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Tenofovir disoproxil fumarate (TDF), a nucleotide reverse transcriptase
inhibitor, after conversion to TFV, is mainly eliminated by glomerular filtration and
active tubular secretion. The major adverse effect of tenofovir is nephrotoxicity,
however, the exact mechanism remains poorly understood. In this study, ABCC11
(MRP8) transporter, a member of ATP-binding cassette subfamily C11, which is
abundant in proximal tubular cells, was demonstrated to efflux tenofovir. Real-time
polymerase chain reaction (rt-PCR) and indirect immunofluorescence assays were
used to determine MRP8 overexpression in-a continuous cell line. Tenofovir
accumulations were assessed by cytotoxicity, cellular transport, and vesicular uptake
assays. Substrate specificity was confirmed using MK-571, an MRP-specific
inhibitor, and methotrexate which served as a known substrate. Intracellular and
intravesicular concentrations of tenofovir were determined by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). The 50% cytotoxic concentrations (CCsps)
of TDF in MRP8-overexpressed cells was 4.78 times higher when compared to that of
parental cells. Transport assays also showed that the intracellular accumulation of
tenofovir in MRP8-averexpressed cells was 55 times lower than that of the parental
cells, and was partly reversed by MK-571. Similarly, the inside-out vesicular uptake
assay demonstrated higher intravesicular concentration of tenofovir in MRP8-
overexpressed vesicles than that of the Sf9 insect vesicles. These effects were
effectively reversed by increasing concentrations of specific inhibitor, MK-571. In
conclusion, tenofovir is a new substrate of MRP8 transporter. An alteration in the
activity of this efflux pump may increase the intracellular accumulation of tenofovir
in proximal renal tubular cells.
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CHAPTER 1

INTRODUCTION

1.1 Statement and significance of the research problem

Tenofovir disoproxil fumarate is an orally bioavailable pro-drug of tenofovir, an
acyclic nucleotide analog reverse transcriptase inhibitor [1, 2]. Tenofovir (TFV) is
widely used as an anti-viral agent for effective treatment of HIV and hepatitis B
infection [1, 2]. Concerns regarding nephrotoxicity were initially raised because of the
similarity of chemical structure of tenofovir and other cyclic nucleotide analogs such
as adefovir and cidofovir (Figure 1.1.1 A and B). Use of adefovir and cidofovir was
associated with proximal tubulopathy due to decreased mitochondrial DNA
replication through inhibition of mitochondria DNA polymerase-y [3]. Furthermore,
numerous clinical studies have indicated significant association between tenofovir use
and decline in estimated glomerular filtration rate (eGFR). The nephrotoxicity of
tenofovir varied widely, ranging from less than minimal to severe cases of renal
Fanconi syndrome or acute Kidney injury [4]. The incidences of tubular dysfunction
were demonstrated in 17 - 22% of the tenofovir-treated patients [1, 4]. The risk
factors for nephrotoxicity included long-term use, pre-existing kidney diseases,
increased age, lower CD4+ cells count, baseline elevation of serum creatinine, dose,
concomitant nephrotoxic medications and low body mass [1, 2, 4, 5]. Mitochondria of
the proximal tubular cells are the major target of tenofovir toxicity due to its
complement of cells membrane transporters that favor tenofovir accumulation, but the
exact mechanism of toxicity remains unclear [1, 4, 5]. Tenofovir undergoes
elimination unchanged in urine via the combination of glomerular filtration and active
proximal tubular secretion [1, 2]. Approximately, 20 - 30% of tenofovir is actively
transported into renal proximal tubular cells by organic anion transporters at the
basolateral membrane, hOAT1 and to lesser extent by OAT3 [1, 4]. Subsequently, the
drug is secreted into the tubular lumen via apical membrane efflux transporters
ABCC2 (MRP-2), ABCC4 (MRP-4) and ABCC10 (MRP-7) [1, 4, 5]. Therefore,
multidrug resistant transporter protein MRP-2, MRP-4 and MRP-7 malfunctions

could contribute to renal tubular cells damage.
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Recently, genetic variants in a number of transporter proteins involved in
tenofovir excretion have not been clearly associated with renal damage. It remains
controversial by which genetic variants may predispose renal cells to TDF toxicity.
Kiser et al. [6] characterized associations between intracellular tenofovir diphosphate
concentrations and polymorphisms in the drug transporter genes SLC22A6, ABCC2,
and ABCC4 in HIV-infected patients. The author found that ABCC4 3463G variants
had higher intracellular tenofovir diphosphate concentrations (35% higher than wild
type). lzzedine et al. [7] also investigated the correlations between genetic variations
of genes encoding the ABCC2 and ABCC4 transporters and renal proximal
tubulopathy. No association was observed between ABCC4 polymorphism and
tenofovir-induced renal proximal tubulopathy in their study. However, ABCC2
haplotypes were associated with renal proximal tubulopathy induced by TDF in HIV-
1-infected patients. Pushpakom et al. [8] explored whether MRP-7 was able to
transport tenofovir and whether ABCC10 single-nucleotide polymorphisms [SNPs]
were associated with kidney tubular damage. Two ABCC10 SNPs [rs9349256 and
rs2125739] and their haplotype were significantly associated with kidney tubular
damage. Therefore, genetic variability within the ABCC10 gene may influence TFV
renal tubular transport and contribute to the development of kidney tubular damage.
Nishijima et al. [9] had determined the association between polymorphisms in genes
encoding drug transporters and kidney tubular damage in Japanese patients treated
with tenofovir. Univariate and multivariate analyses showed significant association
between kidney tubular damage and genotype CC at position -24 CC and genotype
AA at position 1249 of ABCC2. ABCC2 haplotype -24T and 1249G was a protective
haplotype for kidney tubular damage. This was the first study, to our knowledge, to
identify the association between SNPs in ABCC2 and tenofovir-induced kidney
tubular damage in an Asian population. As mentioned earlier, since multiple players
of efflux transporters existed, it might be difficult to find significant proteins whose
polymorphisms could be of significance in tenofovir nephrotoxicity. It was also
possible that other compensated efflux mechanisms via other MRPs located on the
renal proximal tubular region may play a role. Furthermore, there existed over 48

distinct members of multidrug resistance proteins encoded by abcc genes that belong
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to the ATP-Binding Cassette (ABC) transporter superfamily at the renal proximal
tubular region [10-16].

Among the members of ABC-transporter subfamily C, ABCC11 or MRP8
encoded by abccll gene belongs to a new class of MRP members [17]. MRP8
expression is low in all normal human tissues except lung, fetal tissue, kidney, spleen,
colon and brain [18-23]. At the kidney, MRP8 is highly expressed on proximal region
but is not found on glomeruli. MRP8 is able to transport a diverse range of lipophilic
anions, including cyclic nucleotides, estradiol-17beta-glucuronide, steroid sulfates
such as dehydroepiandrosterone (DHEAS) and estrone sulfate (E(1)S), glutathione
conjugates such as leukotriene C4 and dinitrophenyl-S-glutathione, and monoanionic
bile acids [22, 24]. MRP8 transmembrane protein configuration structure resembles
MRP4 and MRP5 with respect to possessing only two -membrane spanning domains
[24]. Amino acid comparison indicates that MRP8 more closely resembles MRP5,
and the substrate selectivity of MRP8 is more similar to that of MRP4 [25-27].
Moreover, cyclic nucleotides are the only physiological transport substrates that
MRP4, MRP5, and MRP8 are known to have in common [24, 28, 29] and tenofovir

has chemical structure related to cyclic nucleotide analog [1, 2].
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Figure 1.1.1 A) Tenofovir disoproxil fumarate (TDF) is an oral prodrug and acyclic
nucleotide analog of adenosine monophosphate that inhibits HIV-1.

B) Chemical structure of cyclic nucleotide analog, CAMP and cGMP.
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With the abundance of ABCC11 in the kidney, in this study we hypothesized
that ABCC11 plays a role in TDF transport in renal proximal tubular cells. Pig
Kidney Epithelial (LLC-PK1) MRP8-overexpressed and parental cells were selected
as a suitable epithelium model to demonstrate the efflux transport of TDF of proximal
renal tubular region [30, 31].

1.2 Objective of this research

1.2.1 To demonstrate the functions of MRP8 glycoprotein on tenofovir
transport  using  MRP8-overexpressed cells lines and MRP8-
overexpressed vesicles.

1.2.2 To examine the effects of intracellular tenofovir accumulation on

cells viability in MRP8-overexpressed cells.

1.3 The research hypothesis

1.3.1 Tenofovir is transported by MRP8 glycoprotein.

1.3.2  Overexpression of MRP8 increases viability of culture cells treated
with tenofovir through efflux mechanism.

1.3.3  Intracellular accumulation of tenofovir is associated with decrease

in cells viability.
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2.1 Background information

Tenofovir disoproxil fumarte (TDF) is an orally bioavailable prodrug of
tenofovir, an acyclic nucleotide analogue reverse transcriptase inhibitor (NtRTI)
(Figure 2.1.1) structurally similar to adefovir and cidofovir [32-38]. Their acyclic
phosphonate group side chains also differ (Figure 2.1.2): namely,
hydroxylphosphonomethoxypropyl (HPMP) for cidofovir, phosphonomethoxyethyl
(PME) for adefovir, and phophonomethoxypropyl (PMP) for tenofovir [34, 35, 37].
TDF was approved in 2001 by the US Food and Drug Administration (FDA) for the
treatment of HIV infection [34, 35, 39]. TDF was also approved for treatment of
chronic hepatitis B in adults in 2008 [24, 39-43].

TDF has many beneficial characteristics, including once-daily dosing, high
efficacy both as single agent and in combination with other antiretroviral drugs, and
lack of interaction with cytochrome P450 [24, 44]. TDF is water-soluble, and has an
oral bioavailability of 27% [39, 45-47] when taken in the fasted state, distribution
volume = 0.813 L/kg, plasma half-life = 12 - 14.4-h. and protein binding = 7.2 % [39,
45-47]. After ingestion, TDF is hydrolyzed to free tenofovir by plasma esterase
enzymes. Free tenofovir contains a phosphate group with negative charge on the
chemical structure at physiological pH, and this gives the drug an affinity for anion-
specific influx transporters. Tenofovir uptake from plasma into the intracellular
compartment is mediated by organic anion transporters [1, 45, 48] to form tenofovir
diphosphate by double intracellular phosphorylation (Figure 2.1.3). Tenofovir
diphosphate is a structural analog of deoxyadenosine -5’- triphosphate [24, 49, 50], the
usual substrate for viral RNA-directed DNA polymerase, and is a weak inhibitor of

mammalian DNA polymerase-o, DNA polymerase-p, and mitochondrial DNA

(mtDNA) polymerase-y [1, 45, 51].

