

see Figure 4.4. Note that γtg(Gk,l − v) = γtg(Kk ◦ K1) = k + 1. We claim that

γtg(Gk,l) = k−l+1. We show that Dominator has a strategy that can end the game

in Gk,l within k − l + 1 moves as follows. Dominator plays first move on v. Then

there are k−l undominated vertices left. Therefore γtg(Gk,l) ≤ 1+(k−l) = k−l+1.

We show that Staller has a strategy that can end the game in Gk,l using

at least k−l+1 moves as follows. By Total Continuation Principle, we may assume
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Gk,l :

Kk
Kk

Gk,l − v :

v

l + 1

Figure 4.4: Graph Gk,l and Graph Gk,l − v

that Dominator starts on a vertex in Kk ∪ {v}. If Dominator starts on v, then

Staller responds by playing a vertex of degree 2 (adjacent to v). Otherwise, Staller

responds by playing the pendant vertex in Kk ◦K1 that is adjacent to Dominator’s

move. After that there are k− l−1 undominated vertices any two of which have no

common neighbors. Therefore γtg(Gk,l) ≥ k− l+1. Hence γtg(Gk,l) = k− l+1.

From the above discussions we have the following theorem.

Theorem 4.5. For any positive integers a ≥ 2 and b ≥ 2 with a − b ≤ 2, there

is a graph G with a vertex v such that (γtg(G), γtg(G − v)) = (a, b) except for

(a, b) = (4, 2).

Next, we consider the Staller-start game.

4.5 γ′
tg(G)− γ′

tg(G− v) = 2

Proposition 4.6. For any positive integer l ≥ 4, there exists a graph G with a
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vertex v such that γ′
tg(G) = l and γ′

tg(G−v) = l−2. In particular, γ′
tg(G)−γ′

tg(G−

v) = 2.

Proof. For 4 ≤ l ≤ 6, we present some graphs Gl with γ′
tg(Gl) = l and γ′

tg(Gl−v) =

l − 2 in Figure 4.5. For l ≥ 7, recall the infinite family of graphs Hk in Figure

v

v

v

G4 :

G5 :

G6 :

γ′
tg(G4) = 4

γ′
tg(G5) = 5

γ′
tg(G6) = 6

γ′
tg(G4 − v) = 2

γ′
tg(G5 − v) = 3

γ′
tg(G6 − v) = 4

G4 − v :

G5 − v :

G6 − v :

Figure 4.5: Some graphs Gl with γ′
tg(Gl) = l and γ′

tg(Gl − v) = l− 2 for 4 ≤ l ≤ 6

4.1. Let l = k + 5 and G = Hk. We claim that γ′
tg(Hk) = k + 5 = l and
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γ′
tg(Hk−v) = k+3 = l−2. By Theorem 3.1, it suffices to show that γ′

tg(Hk) ≥ k+5

and γ′
tg(Hk − v) ≤ k + 3.

First, we show that Dominator has a strategy that can end the game in

Hk−v within k+3 moves as follows. If Staller starts on x, then Dominator replies

by playing on y. Otherwise, Dominator replies by playing on x. Then there are at

most k+3 undominated vertices. Since two leaves are totally dominated together

by playing y and x is not dominated alone, at most k + 1 moves are played. So

the number of moves for Hk is at most k + 3. Therefore γ′
tg(Hk − v) ≤ k + 3.

Lastly, we show that Staller has a strategy that can end the game in

Hk using at least k + 5 moves as follows. Staller starts on an end vertex of a copy

of P3. If Dominator replies on x, then Staller plays on v. Excluding x, there are

k + 2 undominated vertices any two of which have no common neighbors. So at

least k + 5 moves are played. If Dominator does not reply on x, Staller can force

at least 3 moves to totally dominate H0 by not playing on x. Since at k+1 moves

are played in k copies of P3, this strategy can end the game using at least k + 5

moves. Therefore γ′
tg(Hk) ≥ k + 5.

4.6 γ′
tg(G)− γ′

tg(G− v) = 1

For k ≥ 2, let v be a pendant vertex of Kk ◦ K1, see Figure 4.2. We

show that γ′
tg(Kk ◦K1) = k + 1 and γ′

tg((Kk ◦K1)− v) = k.

In graph Kk ◦K1, by Total Continuation Principle we can assume that

Staller plays his first move on v and then Dominator plays his first move on the
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vertex adjacent to v. There are k− 1 undominated vertices any two of which have

no common neighbors. Hence γ′
tg(Kk ◦K1) = k + 1.

We show that Dominator has a strategy that can end the game in (Kk ◦

K1) − v within k moves as follows. After Staller plays his first move, Dominator

replies on a vertex in Kk that totally dominates one pendant vertex and all vertices

in Kk in first move. Then there are at most k− 2 undominated vertices left. Thus

γ′
tg((Kk ◦K1)− v) ≤ 2 + (k − 2) = k.

We show that Staller has a strategy that can end the game in (Kk ◦

K1)−v using at least k moves as follows. Staller starts on a pendant vertex. Then

there are k−1 undominated vertices any two of which have no common neighbors.

Thus γ′
tg((Kk ◦K1)− v) ≥ 1 + (k − 1) = k. Hence γ′

tg((Kk ◦K1)− v) = k.

4.7 γ′
tg(G)− γ′

tg(G− v) = 0

For k ≥ 2, let x be a pendant vertex of Kk ◦ K1 and let v be the

unique vertex adjacent to x. Take G = (Kk ◦ K1) − x. Then γ′
tg(G) = k and

γ′
tg(G− v) = γ′

tg(Kk ◦K1) = k.