TDF mainly undergoes excretion via a combination of glomerular filtration
and active tubular secretion such that 70 - 80% of an intravenous dose is recovered
unchanged in the urine within 72 h [48]. About 20- 30% of the drug is actively

transported into renal proximal tubule cells by hOATs (mainly hOAT1 and, to a lesser
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extent, hOAT3) in the basolateral membrane [1, 24, 45, 52]. Subsequently, the drug
is secreted into the tubular lumen by the apical membrane transporters MRP-4 [1, 24,
45, 52] and MRP-7 [8, 12, 53]. TDF has less adverse effects on blood lipids, fat
accumulation, gastrointestinal symptoms and mitochondrial toxicity than other
nucleoside phosphonate reverse transcriptase inhibitors [29, 54-58]. Currently, the
most common precaution of this drug in the clinical setting is nephrotoxicity. The
prevalence of tenofovir-induced nephropathy reported in Europe and Thailand were
10 -22% [1, 8, 24, 35, 59, 60] and 5 - 18%, respectively [61, 62]. With widespread
use clinically, however, the prevalence of tenofovir-associated nephropathy have been
steadily increased to more than 5 times the prevalence presented in early report during
clinical trials [1, 43, 45, 55, 60, 63, 64].

Integrase
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Integrated ®  Uninte gﬂted _jf‘.‘;~ transcriptase
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\-——;V e Rev erie_/
transcriptase
\\\ / \ Conomlc RNA
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/ el \\ \\ “"v‘ N
W\
Protein synthesis,

processing

Mature -
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Figure 2.1.1 Multiple: mechanisms —and targets of action of highly active
antiretroviral drugs (HAART) which inhibits HIV replication.
Source: Fauci AS. (2003). “HIV and AIDS: 20 years of science.” Nature medicine
9, 839-43 (reprinted with permission).
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Figure 2.1.3 Plasma and intracellular metabolism of tenofovir and their metabolites.

2.2 Tenofovir-induced nephrotoxicity.

The risk factors of tenofovir-induced nephrotoxicity include long-term use,

pre-existing kidney diseases, increased age, lower CD4+cells count, elevated Scr

baseline, dose, concomitant nephrotoxic medications and low body mass [4, 5, 7, 61,

62]. The proximal

tubular

cells are the main target of tenofovir-induced

nephrotoxicity due to its complement of cells membrane transporters that favor

tenofovir accumulation. Current evidence suggests that mitochondria at the proximal

tubular epithelium cells are the target organelles of tenofovir-induced nephrotoxicity

[1, 45, 51]. The presentations of tenofovir induced-nephropathy are proximal tubular
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dysfunction with preserved renal function and proximal tubular dysfunction
associated with decreased renal function [12, 53]. Concerns regarding nephropathy
were initially raised by the structural similarity between tenofovir and other
nephrotoxic acyclic nucleotide analogues, such as adefovir and cidofovir. These two
drugs cause proximal tubulopathy, possibly due to decreasing mitochondrial DNA

replication through inhibition of mitochondria DNA polymerase-y [39, 45, 48, 55].

The inhibition of mtDNA polymerase-y encoded by POLG gene has been
proposed to play a central role in tenofovir-induced mitochondrial toxicity which
contributed to nephropathy [1, 53, 65]. Inherited POLG abnormalities lead to decrease
mtDNA content and accumulation of mtDNA defects (Figure 2.2.1) [66]. Depletion of
mtDNA may lead to fatty acid and dicarboxylic acid accumulation, lactic acidosis and
reactive oxygen species (ROS)damage, and sensitivity to apoptosis. Although
tenofovir has not been studied, NRTI with similar structure such as cidofovir was
known to induce proximal tubular apoptosis by caspase activation throughout the
mitochondrial pathway[66]. That may also be a potential mechanism of tenofovir-

induced tubular cells injury worthy of further investigation.

The histological findings of tenofovir-induced nephropathy exhibit diffuse and
severe acute degenerative ~changes including  luminal ectasia, cytoplasmic
simplification, irregular luminal contours, loss of brush border, interstitial fibrosis and
focal apoptosis with epithelial desquamation and adjacent interstitial edema (Figure
2.2.2) [67]. These findings are typical of toxic tubular necrosis. The electron
microscopy shows mitochondrial enlargement, depletion and dysmorphic changes
(Figure 2.2.3). A characteristic feature of TDF nephropathy is eosinophilic
intracytoplasmic inclusion within proximal tubular epithelial cells, corresponding to
the giant mitochondria [67, 68]. In addition, cidofovir and adefovir have been well-
described in association with nephrotoxicity, including acute renal failure and Fanconi
syndrome. Fanconi syndrome is a term used to describe a global dysfunction of the
proximal tubule that is responsible for the reabsorption of solutes, including
bicarbonate, glucose, amino acids and phosphate. This solute loss leads to acidosis,

bone disease and serum electrolyte abnormalities [4, 45, 57, 69].
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Figure 2.2.1 Toxic mechanism of tenofovir-induced nephrotoxicity at proximal
tubular epithelium via inhibition of mitochondrial DNA (mtDNA)

replication.

Source: Brinkman K, Kakuda TN. (2000). “Mitochondrial toxicity of nucleoside
analogue reverse transcriptase inhibitors: a looming obstacle for long-term
antiretroviral therapy?”. Current opinion in infectious diseases 13, 5-11

(reprinted with permission).
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Histopathology of tenofovir-induced renal toxicity

Figure 2.2.2 The light microscopic findings in TDF nephrotoxicity broadly resemble
changes seen in other forms of toxic acute tubular necrosis (ATN). [A]
Proximal tubules exhibit diffuse and severe acute degenerative changes
including luminal ectasia, cytoplasmic simplification, irregular luminal
contours, loss of brush border, and focal apoptosis with epithelial
desquamation, with adjacent interstitial edema. These findings are
typical of toxic ATN (hematoxylin and eosin, x 400). [B] A low-power
view demonstrates tubular simplification, as well as more chronic
tubular atrophy and interstitial fibrosis. These light microscopic findings
are consistent with an acute and chronic tubulointerstitial nephropathy
(periodic acid-Schiff, x 200). [C] A characteristic feature of TDF
nephrotoxicity is eosinophilic intracytoplasmic inclusions within
proximal tubular epithelial cells, corresponding to the giant
mitochondria seen ultrastructurally (hematoxylin and eosin, x 600). [D]
The proximal tubular inclusions stain red (or fuchsinophilic) with
trichrome stain (x 1000).

Source:  Herlitz LC, et al. (2010). “Tenofovir nephrotoxicity: acute tubular necrosis
with distinctive clinical, pathological, and mitochondrial abnormalities.”

Kidney international 78, 1171-7 (reprinted with permission).
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Figure 2.2.3 The electron microscopic findings in TDF-induced mitochondria
toxicity. [A] A low-magnification field demonstrates the wide range in
size and shape of mitochondria within proximal tubular epithelial cells
(x 5000). [B] and [C] Markedly enlarged mitochondria are interspersed
with normal-sized mitochondria in proximal tubular cells (x 20000).

Source: Herlitz LC, et al. (2010). “ Tenofovir nephrotoxicity: acute tubular necrosis

with distinctive clinical, pathological, and mitochondrial abnormalities.”

Kidney international 78, 1171-7 (reprinted with permission).

2.3 Role of renal transporters in tenofovir metabolism and toxicity.

The exact mechanism of tenofovir-induced nephrotoxicity is not certain;
however, it appears to result from drug accumulation in the proximal tubular cells.
There are two theories that may explain how the accumulation leads to nephrotoxicity
[45, 53]. The first is that tenofovir accumulation may be directly cytotoxic to the
tubular cells. The second theory is supported by the observation that Fanconi
syndrome is the most common renal manifestation of mitochondria cytopathies, a
diverse group of diseases that are caused by abnormalities in mtDNA that result in
mitochondrial dysfunction in various tissues [53]. The most effective treatment of
tenofovir-induced nephropathy is to discontinue tenofovir [53]. Features of
nephrotoxicity frequently improve following discontinuation of the drug [1, 53].
However, nephroprotection has been demonstrated by preventing tenofovir entry into
proximal tubular cells or facilitating its exit or administering drugs that protect tubular
cells from injury. Probenecid, an inhibitor of hOAT1 is also demonstrated to prevent
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cidofovir toxicity and may also protect renal function from tenofovir due to structural
similarity [53]. For that reason, numerous researches were focused to demonstrate the
handling pathway of tenofovir at proximal renal tubular cells [1, 4, 8, 24, 45, 55, 68].
The result showed that about 20 - 30% of tenofovir is actively transported into renal
proximal tubule cells by hOATs (mainly hOATL1 and, to lesser extent, hOAT3) in the
basolateral membrane [1, 4, 8, 24, 53]. Subsequently, tenofovir is secreted into the
tubular lumen via apical membrane efflux transporters ABCC4 (MRP-4) [24, 53] and
ABCC10 (MRP-7) (Figure 2.3.1) [8, 53, 70, 71].

Therefore, multidrug resistant transporter protein MRP-4 and MRP-7
malfunctions could contribute to renal tubular cells damage. Recently, the information
of genetic variants in transporter protein involved in tenofovir excretion, however, has
not been clearly associated with renal damage. Currently, it is still controversial
whether ABCC2 and ABCC4 polymorphisms alter the risk of tenofovir-induced
nephrotoxicity [6, 7, 9, 53, 71]. ABCC2 is not a tenofovir transporter at proximal
tubular cells [24], nonetheless, the association study was demonstrated that ABCC2
polymorphisms at positions -24 (rs717620) was associated with increased risk of

tenofovir-induced nephrotoxicity [7, 15, 71].

A study in HIV-infected patients found that a 669C>T (rs899494)
polymorphisms in the ABCC4 gene -was associated with tenofovir-induced
nephrotoxicity, but this was not found in a subsequent study [7, 71]. Several
additional single nucleotide polymorphism of ABCC4 were investigated in HIV-
infected patients [559G<T (rs11568658), 912G>T (rs2274407), 519G>T (rs2274406),
969G>A (rs2274405), 1497C>T (rs1557070), 3310T>C (rs11568655), 3348A>G
(rs1751034)], but no association with tenofovir-induced nephrotoxicity was found [6].
In HIV-infected patients with ABCC4 3463A>G genotype receiving tenofovir
diphosphate, patients with ABCC4 3463G variants had 35% higher tenofovir

diphosphate concentrations than wild type [6].

The ABCC10 efflux transporter is capable to transport tenofovir in vitro.
Genetic polymorphisms at position 526G>A (rs9349256) and 2843T>C (rs212739)
were associated with nephrotoxicity [8] but no replicated studies have been

conducted. This may be partly explained that these SNPs were not significant
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polymorphisms, or that there exist other compensated efflux mechanisms via other

MRPs located on the renal proximal tubular region [1, 33, 45, 53].

At the renal proximal tubular region, there exist different multidrug resistance
proteins encoded by a superfamily of 48 distinct members of the ATP-Binding
Cassette (ABC) transporters [70, 72-77]. Among the members of ABC-transporter
subfamily C, ABCC11 or MRP8 encoded by abccll gene belongs to a new class of
MRP members [10]. MRP8 expression is low in all normal human tissues except in
lung, fetal tissue, kidney, spleen, colon and brain [11-16, 78] (Table 2.3.1). At the
kidney, MRP8 is highly expressed on proximal region but not on glomeruli [79-81]
(Figure 2.3.2). MRP8 is able to transport a diverse range of lipophilic anions,
including cyclic nucleotides, estradiol-17 beta-d-glucuronide (E(2)17betaG), steroid
sulfates such as dehydroepiandrosterone (DHEAS) and estrone sulfate (E(1)S),
glutathione conjugates such as leukotriene C4 and dinitrophenyl-S-glutathione, and
monoanionic bile acids [15, 17]. MRP8 transmembrane protein configuration
structure resembles MRP4 and MRP5 with respect to possessing only two membrane
spanning domains [17]. Amino acid comparisons indicate that MRP8 more closely
resembles MRP4 and MRP5, and the substrate selectivity of MRP8 is more similar to
that of MRP4 [18-20]. Moreover, cyclic nucleotides are the only physiological
transport substrates that MRP4, MRPS5, and MRP8 are known to have in common [17,

21-23] and chemical structure of tenofovir is similar to cyclic nucleotide analog [1, 2].

Therefore, we are interested to demonstrate the physiologic functions of
MRP8 transporter protein in tenofovir efflux. Pig Kidney Epithelial (LLC-PK1)
MRP8-overexpression and parental cells have been selected for this experiment to
demonstrate this hypothesis due to its representation of the suitable monolayer of

renal tubular epithelium at proximal region [17, 82, 83].
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Figure 2.3.1 Protein transporters involved in tenofovir elimination at basolateral and
luminal surface of the proximal renal tubule. OAT1, organic anion
transporter 1; OATS3, organic anion transporter 3; MRP4, multidrug
resistant protein 4, MRP7, multidrug resistant protein 7.

Source: Rodriguez-Novoa S, et al. (2009). “Predictors of kidney tubular dysfunction
in HIV-infected patients treated with tenofovir: a pharmacogenetic study.”
Clinical infectious diseases: an official publication of the Infectious
Diseases Society of America 48, e108-16 (reprinted with permission).
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Table 2.3.1  Expression of ABCC transporters in normal tissues.
Members: Human tissue expression
Symbol/alias
ABCC1/MRP1 Lung, testes, peripheral blood mononuclear cells,
lateral membrane
ABCC2/MRP2/CMOAT Liver, intestine, kidney, apical membrane
ABCC3/MRP3/CMOAT2 Lung, intestine, liver, kidney,
lateral membrane
ABCC4/MRP4/MOATB Many tissue
ABCC5/MRP5/MOATC Many tissue
ABCC6/MRP6/MOATE/PXE |Kidney, liver, lateral membrane
ABCC7/CFTR Exocrine tissues, apical membrane
ABCCS8/SUR1 Pancreas
ABCC9/SUR2 Skeleton muscle, heart
ABCC10/MRP7 Low inall tissues except pancreas
ABCC11/MRP8 Lung, kidney, colon, spleen, brain, breast
and fetal tissue
ABCC12/MRP9 Breast, testes, brain, skeleton and ovary
ABCC13/PREDG6 S

Source: Chen ZS, et al. (2005). “Transport of bile acids, sulfated steroids, estradiol

17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance
protein 8 (ABCC11).” Molecular pharmacology 67, 545-57 (reprinted with

permission).



34

Figure 2.3.2 Immunohistochemistry  staining of human kidney shows strong
granular cytoplasmic positivity in- proximal tubular epitheliums in
tubules but not in glomerulus.

Source: Uhlen M, etal. (2005). “A human proteinatlas for normal and cancer tissues

based on antibody proteomics.” Molecular & cellular proteomics: MCP 4,

1920-32 (reprinted with permission).
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3.1 Materials

3.1.1 Chemicals and reagents
0.25% trypsin-EDTA (GIBCO™, Grand Island, NY, U.S.A)

ABCC11 antibody (Invitrogen™ by Life Technologies Corporation,
Grand Island, NY)

ABCC11-Primer (Invitrogen™ by Life Technologies Corporation,
Grand Island, NY)

B-actin Primer (Invitrogen™ by Life Technologies Corporation, Grand
Island, NY)

Alexa flour® 488 Phallo, 4°, 6-Diamidino-2-Phenylin (Invitrogen™ by
Life Technologies Corporation, Grand Island, NY)

Alexa flour®488 goat anti-mouse serum IgM (Invitrogen™ by Life

Technologies Corporation, Grand Island, NY)

Bio-Rad Protein Assay kit (Bio-Rad Laboratories, U.S.A)

Bovine serum albumin (BSA) (Bio-Rad Laboratories, U.S.A)
Bradford reagent (Bio-Rad Laboratories, U.S.A)

Chloroform (VWR Intrnational Ltd. England analytical reagent grade)

DAPI (Invitrogen™ by Life Technologies Corporation, Grand Island,
NY)

DEPC-treated water 500ml (Thermo Fisher Scientific, Waltham, MA)

Dimethyl sulphoxide (DMSO) (Fisher Scientific; analytical reagent
grade)

DPBS with magnesium and phosphate (GIBCO™, Grand Island, N,
US.A)

DPBS without magnesium and phosphate (GIBCO™, Grand Island,
NY, U.S.A)



Fetal Bovine Serum (FBS) (GIBCO™, Grand Island, NY, U.S.A)

GM3010 MRPs-BCRP vesicular transport assay reagent set (Life

Technologies Corporation, Grand Island, NY)

Goat serum (GIBCO™, Grand Island, NY, U.S.A)
L-glutamine (200 mM) (GIBCO™, Grand Island, NY, U.S.A)
LLC-PK1 cells (Genscript®Inc., UAS)
LLC-PK1-MRP8-overexpression cells (Genscript®Inc., U.A.S)

M199® medium (GIBCO™, Grand Island, NY, U.S.A)
Methanol (Merck, Germany; purity > 99.9%)

Methotrexate (Sigma Aldrich®, St. Louis, MO, U.S.A)
MK-571 (Merck Millipore Inc., Darmstadt, Germany).
Paraformaldehyde (Sigma Aldrich®, St. Louis, MO, U.S.A)
Penicillin (GIBCO™, Grand Island, NY, U.S.A)
Penicillin-Streptomycin (GIBCO™, Grand Island, NY, U.S.A)
PrestoBlue® (GIBCO™, Grand Island, NY, U.S.A)

Purelink™ RNA mini purification kit (Invitrogen™ by Life

Technologies Corporation, Grand Island, NY)
Puromycin dihydrochloride (GIBCO™, Grand Island, NY, U.S.A)
Pyruvate (GIBCO™ Grand Island, NY, U.S.A)

SF9-insect vesicles (Invitrogen™ by Life Technologies Corporation,
Grand Island, NY)

SF9-MPR8-overexpression vesicles (Invitrogen™ by Life

Technologies Corporation, Grand Island, NY)

Sodium pyruvate (GIBCO™, Grand Island, NY, U.S.A)
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SS-111 platinum SYBR green one step QRT-PCR (Invitrogen™ by Life
Technologies Corporation, Grand Island, NY, U.S.A)

Sterile water for irrigation (General Hospital Products Public Co., Ltd.)
Streptomycin (GIBCO™, Grand Island, NY, U.S.A)

Synthetic ABCC11-primary antibody (Invitrogen™ by Life
Technologies Corporation, Grand Island, NY, U.S.A)

Tenofovir disoproxil fumarate (Santa Cruz Biotechnology Inc, Dallas,
TA)

Tenofovir (Santa Cruz Biotechnology Inc, Dallas, TA)
Triton®-X100 (Sigma Aldrich®, St. Louis, MO, U.S.A)

Trypan blue stain 0.4% (GIBCO™, Grand Island, NY, U.S.A)
Trypsin-EDTA 0.25% (GIBCO™, Grand Island, NY, U.S.A)
Vinblastine (Sigma Aldrich®, St. Louis, MO, U.S.A)

1 um 96-well glass filters plate (Pall Corporation, Port Washington,

NY)

3.2 Equipment
- 20 degree Ultra Freezer (Haier, Chaina)

- 40 degree Ultra Freezer (Haier, Chaina)
- 80 degree Ultra Freezer (Haier, Chaina)

Automatic Autoclave (Model: LS-2D, Scientific Promotion Co., Ltd.,
Bangkok, Thailand)

Cells viability counters (Intivroten™ (Attune), U.S.A)
Centrifuge (Hermle Z300K; Labnet®; Lab Focus CO., Ltd.)
CO; incubator (HERA Cells 240 Heraeus)

EVOS-II™ imaging station (Intivroten™ - EVOS, U.S.A)

Incubation shaker (SHEL Lab, U.S.A)
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Inverted Microscope (Model: ECLIPSE TE 2000-U, Nikon, Japan)
Laminar air flow (BIO-11-A)

Liquid nitrogen tank (Cryo Diffusion SA, France)

Microcentifuge tube (Eppendorf ©, Corning Incorporated, NY, U.S.A)

Microcentrifuge (Microfuge 16°, Model: A46473, Beckman Coulter

Inc., Germany)

Micropipette 0.1 - 2.5 pL, 2 - 20 pL, 20 - 200 pL, 100 - 1000 pL and

micropipette tip

Microplate reader (M965+ model, Metertech, Taiwan)

rt-PCR Analytika™ (qTower 2.2, Analytika JENA AG Inc., Germany)
Spectrofluorometer (RF-1501, Shimadzu, Tokyo, Japan)

Tissue culture plate (96-, 24-, 12-, 6-Well plate) (Corning
Incorporated, NY, U.S.A)

Vacuum filter (Pall Corporation, Port Washington, NY)

Vortex mixer (Model: Labnet, U.S.A)
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Figure 3.3.1 Conceptual framework of this experimental research
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3.3.1 Cells and vesicles preparation.

LLC-PK1-ABCC11-overexpressed cells and LLC-PK1-
parental cells (ATCC No0.123546) were purchased from GenScript Inc. (Piscataway,
NJ). Human ABCC11-overexpressed inside-out vesicle, control ABC transporter
vesicle, and primers were purchased from Life Technologies Corporation (Grand
Island, NY). LLC-PK1-ABCC11 and parental cells were grown under recommended
conditions in M199 medium with 3% heat-inactivated fetal bovine serum, 100 pg/mi
penicillin-streptomycin and 2 pg/ml puromycin dihydrochloride. Cells were passaged
twice a week. Gene expression and protein expression were characterized by real-time

PCR and indirect immunofluorescence assay, respectively.

MRP8-overexpression cellss LLCPK1-parental cellss

l Remove them from liquid nitrogen tank

Rapid defrost by incubation at 37 degree Celsius.

!

Transfer the clear fluid solutions into 15 ml centrifuge tube that
contains 10 ml of M199 medium.

l Centrifugation at 127 x g of speed for 7 min.

Remove supernatant

!

Add 10 ml of M199 medium then mildly pipette up and down to

loosen the pellet.

l

(Continue on next page)
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(Continue from previous page)

)

Divide into two parts, pipetting each part into T75 flask containing
15 ml of fresh M199 medium.

Incubation at 37 degree Celsius with
y 9% CO> overnight.