4.8 γ′
tg(G)− γ′

tg(G− v) < 0

Proposition 4.7. For any positive integers k, l with l+2 < k, there exists a graph

G with a vertex v such that γ′
tg(G) = k− l+1 and γ′

tg(G−v) = k+1. In particular,

γ′
tg(G)− γ′

tg(G− v) = −l.

Proof. For positive integers k, l with l+2 < k, let Gk,l be the graph obtained from

Kk ◦K1 by adding one vertex v and joining v to all vertices of the subgraph Kk
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and l + 2 pendant vertices. Note that γ′
tg(Gk,l − v) = γ′

tg(Kk ◦K1) = k + 1. We

claim that γ′
tg(Gk,l) = k − l + 1.

First, we show that Dominator has a strategy that can end the game

in Gk,l within k − l + 1 moves as follows. If Staller starts on v, then there are

k − l − 1 undominated vertices left. Otherwise, Dominator responds by playing

on v. After that there are at most k − l − 1 undominated vertices left. Therefore

γ′
tg(Gk,l) ≤ k − l + 1.

Lastly, we show that Staller has a strategy that can end the game in

Gk,l using at least k − l + 1 moves as follows. Staller starts on a pendant vertex

and then plays on a vertex in Kk which is adjacent to a vertex of degree 2. After

that there are k − l − 2 undominated vertices any two of which have no common

neighbors. So this strategy can end the game using at least k − l + 1 moves.

Therefore γ′
tg(Gk,l) ≥ k − l + 1. Hence γ′

tg(Gk,l) = k − l + 1.

By Proposition 4.7, for any positives c ≥ 4 and d > c there exists a

graph G with a vertex v such that (γ′
tg(G), γ′

tg(G − v)) = (c, d). It remains to

consider the pairs (c, d) where c ∈ {2, 3} and d > c.

For l ≥ 1, let H be an arbitrary graph with γ′
tg(H) = l+2. Let G be the

graph obtained from H by adding one new vertex v and joining v to all vertices of

H. We have γ′
tg(G) = 2 and γ′

tg(G− v) = γ′
tg(H) = l + 2.

For l = 1, 2, we present some graphs Gl with γ′
tg(Gl) = 3 and γ′

tg(Gl −

v) = l+3 in Figure 4.6. And for l ≥ 3, we show that there exists no graph G with

γ′
tg(G) = 3 and γ′

tg(G− v) = l + 3 in the following lemmas.
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G1 : G1 − v :

G2 : G2 − v :

v

v

γ′
tg(G1) = 3

γ′
tg(G2) = 3

γ′
tg(G1 − v) = 4

γ′
tg(G2 − v) = 5

Figure 4.6: Graphs Gl with γ′
tg(Gl) = 3 and γ′

tg(Gl − v) = l + 3 for l = 1, 2

Lemma 4.8. If G is a graph with γ′
tg(G) = 3, then Dominator’s optimal first move

is adjacent to Staller’s optimal first move.

Proof. Let G be a graph with γ′
tg(G) = 3. Let x and y be the optimal first

moves for Staller and Dominator respectively. Suppose that y is not adjacent to

x. Then there is a vertex z in G r NG[x] such that z is totally dominated by y.

Since γ′
tg(G) = 3, any legal third move will end the game. Therefore, each legal

move is adjacent all undominated vertices. Now z is a legal move since it has an

undominated neighbor y. Since x is undominated, the legal move z is adjacent to

x, a contradiction. So y is adjacent to x.

Lemma 4.9. Let G be a graph and let v be a vertex in G. If γ′
tg(G) = 3, then
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γ′
tg(G− v) ≤ 5.

Proof. Observe that γt(G) ∈ {2, 3}. First we consider the case γt(G) = γ′
tg(G) = 3.

It follows that any vertex in G is an optimal first move of Staller, and there is a

vertex u of G not adjacent to v. If Staller starts on u, then by Lemma 4.8, we

get that v is not an optimal first move of Dominator. Let x be an optimal first

move of Dominator. Then {u, x, y} is a minimum TD-set of G for any y ∈ V (G)

such that NG(y) ̸⊆ NG(u) ∪NG(x). In G− v, Dominator’s strategy is playing the

vertices in {u, x}. So γ′
tg(G− v) ≤ 5.

Now we consider the case γt(G) = 2. Consider the following possibilities.

Case 1 There is a minimum TD-set T of G such that v /∈ T . Then in G − v,

Dominator’s strategy is playing the vertices in T . So γ′
tg(G− v) ≤ 4.

Case 2 v is in every minimum TD-set of G. Let S be a minimum TD-set of G. We

show that there is an optimal first move u of Staller in G that is not adjacent to

v. Since γ′
tg(G) = 3, there is a vertex u in Gr S that is not adjacent to v. Since

γt(G) = 2 and v is in every minimum TD-set of G, we get that u is not adjacent

to some vertices in NG(v). If Staller starts on u, then Dominator cannot end the

game in his first move. Since γ′
tg(G) = 3, it implies that u is an optimal first move

of Staller. By Lemma 4.8, we get that v is not an optimal first move of Dominator.

Let x be an optimal first move of Dominator. Then {u, x, y} is a TD-set of G for

any y ∈ V (G) such that NG(y) ̸⊆ NG(u)∪NG(x). In G− v, Dominator’s strategy

is playing the vertices in {u, x}. So γ′
tg(G− v) ≤ 5.

From the above discussions we have the following theorem.
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Theorem 4.10. For any positive integers c ≥ 2, d ≥ 2 with c − d ≤ 2, there

is a graph G with a vertex v such that (γ′
tg(G), γ′

tg(G − v)) = (c, d) except for

(c, d) = (3, l) for all l ≥ 6.
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