Replacement with fresh 15 ml of M199 containing with 1%
Puromycin plus 3% FBS for MRP8-overexpression cells

And

With fresh 15 ml of M199 containing 5% FBS without Puromycin
for parental cells

h 4
Replacement of the M199 medium thrice a week

Figure 3.3.1.1 ABCC11 or MRP8-overexpressed cells and parental cells
handling procedure.
3.3.2 - mRNA isolation and Real Time-PCR (rt-PCR).

To evaluate human abccll mRNA levels in MRP8-
overexpressed LLC-PK1 cells compared with parental cells, a relative quantification
was determined by real-time PCR. Briefly, cells were seeded in T75 cells culture flask
until 80-95% confluence. For RNA extraction, Purelink™ reagent was added into
cells and mRNA was isolated according to the manufacturer’s protocol. The
ABCC11-primer base (Forward primer = AGTATGATGCTGCCTTGA, Reverse
primer = GGTGAGGTAGGAGAACAG), B-actin primer base (Forward primer =
AACTACCTTCAACTCCATCA, Reverse primer = ATCTCCTTCTGCATCCTG)
were purchased from Life Technologies Corporation (Grand Island, NY). A one-step
quantitative RT-PCR SuperScript® 111 Platinum® SYBR® Green qRT-PCR kit was
used for quantification mRNA expression as following conditions; 48°C for 3 minutes
hold (cDNA synthesis), then, 40 cycles of 95°C for 15 seconds, 60°C for 30 seconds,
40°C for 1 minute. Data were quantified in relative expression using f-actin as

reference gene.
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Prepare T75 culture flask of MRP8-overexpression cells and
LLCPK1-parental cells with 10° - 10° of cells density

Remove M199 and wash with DPBS 3
times

A 4

Add 3 ml of 0.25% Trypsin-EDTA

Incubation at 37 degree Celsius with 5%
CO, for 5 - 7 min.

Well detachment of cellss in the flask will be observed closely.

Add 10 ml of fresh M199 medium containing FBS into the flask to
inactivate trypsinase activity and then gently pipette up and down 5 - 7 times
to reduce the flocculation of the pellet.

Transfer into 15 ml centrifuge tube

A 4

Centrifugation at 127 x g of speed for 7 min.

l Remove medium

Add 600 pl of lysis buffer diluted with 2-mercaptoethanol

Vortex until the solution
in the tube is clear

Transfer lysate into the homogenization tube and then use
21 gauges of needle with syringe to draw them up and
down for 5 - 7 cycles.

Add 70% EtOH (in RNase-free
water) in sufficient volume

Vortex to mix thoroughly until precipitation of RNA is
observed. Any precipitate may occur after adding ethanol.

(Continue on next page)



(Continue from previous page)

)

Transfer up to 700 pL of the solution including any
remaining precipitate to the spin cartridge with collection
tube

Repeat until

Centrifuge at 12,000 x g for 15 sec. at room temperature.
Discard the flow-through, and reinsert the spin cartridge
into the same collection tube

Add 700 uL of Wash buffer |
to spin cartridge.

A 4

Centrifuge at 12,000 x g for 15 sec. at room temperature.
Discard the flow-through and the collection tube. Place the
spin cartridge into a new collection tube.

Add 500 pL of Wash buffer
I1 with ethanol to spin
, cartridge.

A

Centrifuge at 12,000 x g for 15 sec. at room temperature.
Discard the flow-through and the collection tube.

!

Centrifuge the spin cartridge at 12,000 x g for 2 min. to
dry the membrane with bound RNA. Discard the collection
tube and insert the spin cartridge into the recovered tube.

Add 100 pL of RNase-free
water to the center of the
spin cartridge.

A

Centrifuge the spin cartridge at 12,000 x g for 2 min.to
elute the RNA from membrane into the recovery tube.

(Continue on next page)
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J

the entire

v solution has been processed.

AN

Repeat once.

—

Repeat 3 times and
Incubation for 1 min. at room Collect the elutes in
a single tube.
temperature.

\_



(Continue from previous page)

v

Store the purified RNA on ice for immediate use. For long-
term storage, keep the purified RNA at - 80 °C

Figure 3.3.2.1 Diagram of human ABCC11 or MRP8 mRNA isolation and storage.

Bring purified RNA and put on ice.

A 4

Make master mix formula as following;

y
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MRP8-overexpression cell /[reaction(ul) x4 reaction(uL) parental ce 0
RNA template(MRP8-overexpression cell 5 20 RNA template(MRP8-overexpression cell 5 20
line) line)

SuperScript®lll Platinum® SYBR® Green 1 4 SuperScript®lll Platinum® SYBR® Green 1 4
One —Step qRT-PCR Kit One -Step qRT-PCR Kit

2X SYBR® Reaction Mix 25 100 2X SYBR® Reaction Mix 25 100
Magnesium Chloride 1 4 Magnesium Chloride 4
Forward Primer ABCC11(MRP8) 0.5 2 Forward Primer ABCC11(MRPS8) 0.5 2
Reward Primer ABCC11{MRP8) 0.5 2 Reward Primer ABCC11{MRP8) 0.5 2
DEPC-treated water gs. to 50 200 DEPC-treated water gs. to 50 200
RNA template(MRP8-overexpression cell 5 20 RNA template(MRP8-overexpression cell 5: 20
line) line)

SuperScript®lll Platinum® SYBR® Green ) 4 SuperScript®lll Platinum® SYBR® Green 4 4
One —Step qRT-PCR Kit One —Step qRT-PCR Kit

2X SYBR® Reaction Mix 25 100 2X SYBR® Reaction Mix 25 100
Magnesium Chloride q| 4 Magnesium Chloride 4
Forward Primer B-actin 0.5 2 Forward Primer B-actin 0.5 2
Reward Primer B-actin 0.5 2 Reward Primer B-actin 0.5 2
DEPC-treated water gs. to 50 200 DEPC-treated water gs. to 50 200

|

One-step of standard cycling program:

48 °C for 30 minutes - cDNA synthesis
95 °C for 5 minutes - Initial denaturation

40 cycles of

95 °C for 15 seconds - Denaturation

60 °C for 60 seconds - Annealing and Primer
extension

40 °C for 1 minutes

(Continue on next page)
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(Continue from previuos page)

!

The level of gene expression will be determined by using
qTower 2.2® Analytik Jena AG with one-step of standard
cycling program setting as mentioned as above.

!

Amount of interesting gene (mrp8 or abccll) expression will be
calculated as relative gene expression to reference house-
keeping gene (B-actin)

Figure 3.3.2.2 Diagram of the determination of human ABCC11 or MRP8 mRNA

expression levels by real-time polymerase chain reaction.

3.3.3 Immunofluorescent staining and imaging.

To assess in situ MRP8 protein expression immunofluorescent
technique using an anti-MRP8 antibody was performed in MRP8-overexpressed and
parental LLC-PKZ1 cells. This method was adopted from Robillard KR et al [84]. Cells
were seed in 24-well tissue culture plate at density of 5,000 cells/well. Cells were
incubated at 37°C, 5% CO, overnight. The experiments were duplicated. Briefly, cells
were fixed with 4% paraformaldehyde for 20 minutes. Permeabilized solution with
0.3%v/v Triton® X was added for 5 minutes at 37°C. Thereafter, 5% v/v goat serum
diluted in DPBS solution was added into cells and incubated for 60 minutes at room
temperature. Cells were incubated at 4°C overnight with primary mouse anti-MRP8
antibody (10 pg/ml). Then, cells were washed three times with PBS, incubated with
an Alexa Fluor® 488 goat anti-mouse antibody (10 pg/ml) for 60 minutes at room
temperature. For staining of actin and nucleus, Alexa Fluor® 488 Phalloidin (10
ug/ml) and DAPI solution (3 ng/ml), respectively, were used according to the
manufacture’s protocol. Photos of selected areas of cells were taken under the EVOS-

[1™ imaging station at 1,000 X magnification.
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Seed MRP8-overexpression cells or LLCPK1 parental cells into 6-
well plate at approximate cells density of 5,000-7,000 cells/well.

(The experiment will be done in duplicate.)

Remove M199 medium

Rinse the well with DPBS
v (with calcium and magnesium) x 3 times

Fixed cells with 4% Paraformaldehyde for 5 min at room temperature

Rinse the well with DPBS
v (with calcium and magnesium) x 3 times

Permeabilize cells with 0.3% Triton® X (diluted in DPBS)

A4
Incubate for 5 min. at room temperature

l Rinse the well with DPBS
(with calcium and magnesium) x 3 times

Add 5% goat serum in each well then incubate for 2 hr. at
room temperature

\4

Remove goat serum the add primary antibody at 10
mcg/ml of concentration (diluted in 5% goat serum)

l

Incubate overnightat 2 - 8 °C

Rinse the well with DPBS
v (with calcium and magnesium) x 3 times

Add secondary antibody with Alexa Flour® 488 goat-anti
mouse serum at 10 mcg/ml (diluted in 5% goat serum) and
add DPBS in control well.

l

(Continue on next page)
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(Continue from previous page)

l

Add Phallotoxins (1:40) then DAPI (3 ng/ml)

A 4
Incubation for 1 hr. at room temperature

Rinse the well with DPBS
(with calcium and magnesium) x 3 times

Observe the fluorescence signal

with EVOS-11® Imaging station

Figure 3.3.3.1 Diagram of the determination of human ABCC11 or MRP8 transporter

protein expression level by indirect immunofluorescence assay.

3.3.4 Cytotoxic assays.

The modified MTT assay was performed to determine the cells
viability and CC50s between MRP8-overexpressed and parental cells in the presence
of various concentrations of TDF with or without MRP-specific inhibitor MK-571.
Methotrexate was used as a positive control. This method was adopted from Ray et al.
[24] Cells were seeded in 96-well tissue culture plates at approximate density of 5,000
cells/well in 100 pl of M199 medium. Twenty-four hours later, both cells types were
pre-incubated at 37 °C, 5% CO, with various concentrations of MRP-specific
inhibitor (50, 100 or 150 pM MK-571) for 1 hr. Serially diluted test drugs or
methotrexate were then added in triplicate and mixed well. Following 4 days (96 hr.)
of incubation, cells viability was determined using a PrestoBlue™ assay Kit
(purchased from Life Technologies Corporation, Grand Island, NY)) according to the
manufacturer’s protocol. After 2 hours of continuous incubation, the luminescence
signal was measured at excitation 550 nm of wavelength using a microplate reader

(M-965+, Metertech, Taiwan), and percentage of cells viability was calculated.
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approximate density of 5,000 cel

Seed MRP8-overexpression cells or LLCPK1-parental cells at

Is/well into 96-well culture plate

v

Incubation at 37 °C with 5% CO, overnight.

Add specific inhibitor MK-571 (50 uM or 100 pM)

Incubation at 37 °C with 5% CO, for 60 min.

Add serial dilution of methotrexate at
concentration 0, 0.000016, 0.00016,
0.0016, 0.016, 0.16, 1.6, 16, 160,
1600, 16000 or 50000 uM

(M199 medium and 100 pM of
vinblastine are used to represent
100% and 0% viability)

Add serial dilution of tenofovir at
concentration 0, 0.000175, 0.00175,
0.0175, 0.175, 1.75, 17.5, 175, 1750,

17500 or 175000 uM

(M199 medium and 100 uM of
vinblastine are used to represent 100%
and 0% viability)

Incubation at 37°C with 5% CO, for 96 hr.

A

Remove the solution in each well

l Add Presto blue® 90 pL + M199 10 uL

Incubate at 37 °C with 5% CO, for 2 hr

A

4

Luminescence signal was measured at
550 and 600 nm, respectively by
Metertec

the excitation and reference wavelength of
a microplate reader (M-965+ model,
h™ , Taiwan)

'

The concentrations rendering 50% cells viability (CCses) were calculated by
nonlinear regression with the Prizm program (GraphPad" 6, San Diego, CA)

Figure 3.3.4.1 Diagram of cytotoxic assay.
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3.3.5 Drug transport assays

To compare the intracellular accumulation of tenofovir and
methotrexate between MRP8-overexpressed and parental cells, cellular transport
assay with or without MK-571 was performed as previously described [8, 24, 85].
LLC-PK1-ABCC11 and parental cells were seeded at approximate density of 300,000
cells/well into 12-well tissue culture plate and then incubated at 37 °C, 5% CO, for
overnight. Cells were pre-incubated with 50 uM or 100 uM MK-571 solution at 37
°C, 5% CO, for 1 h, followed by addition of 200 uM tenofovir disoproxil fumarate
(TDF) or 160 uM methotrexate (MTX). After 1 h of shaking incubation at 37 °C, 5%
CO,, reactions were stopped by washing 3 times with ice-cold phosphate-buffered
saline to remove extracellular drug. Cells were harvested by adding 70% v/v ice-cold
methanol, followed by overnight incubation at - 20 "C. Cellular debris was removed
by centrifugation at 10,000 g for 15 minutes. Supernatants were collected, and
intracellular concentrations of tenofovir and methotrexate were determined by a
validated liquid chromatography coupled with tandem mass spectrometry, which is
operated with electrospray ionization (ESI) technology, as described previously. [25-
28, 86]. The reference method was validated [25, 28, 86, 87], exhibited the lower
limits of quantification-and the calibration curves demonstrated the linearity with
average correlation coefficients greater than 0.99 for both tenofovir and methotrexate.
Chromatographic separation of tenofovir and methotrexate was achieved by using a
mobile phase of acetonitrile: 1 mM ammonium acetate buffer in water pH 6.5 + 0.3
(50 : 50, v/v) and acetonitrile: 1mM ammonium formate containing 0.1% formic acid
(18 : 82, v/v), respectively. Delivered flow rate was 0.4 ml/min through an analytical
column (C18 Zorbax Eclipse XDB, Agilent™, U.S.A). The column temperatures

were maintained at 10 'C for tenofovir and 35 'C for methotrexate.



Seed MRP8-overexpression cells or LLCPK1-parental cells at
approximate density of 400,000 cells/well into 12 well culture plates.

overnight.

Incubate at 37°C with 5% CO,

A 4 A

4
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Add 50 pM or 100 pM MK-571 No M

K-571

I Incubate at 37°C with 5% CO, for 1hr.

Add tenofovir (200uM) or Methotrexate (160M)

Incubate for 1 hr. with 250

rpm of

shaking at 37 °C with 5% CO..

Rinse the well with DPBS x 3 times

l

Scrape cellss in each well with 1 ml of 70% iced-methanol

l Freeze - 20 °C

Centrifuge at 15,000 x g for 15min

l

Keep the supernatant to determine the
intracellsular amount of tenofovir and
methotrexate by LC-MS/MS

Figure 3.3.5.1 Diagram of drug transport assay.
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3.3.6 ATP-dependent vesicular uptake assays

To demonstrate active transport of tenofovir and methotrexate
through MRP8, time course uptake of tenofovir and methotrexate was performed by
an inside-out Sf9 vesicle to compare the intravesicular accumulation of drugs between
MRP8 (ABCC11)-overexpressed vesicles and Sf9 vesicles with or without MK-571.
This assay was adopted from Ray AS, et al [24]. Briefly, membrane vesicles from Sf9
insect cells overexpressing MRP8 (ABCC11) protein and control vesicles were
purchased (Life Technologies Corporation, NY). They were tested by the company to
contain no other protein transporters. The vesicle transport assays were performed
with a combination of 1) transport buffer obtained in GM3010 MRPs-BCRP vesicular
transport assay reagent kit (Life Technologies Corporation, NY) ; 2) 100 uM MK-571
(Merck Millipore Inc., Germany) ; 3) 200 uM Tenofovir (Santa Cruz Biotechnology
Inc., TA) or 160 uM methotrexate (Sigma-Aldrich, MO) ; and 4) vesicles at a total
protein concentration of 500 pg/ml. The total reaction volume was 1,000 ul. After
37 °C, 1 hour of incubation, 160 pl reaction mixture aliquots were collected at time
points (0, 0.5, 5,10, 15, 30 minutes). They were diluted into 1 ml ice-cold Stop
buffer, and pass to vacuum filtered through 1 pum 96-well glass filters plate (Pall
Corporation, Port Washington, NY). Filters were washed 5 times with 200 ul ice-cold
Wash buffer. Vesicles were harvested by adding 70 % iced-methanol, followed by
incubation at - 20 °C overnight. Cellular debris was removed by centrifugation at
10,000 g for 15 minutes. Supernatants were collected and intracellular concentrations
of tenofovir and methotrexate were determined as previously described [25-28]. To
determine the transporter-specific uptake of the substrates, MRP8 overexpressed
vesicles were assayed side by side with the control vesicles and MRP-specific
inhibitor. Accumulation of substrates in vesicles was expressed in nanomoles per

milligram of total protein (nM/mg-protein).



54

Pipette 1,800 ul MRP8-vesicle
proteins and mixed with 180 pl
reaction buffer into the reaction tube.

Pipette 600 pl control vesicle and mix
with 60 pl of reaction buffer into the
reaction tube.

, |

Pipette 1,320 ul of Pipette 660 ul of
MRP8-vesicle protein MRP8-vesicle protein
mixed with reaction mixed with reaction
buffer into new buffer into new
reaction tube. reaction tube.

v A4

No-MK-571, Add Add 120 pl of 200 Add 120 pl of reaction
240 pl of reaction MM of MK-571 buffer instead.
buffer instead.
I
v v
Pipette 780 Pipette 780
ul into the ul into the
new reaction new reaction
tube. tube.
Y Y v v
Add 120 pl Add 120l || Add 120 pl of Add 120 pl of
of 20 mM of 20 mM 20 mM 20 mM
mgATP mgAMP mgATP mgATP
v v ' v
Pre-incubate at 37 °C for 5 min
v v v v
Add 60 ul of || Add 60l of | Add 60 ul of Add 60 pl of
200 uM 200 uM 200 uM 200 uM
tenofovir or tenofovir or tenofovir or tenofovir or
160 uM 160 uM 160 uM 160 uM
methotrexate methotrexate | methotrexate methotrexate

4
Gently pipette 5 - 7 times to activate the uptake reaction

l Incubate at 37 °C with 250 rpm shaking.
(Continue on next page)
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(Continue from previus page)

!

Pipette 160 ul of each time point at 0, 0.5, 5, 10, 15 and 30 min. into
1 um 96 well filter plate which is connected to vacuum pump

v

Add 150 pl of iced stop/wash buffer in each well.

v

Wash each well with 200 pl of wash buffer for 5
times via 1 um 96 well filter plate which is
connected to vacuum pump.

v

Add 500 pl of ice-methanol into each well to
scrape the vesicle.

l Incubate at 2 - 8°C overnight

Pipette the solution in each well into centrifuge tube
f Centrifuge at 15,000 x g for 15min.

Supernatant Pellets

Keep the supernatant to determine the ~ Determine protein
amount by using LC-MS/MS. concentration by using

TDF (m/z = 635). Bradford assay.
Add 0.1 N NaCl gs. to 100ul
TFV-DF (m/z = 447),

And 1 tube, aliquot 100 of
TFV-MP (m/z = 367), 0.1 NaCl serve as blank.

TFV (m/z =208, 176)| Add to each tube with 1 ml of Bradford
reagent and vortex to mix.

Incubate at room
+ temperature for 2 min.

Determine Asgsnm USIiNg microcuvette.

'

Calculate amount of protein from
standard curve

Figure 3.3.6.1 Diagram of ATP-dependent vesicular uptake assay.
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Separate 5 microcentrifuge tubes then aliquot 50,
100, 150, 200 and 500 pl of 0.5 mg/ml of BSA
solution.

Add 0.1N NacCl gs. to 100pl
And 1 tube, aliquot 100 pl of 0.1NaCl

Add to each tube with 1 ml of Bradford
reagent and vortex to mix.

! Incubate at room temperature for 2 min.

Determine Asgsnm USINg microcuvette.

!

Generate standard curve by plotting
absorbance at 595 nm versus protein
concentrations.

Figure 3.3.6.2 Diagram of colorimetric protein assay (Bradford reagent assay) for
standard curve.

3.3.7 Statistical analysis

Significance of the results were determined by a 2-way
ANOVA multiple comparison and unpaired t-test assuming equal variance with Prizm
program (GraphPad™ 6, San Diego, CA). The concentrations rendering 50% cells
viability (CCsps) were calculated and fitted to Richard’s five-parameter logistical
dose-response curve [88] (asymmetric sigmoidal, with robust fit, LogXb = LogEC50
+ (1/HillSlope)*Log((2"(1/S))-1), Denominator = (1+107((LogXb-X)*HillSlope))"S,
an initial hill slope value = 1.0 and S = 0.5) by Prizm program (GraphPad™ 6, San
Diego, CA). Untreated cells and treated cells with 100 uM vinblastine were used as

reference cells viability for 100 % and O %, in respectively.
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4.4 ATP-dependent vesicular tenofovir uptake assays

4.5 Discussion



4.1 Characterization of cells lines

Human abccll mRNA levels in MRP8-overexpressed LLC-PK1 cells
exhibited higher expression level than that of the parental cells (Figure 4.1.1A).
Indirect immunofluorescence staining of MRP8 also showed that the transporter
protein was highly expressed as seen from fluorescence signal in MRP8-
overexpressed LLC-PK1 cells whereas no signal was observed in parental cells by
EVOS-1I™ imaging station (Figure 4.1.1B; upper panel).The findings confirmed the
suitable characteristics of the MRP8-overexpressed LLC-PK1 for further

experimental assays.



|
&
“ 5
<\
" Y
-- i
Nucleus : Blue color

MRPS-protein : Red color Complele image mergel

Figure 4.1.1 Expression of recombinant MRP8 in LLC-PK1 cellss. A) RNA

expression of recombinant human ABCC11 gene in LLC-PK1
overexpressed cellss (LLC-PK1-ABCC11) was significantly higher
(left bar) than that of the parental cellss (LLC-PK1). Data were shown
in relative ratio of ABC11 gene expression normalized with beta-actin
gene expression by real-time PCR as described in Materials and
Methods. Values were the means £ SD from at three independent
experiments. Error bar represented standard errors from three
independent experiments. Statistical significance was assessed by
2-way ANOVA multiple comparison assuming equal variance
(***, p-value < 0.0001). B) Human MRP8 overexpressed protein in
LLC-PK1-ABCC11 (upper panel) and LLC-PK1 parental cellss
(lower panel). Immunofluorescent staining of MRP8 protein (red
color), B-actin (green color), and DAPI (blue color) in both cells types
were described in Materials and Methods. Photos were taken under

the EVOS-II™ imaging station at 1000 x magnification.



4.2 Cells viability and cytotoxicity assays

MK-571 did not reduce MRP8-overexpressed and parental cells viability at the
concentrations used (Figure 4.2.1A). At 17,500 uM, TDF alone reduced a significant
proportion of parental cells viability whereas no effect was seen on MRP8-
overexpressed cells (Figure 4.2.1B). When MK-571 was added, TDF significantly
reduced MRP8-overexpressed cells viability only (Figure 4.2.1C). Methotrexate was,
however, more cytotoxic to both cells. Similarly, MTX toxicity was markedly
increased when MK-571 was added in MRP8-overexpressed cells only (Figure
4.2.1D). When ten serial concentrations of TDF were used to determine 50%
cytotoxic concentrations (CCsgs) in both cells lines, TDF was found to be more toxic
to parental cells. However, CCsys of TDF was significantly reduced in the presence of
MK-571 only in MRP8-overexpressed cells (Table 4.2.1, Figure 4.2.1E). Similarly,
CCsps of MTX was also dramatically reduced when MK-571 concentrations were

increased only in MRP8-overexpressed cells (Figure 4.2.1F).

Table 4.2.1 Effect of MRP8-averexpression on cytotoxicity of tenofovir in LLC-

PK1 cells.
Compound CCsos(UM) Fold change®
Wild type MRP8-
overexpressed
Tenofovir 33,694 £ 839 161,076 + 5478 478"
+50uM MK-571 34,938 £ 770 138,115 £ 976 3.95°
+100puM MK-571 33,530 * 466 10,713 £ 132 0.32¢

®/alues represent the mean + standard deviation of five independent experiments.
Calculation was fitted to Richard’s five-parameter dose-response curve [88]
(asymmetric  sigmoidal, 5PL with robust fit., LogXb = LogECsy +
(1/HillSlope)*Log((27(1/S))-1), Denominator = (1+10"((LogXb-X)*HillSlope))"S,
initial hill slope value =1.0 and S=0.5)

PFold change is the quotient of 50 % cytotoxic concentration (CCsgs) of MRPS-
overexpressed cells by parental cells (CCsps mrrs/CCsos wr)-

¢ 4.2 Sjgnificant (P<0.0001) decrease in toxicity due to MRP8-overexpressed base on

2-way ANOVA multiple comparison assuming equal variance.
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Figure 4.2.1 Cells viability assays of TDF and methotrexate in the presence and absence of MRP-
specific inhibitor MK-571 (A) MRP-specific inhibitor MK-571 at various concentrations
did not reduce MRP8-overexpressed and parental cells viability. (B) Cytotoxic effects of
TDF on MRP8-overexpressed and parental cells (C) MK-571 further reduced viability
of the MRP8-overexpressed, but not parental cells treated with TDF. (D) MK-571 also
enhanced cytotoxicity of methotrexate only in MRP8-overexpressed cells. (E) And (F)
Cytotoxic assays showing methotrexate and TDF concentrations that reduced cells
viability by 50 % (CCsps) in MRP8-overexpressed LLC-PK1 or parental cells with or
without MRP-specific inhibitor MK-571. Statistical significance was analyzed by 2-way
ANOVA multiple comparison assuming equal variance (*, p-value < 0.01; **, p-value <
0.001 and ***, p-value < 0.0001). All values were the means + SD from five independent

experiments.



4.3 Tenofovir transport assays.

Transport assay was performed by measuring intracellular accumulation of
TDF and MTX after they entered the cells. The intracellular concentration was
determined by the LC-MS/MS quantification. After conversion to TFV, the amount of
TDF was found to be very little. Only area under the curves of tenofovir (m/z ratio =
208) and methotrexate (m/z ratio = 455) were used in the Figure 4.3.1. Compared to
parental cells (shaded bars) MRP8-overexpression (dark bars) significantly reduced
intracellular accumulation of tenofovir (Figure 4.3.1A) and methotrexate (Figure
4.3.1B). The reduced accumulation of both substrates was reversed by increasing
concentrations of MRP-specific inhibitor MK-571.
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Figure 4.3.1 Intracellular accumulation of tenofovir (A) and methotrexate (B) with
and without MRP-specific inhibitor MK-571 in cellular transport assay.
Error bars represented standard errors from duplicate independent
experiments. Statistical significance was assessed by 2-way ANOVA,
multiple comparison assuming equal variance [*, p-value < 0.01; **,
p-value < 0.001 and *** p-value < 0.0001]. All values were the

means £ SD from two independent experiments.



4.4 Vesicular uptake assays.

Vesicular uptake assay was designed by incubation of tenofovir, not TDF,
and MTX with ATP or AMP in the presence and absence of MK-571 in MRP8-
overexpressed and inside-out Sf9 control membrane vesicles. Addition of ATP, but
not AMP, stimulated the uptake of tenofovir (Figure 4.4.1A) and methotrexate (Figure
44.1B) into MRP8-overexpressed vesicles. Accordingly, ATP-dependent
intravesicular accumulation of tenofovir and MTX in MRP8-overexpressed vesicles
was diminished with MRP-specific inhibitor. Significant differences were seen as
early as 5 minutes time point and maintained throughout the 30 minutes experiment.
Vesicular uptake assay of known substrate (methotrexate) also showed similar results
(Figure 4.4.1B).
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Figure 4.4.1 Time course for uptake of tenofovir and methotrexate by inside-out

vesicles from  SF9 insect cells. The uptake of tenofovir and
methotrexate into MRP8-overexpressed was compared to parental
membrane vesicles derived from Sf9 insect cells. [A] Addition of ATP,
but not AMP, stimulated the uptake of tenofovir and methotrexate into
MRP8-overexpressed  vesicles.  ATP-dependent intravesicular
accumulation of tenofovir in MRP8-overexpressed vesicles was
diminished with  MRP-specific inhibitor. [B] Intravesicular
concentrations of methotrexate also showed the similar result. Error
bars represent standard errors from duplicate independent experiments.
Statistical significances were assessed by repeated 2-way ANOVA
with Turkey’s post hoc analysis and unpaired t-test comparisons
(*, p-value < 0.01 and **, p-value < 0.001). All values were the

means + SD from two independent experiments.
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4.5 Discussion.

In comparison with methotrexate, the known substrate of MRP8, TDF is
less cytotoxic to both LLC-PK1-ABCC1l1-overexpressed and LLC-PK1-parental
cells. This may be due to the fact that tenofovir has a very high selectivity index (Sl =
324.8) for viral reverse transcriptase enzyme [89] and, therefore, has lower
cytotoxicity when compared to methotrexate. However, in the presence of MRP-
specific inhibitor MK-571, cytotoxicity of tenofovir in MRP8-overexpressed cells
increased almost fifteen fold. Although TDF and MTX were not tested concomitantly
in cytotoxicity assay in our study, it may be assumed that intracellular accumulations
of tenofovir due to combination of drug known as substrate or inhibitor of MRP8

transporter may contribute to its increased cytotoxicity.

Results of cellular transport assays also indicated that intracellular
tenofovir concentration in MRP8-overexpressed cells was evidently and significantly
lower (approximately 55 folds) than that of parental cells. As expected, intracellular
tenofovir accumulations were increased as the cells were exposed to increasing
concentrations of MRP-specific inhibitor. In addition, the data was also in consistence
with those from MRP8 and Sf9 inside-out vesicles. Statistically significant increase in
intravesicular accumulation of tenofovir in-an ATP-dependent manner was observed
in all time points (0.5, 5, 10, 15 and 30 minutes) compared to controls (AMP, and
parental Sf9 vesicles). MK-571 was able to specifically reverse the intravesicular
accumulation of tenofovir. Our study is the first to demonstrate that human MRP8-
transporter protein at proximal tubular cells mediates efflux transport of tenofovir. It
can be concluded that tenofovir is a new substrate of MRP8-transporter protein.
Therefore, alteration on the physiologic functions of this efflux pump may influence
the accumulation of drug at proximal renal tubular cells and may contribute to
developing nephrotoxicity. Since renal elimination is the major pathway of tenofovir
clearance, these findings are very important to expand the basic knowledge of the
molecular pharmacology of this drug. The proximal tubular cells are uniquely
susceptible to tenofovir toxicity because there exists a various complement of

transporters that increase intracellular concentrations of the drug. The inhibition
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properties of MtDNA polymerase y encoded by POLG gene has been proposed to play
a central role in tenofovir-induced mitochondrial toxicity which may contribute to its
nephropathy [1, 4, 45, 90]. Although tenofovir has not yet been studied, admitted
similar theory was raised in supporting that this drug might also induce proximal
tubular apoptosis through caspase-9 activation [1, 29, 91] as previously described for
other nucleotide-analog reverse transcriptase inhibitors such as adefovir and cidofovir
[1]. Whether or not this may have a role in tenofovir-induced renal tubular cells injury

will deserve further study.

Genetic variants.in a number of transporter proteins involved in tenofovir
excretion have not been clearly associated with renal damage. In fact, correlations
between genetic variations of genes encoding other ABCC transporters and renal
proximal tubulopathy had been shown. Polymorphisms of ABCC4 gene at several
positions were identified but their correlation with intracellular accumulation and
kidney damage yielded conflicting results [6, 7, 92, 93]. Studies of various SNPs at
both intronic and coding regions of ABCC10 [8, 9] and ABCC2 genes also showed
discrepancy of their correlations with renal proximal tubulopathy [71]. However, the
role of MRP2 as renal efflux transporter of TDF has now been challenged and
questionable [1, 4,5, 9]. Therefore, it remains controversial by which genetic variants
may predispose renal cells to TDF toxicity. Since multiple players of efflux
transporters existed, it might be difficult to find significant proteins whose
polymorphisms could be of ‘significance in tenofovir nephrotoxicity. It was also
possible that other compensated efflux mechanisms via other MRPs located on the
renal proximal tubular region may play a role. Furthermore, there existed over 48
distinct members of multidrug resistance proteins encoded by abcc genes that belong
to the ATP-Binding Cassette (ABC) transporter superfamily at the renal proximal
tubular region [10-16].
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CHAPTER 5
CONCLUSIONS

This in vitro study is the first to demonstrate the ability of MRP8 transporter to
efflux antiretroviral tenofovir [94]. This transporter protein is highly expressed at
proximal renal tubular region (Figure 4.5.1). Genetic polymorphism or concomitant
drugs that diminish the physiologic function of MRP8-transporter may contribute to

tenofovir intracellular accumulation and, consequently, its nephrotoxicity.

Lumen of Proximal
proximal tubule tubule cell Bloodstream

Nephron

Figure 4.5.1 The handling pathway of tenofovir (TFV) transport at proximal tubular
epithelium cells.  Approximately, 20 - 30% of tenofovir is actively
transported into renal proximal tubular cells by organic anion
transporters at the basolateral membrane, hOAT1 and to lesser extent
by hOATS3. Subsequently, the drug is secreted by the ABCC4
(MRP-4), ABCC10 (MRP-7) and ABCC11 (MRP-8) (this study).

Source:  Tun-Yhong W, et al. (2017). “Tenofovir Disoproxil Fumarate Is a New

Substrate of ATP-Binding Cassette Subfamily C Member 11.”
Antimicrobial agents and chemotherapy 61, e01725-16 (reprinted with

permission).
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The example of calculation:

Protein content of each sampling = (Absorbance - 0.826)
time in uptake assay (mcg) 0.004053
=(1.185 - 0.826)
0.004053
= 87.6 mcg
1.4+
1.2

Absorbance(595nm)
o

0.8
Equation | Y = 0.004053*X + 0.8260
| Rsquare [ 0.9988 |
0.6 T T 1
0 50 100 150

Concentration(pg/ml)

Figure A.1 Standard curve of absorbance at 595 nm vs protein concentration (pg/ml).
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Table A.5 The percentage of cells viability of MK-571 on MRP8-overexpressed cells

after incubation for 96 h.

Concentration (uM)

N M199* | Vinblastine* 50 100 150
1 100 1.60 98.70 104.10 | 104.30
2 100 -1.80 99.10 104.30 | 104.40
3 100 1.00 98.90 104.10 | 104.40
4 100 -1.40 98.00 103.00 | 104.00
5 100 0.30 94.40 103.00 | 108.30
6 100 -0.30 94.60 103.30 | 103.30
7 100 -2.50 94.10 103.40 | 103.40
8 100 0.10 94.00 103.10 | 103.40
9 100 1.70 103.10 | 103.00 | 103.30
10 100 -0.20 93.80 103.40 | 103.40
Avg 100 1.026 96.87 103.47 | 103.72
SD 1.54 0.70 3.15 0.51 0.49

*M199 as control and 100 uM of vinblastine as a positive control

Table A.6 The percentage of cells viability of MK-571 on LLC-PKZ1 cells after

incubation for 96 h.

N Concentration (uM)
M199* | Vinblastine* 50 100 150
1 100 0.60 98.4 98.7 102.80
2 100 -0.80 96.3 96 101.00
3 100 2.00 99.5 99.3 103.20
4 100 -0.40 98 97.7 103.40
5 100 -0.70 99 96.7 102.70
6 100 0.70 96.8 99.1 102.40
7 100 -1.50 96.8 98.4 101.50
8 100 -0.90 97 96.5 102.90
9 100 2.70 99.4 96.3 104.20
10 100 -1.20 99.1 96.2 102.20
Avg 100 1.45 98.03 97.49 102.63
SD 1.96 1.43 1.22 1.30 0.92

*M199 as control and 100 uM of vinblastine as a positive control
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2. Calculation of 50% cytotoxic concentration value (CCsps, M) of tenofovir
and methotrexate by using GraphPad™ 6.0 with nonlinear regression

model.

Table A.21 The CCsps (UM) value of methotrexate without MK-571 on LLC-PK1

cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,
5PL, Xis

log(concentration) 1 2 3 4 5
Best-fit values

LogCCsps 3.69 3.688 3.71 3.687 3.703
HillSlope 18.86 34,13 37.19 31.85 37.72
S 0.03732 0.02065 0.02105 0.02138 0.02134
Top 98.73 98.32 98.01 97.59 97.08
Bottom 15.69 15.51 15.4 14.74 14.83
CCosos 4,896 4,872 5,129 4,863 5,042
Goodness of Fit

Robust Sum of Squares 1.149 1.188 1.358 1.409 1.46
RSDR 7.322 7.443 6.995 6.528 6.553
Number of points

Analyzed 10 10 10 10 10

Table A.22 The CCsgs (UM) value of methotrexate with 50 uM of MK-571 on LLC-
PK1 cells after-incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,
5PL, X is

log(concentration) 1 2 3 4 5
Best-fit values

LogCC50s 3.7 3.699 3.713 3.713 3.743
HillSlope 37.82 60.03 40.57 40.38 31.88
S 0.02245 0.01522 0.02414 0.02415 0.03555
Top 94.83 97.98 97.24 96.68 92.58
Bottom 14.8 8.048 8.078 8.246 8.328
CC50s 5,010 5,001 5,168 5,165 5,537
Goodness of Fit

Robust Sum of Squares 1.429 1.955 1.935 1.865 1.823
RSDR 6.948 3.602 3.692 3.752 4.192
Number of points

Analyzed 10 10 10 10 10




Table A.23 The CCsps (UM) value of methotrexate with 100 uM of MK-571 on LLC-
PK1 cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,
5PL, Xis

log(concentration) 1 2 8 4 5
Best-fit values

LogCCsps 3.678 3.679 3.674 3.683 3.682
HillSlope 21.92 24.34 33 32.95 24.97
S 0.02977 0.02814 0.02148 0.02201 0.03025
Top 99.29 98.98 98.36 98.36 99.75
Bottom 19.53 17.15 16.45 16.05 16.08
CCsos 4,767 4,774 4,724 4,821 4,804
Goodness of Fit 3.678 3.679 3.674 3.683 3.682
Robust Sum of Squares| 21.92 24.34 33 32.95 24.97
RSDR 0.02977 0.02814 0.02148 0.02201 0.03025
Number of points

Analyzed 10 10 10 10 10

Table A.24 The CCsps (UM) value of methotrexate with 150 uM of MK-571 on LLC-
PK1 cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,
5PL, X'is

log(concentration) 1 2 3 4 5
Best-fit values

LogCCoss 3.705 3.67 3.687 3.671 3.669
HillSlope 37.72 35.44 33.75 33.84 35.77
S 0.02149 0.02022 0.02173 0.02299 0.0224
Top 99.16 99.38 99.17 99.77 99.17
Bottom 8.515 5.66 5.396 5.519 5.772
CCsos 5,074 4,680 4,867 4,690 4,664
Goodness of Fit

Robust Sum of Squares| 1.468 2.073 1.867 1.93 1.929
RSDR 5.827 4.549 4.606 4.451 4471
Number of points

Analyzed 10 10 10 10 10
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Table A.25 The CCsps (UM) value of methotrexate without MK-571 on MRP8-
overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, Xis

log(concentration) 1 2 B 4 5
Best-fit values

LogCCsps 4.489 4.467 4.459 4.463 4.432
HillSlope 6.187 4.530 4.560 4.525 8.245
S 0.2533 0.3676 0.3615 0.4219 0.1681
Top 94.03 92.92 91.69 93.02 81.71
Bottom 4.256 3.476 3.582 3.736 3.134
CCsos 30,838 29,279 28,805 29,064 27,035
Goodness of Fit

Robust Sum of Squares 5.728 3.874 4.435 3.944 3.508
RSDR 1.056 1.442 1.341 1.488 1.802
Number of points

Analyzed 10 10 10 10 10

Table A.26 The CCsps (UM) value of methotrexate with 50 M MK-571 on MRP8-
overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, Xis

log(concentration) 1 2 3 4 5
Best-fit values

LogCCsos 3.791 3.824 3.787 3.778 3.762
HillSlope 6.463 10.36 5.600 4.844 4.351
S 1.222 0.7164 1.488 4.039 5.008
Top 92.49 90.12 89.11 87.10 86.47
Bottom 8.668 8.331 8.582 8.189 8.060
CCosos 6,186 6,666 6,124 5,996 5,779
Goodness of Fit

Robust Sum of Squares 4.626 4.802 4,565 4.796 5.231
RSDR 1.795 1.632 1.730 1.650 1.575
Number of points 3.791 3.824 3.787 3.778 3.762
Analyzed 10 10 10 10 10
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Table A.27 The CCsos (UM) value of methotrexate with 100 uM MK-571 on MRP8-

overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, Xis

log(concentration) 1 2 B 4 5
Best-fit values

LogCCsps 3.819 3.829 3.727 3.815 3.735
HillSlope 12.5 6.394 3.677 9.726 4.539
S 0.1975 1.103 3.085 0.7455 2.356
Top 95.38 94.15 91.9 89.81 86.77
Bottom 7.982 8.222 7.697 9.122 7.794
CCsos 6,596 6,742 5,335 6,533 5,434
Goodness of Fit

Robust Sum of Squares 7.74 5.396 4.092 4.804 5.422
RSDR 0.8936 1.372 1.86 1.743 1.335
Number of points

Analyzed 10 10 10 10 10

Table A.28 The CCsps (UM) value of methotrexate with 150 uM MK-571 on MRP8-
overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, X'is

log(concentration) 1 2 3 4 5
Best-fit values

LogCCsos 3.804 3.798 3.806 3.754 3.768
HillSlope 5.548 6.234 4.996 3.084 3.679
S 1.355 0.5982 2.764 9.623 4.778
Top 97.66 95.68 89.46 88.52 94.54
Bottom 5.239 5.054 7.087 6.175 5.455
CCosos 6,368 6,282 6,391 5,676 5,856
Goodness of Fit

Robust Sum of Squares 3.71 3.918 4,733 4.701 3.734
RSDR 1.883 1.886 1.649 1.432 1.707
Number of points

Analyzed 10 10 10 10 10




38

Table A.29 The CCsps (UM) value of tenofovir without MK-571 on LLC-PK1 cells

after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear regression

model)

Asymmetric Sigmoidal,

5PL, Xis

log(concentration) 1 2 8 4 5
Best-fit values

LogCCsps 4510 4.525 4.530 4,532 4.540
HillSlope 1.935 1.927 1.929 1.950 1.977
S 4.689 4.604 4.535 4.414 4.247
Top 93.24 94.60 95.29 95.54 100.1
Bottom 1.366 1.946 0.3674 0.3037 1.323
CCsos 32,389 33,481 33,900 34,061 34,639
Goodness of Fit

Robust Sum of Squares 3.803 3.174 2.740 2.580 2.936
RSDR 1.635 2.084 1.744 2.070 2.153
Number of points

Analyzed 10 10 10 10 10

Table A.30 The CCsps (uM) value of tenofovir with 50 uM MK-571 on LLC-PK1

cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,

5PL, X'is

log(concentration) 1 2 3 4 5
Best-fit values

LogCCsos 4.535 4.542 4,537 4.543 4.559
HillSlope 1.932 1.926 1.928 2.017 1.951
S 3.921 3.945 3.766 4.317 3.618
Top 93.41 94.70 95.56 95.40 98.51
Bottom 1.573 1.503 1.591 1.938 2.238
CC50s 34,275 34,830 34,459 34,892 36,238
Goodness of Fit

Robust Sum of Squares 3.444 2.712 2.389 2.241 2.354
RSDR 3.271 4.101 4.002 4.220 4.006
Number of points

Analyzed 10 10 10 10 10
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Table A.31 The CCsps (UM) value of tenofovir with 100 uM MK-571 on LLC-PK1

cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with nonlinear

regression model)

Asymmetric Sigmoidal,

5PL, Xis

log(concentration) 1 2 8 4 5
Best-fit values

LogCCsps 4.526 4.520 4.525 4521 4.535
HillSlope 1.881 1.875 1.884 1.877 1.877
S 4.675 4771 4.946 4.755 4.398
Top 96.41 97.92 98.76 98.81 98.09
Bottom 0.3995 0.08393 | 0.009430 1.061 1.374
CCsos 33,562 33,131 33,478 33,183 34,297
Goodness of Fit

Robust Sum of Squares 2.079 3.352 3.174 2.208 2.871
RSDR 1.021 1.327 1.256 1.678 1.330
Number of points

Analyzed 10 10 10 10 10

Table A.32 The CCsps (UM) value of tenofovir without MK-571 on MRP8-

overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, X'is

log(concentration) 1 2 3 4 5
Best-fit values

LogCCsos 5.190 5.217 5.191 5.219 5.217
HillSlope 15.95 25.32 16.14 29.57 25.55
S 0.08456 0.05342 0.08455 0.04650 0.05372
Top 161.5 175.6 162.0 176.5 176.0
Bottom 0.5665 0.6701 0.8502 1.085 1.006
CCosos 154,866 164,881 155,303 165,494 164,839
Goodness of Fit

Robust Sum of Squares 2.403 2.327 2.214 2.099 2.174
RSDR 4,731 4.689 4.901 5.085 4.966
Number of points

Analyzed 10 10 10 10 10
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Table A.33 The CCsps (UM) value of tenofovir with 50 uM MK-571 on MRP8-

overexpressed cells after incubation

nonlinear regression model)

for 96 h. (Calculation by GraphPad™ 6.0 with

Asymmetric Sigmoidal,

5PL, X is log(concentration) 1 2 S 4 5
Best-fit values

LogCCsos 5.145 5.139 5.139 5.137 5.141
HillSlope 5.486 5.242 5.269 5.203 5.384
S 3.844 3.741 3.823 4.045 4.372
Top 114.3 114.1 114.1 114.0 114.3
Bottom -3.119 -3.053 -2.983 -2.848 -2.695
CCsps 139,622 137,706 137,837 137,013 138,400
Goodness of Fit

Robust Sum of Squares 3.666 4.072 3.957 4.122 3.860
RSDR 8.252 7.390 7.435 7.106 7.485
Number of points

Analyzed 10 10 10 10 10

Table A.34 The CCsps (UM) value of tenofovir with 100 pM MK-571 on MRP8-

overexpressed cells after incubation for 96 h. (Calculation by GraphPad™ 6.0 with

nonlinear regression model)

Asymmetric Sigmoidal,

5PL, X is log(concentration) 1 2 3 4 5
Best-fit values

LogCCsos 4.024 4.028 4.028 4.029 4.039
HillSlope 2.234 2.244 2.208 2.203 2.216
S 2.342 1.174 5.599 7.281 1.373
Top 95.85 96.14 96.17 96.47 96.66
Bottom -11.26 -10.98 -10.80 -10.80 -10.66
CCsos 10,579 10,677 10,676 10,700 10,936
Goodness of Fit

Robust Sum of Squares 1.734 1.829 1.820 1.834 1.807
RSDR 22.37 2191 21.45 21.45 21.36
Number of points

Analyzed 10 10 10 10 10
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3. Determination of intracellular tenofovir accumulation in transport assay

The example of calculation:

Intracellular concentration of

= (Area under the curve - 90.08)

tenofovir (nM/400,000 cells)

Intracellular concentration of

tenofovir (NM/10° cells)

208)

20000+

15000

100004

5000

Area under the curve of tenofovir(m/z ratio

31.96

= (130.50 — 90.08)

31.96

=1.26 nM

0.4 x 10°

=3.16 nM

=1.26 x 10° nM

Equation | Y = 31.96*X + 90.08

| R square

[0.9955 |

200

400

600
Concentration(nM)

Figure A.2 Standard curve of tenofovir (areas under the curve (m/z ratio = 208)) in

cellular transport assay.

Table A.41 The intracellular tenofovir accumulation of transport assay.

Area under the
. curve Concentration
Conditions (m/z = 208) Average SD
1 2 nM | (nM/10° cells)

MRP8 151 110 130.50 28.99 1.26 3.16
MRP8+ 50uM
MK-571 1,089 1,086 1,087.50 2.12 31.21 78.02
MRP8+ 100uM
MK-571 1,643 1,618 1,630.50 17.68 48.20 120.50
Parental cells 2,242 2,459 2,350.50 | 153.44 |70.73 176.82
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4. Determination of intracellular methotrexate accumulation in transport

assay

The example of calculation:

Intracellular concentration of
methotrexate (nM/400,000 cells)

Intracellular concentration of

tenofovir (NM/10° cells)

= 455)

Area under the curve of methotrexate(m/z ratio

4000+

3000+

2000+

1000+

= (Area under the curve - 46.01)

8.699

= (205.0 - 46.01)

8.699

=18.28 nM
=18.28 x 10° nM

0.4 x 10°
= 45.69 nM

Equation | Y = 8.699*X + 46.01

| Rsquare | 0.9965 |

100

200

300 400 500

Concentration(nM)

Figure A.3 Standard curve of methotrexate (areas under the curve (m/z ratio = 455))

in cellular transport assay.

Table A.42 The intracellular methotrexate accumulation of transport assay.

Area under the curve .
. ~ Concentration
Conditions (m/z = 455) Average | SD
1 2 nM (NM/10° cells)
MRP8 124 286 205.0 | 11455 | 18.28 45.69
MRP8+ 50uM
MK-571 1,431 1,175 1303.0 | 181.02 | 144.50 361.25
MRP8+ 100uM
MK-571 2,723 2,632 2677.5 | 64.35 | 302.50 756.26
Parental cells 1,777 1,268 1522.5 | 359.92 | 169.73 424.33




48

5. Determination of intravesicular tenofovir accumulation in uptake assay

The example of calculation:

Intravesicular concentration of = (Area under the curve - 90.08)
tenofovir(nM/mg*protein) 31.96
= (404.1 - 90.08)
31.96
=9.83 nM
=9.83 x 10° nM

87 mcg*protein
=112.95 nM/mg*protein

20000+

= 208)

150004

10000+

50004

Equation | Y =31.96"X + 90.08
| Rsquare | 0.9955 |

Area under the curve of tenofovir(m/z ratio

0 200 400 600
Concentration(nM)

Figure A.4 Standard curve of tenofovir (areas under the curve (m/z ratio = 208)) in

vesicular uptake assay.



Table A.43 The intravesicular tenofovir accumulation of uptake assay.
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Area under
. . the curve Concentration
Times | Conditions (m/z = 208) Average | SD
1 2 (nM) (nM/mg*Protein)
MRP8+ ATP 402 407 | 404.1 1.3 9.83 112.95
. MRP8+ AMP 286 304 | 2954 4.6 6.42 73.83
05 min MRP8+ MK-571 194 261 | 227.7 17.1 431 49.49
Parental vesicles 231 357 293.8 31.9 6.38 73.28
MRP8+ ATP 441 507 | 473.8 16.8 12.01 138.01
5 min MRP8+ AMP 187 121 154.0 16.8 2.00 22.98
MRP8+ MK-571 187 194 190.6 1.8 3.14 36.14
Parental vesicles 226 266 246.2 10.2 4.89 56.16
MRP8+ ATP 632 755 | 693.4 31.1 18.88 216.98
. MRP8+ AMP 191 231 | 2111 10.2 3.79 43.54
10 min MRP8+ MK-571 177 232 | 204.6 14.0 3.58 41.19
Parental vesicles 210 192 | 200.9 4.5 3.47 39.84
MRP8+ ATP 038 537 737.5 63.7 20.26 232.84
15 min MRP8+ AMP 159 278 | 218.7 30.3 4.02 46.24
MRP8+ MK-571 278 151 | 214.6 32.4 3.90 44.80
Parental vesicles 105 263 184.1 40.3 2.94 33.80
MRP8+ ATP 824 7421 7828 20.8 21.68 249.14
. MRP8+ AMP 235 147 191.1 22.4 3.16 36.32
M RPe+ MKBT1 | 318 | 412 | 3650 | 237 | 860 98.89
Parental vesicles 119 178 148.5 15.0 1.83 21.00




6. Determination of intravesicular methotrexate accumulation in uptake
assay

The example of calculation:

Intravesicular concentration of = (Area under the curve - 140.3)
tenofovir(nM/mg*protein) 43.64
=(341.5 - 140.3)
43.64
=4.61 nM
=4.61 x 1000 nM
87

= 52.99 nM/mg*protein

= 455)

2000+

1500

1000+

5004

Equation | Y = 43.64*X + 140.3
[ Rsquare | 0.9726 |

0 50 100 150
Concentration(nM)

Area under the curve of methotrexate(m/z ratio

Figure A.5 Standard curve of methotrexate (areas under the curve (m/z ratio = 455))

in vesicular uptake assay.
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Area under
. . the curve Concentration
Times | Conditions (m/z = 455) Average | SD
1 2 (nM) (nM/mg*Protein)
MRP8+ ATP 337 346 341.5 1.8 461 52.99
. MRP8+ AMP 164 238 201.1 13.7 1.39 16.02
05 min MRP8+ MK-571 231 268 249.5 7.0 2.50 28.77
Parental vesicles 148 252 200.2 19.4 1.37 15.79
MRP8+ ATP 490 515 502.4 4.6 8.30 95.38
. MRP8+ AMP 201 250 225.3 9.0 1.95 22.39
> min MRP8+ MK-571 231 268 2495 7.0 2.50 28.77
Parental vesicles 289 319 303.9 5.5 3.75 43.08
MRP8+ ATP 471 598 534.6 23.7 9.04 103.87
10 min MRP8+ AMP 198 219 208.3 4.0 1.56 17.92
MRP8+ MK-571 173 192 182.7 35 0.97 11.18
Parental vesicles 217 200 208.8 3.2 1.57 18.04
MRP8+ ATP 706 510 607.9 36.5 10.72 123.17
15 min MRP8+ AMP 332 300 315.9 6.0 4.02 46.25
MRP8+ MK-571 191 228 209.6 6.9 1.59 18.25
Parental vesicles 198 198 197.6 0.0 1.31 15.09
MRP8+ ATP 596 424 509.8 32.1 8.47 97.33
30 min MRP8+ AMP 218 227 222.6 1.7 1.89 21.69
MRP8+ MK-571 269 309 289.1 7.3 3.41 39.18
Parental vesicles 320 182 250.9 25.6 2.53 29.13




7. Calculation of relative gene expression

The relative mrp8 gene expressions values were calculated follow this equation;

Relative mrp8 gene expression

— 2(Ct GOl of untreated cells — Ct GOI of treated cells)

2(Ct Rf of untreated cells — Ct Rf of treated cells)
— (12:20-6.86)5(10.17-11.7)

— 9(677)
=109.13

Table A.45 The relative gene expression of mrp8 to g-actin.
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Fold Average | SD
Ct change
No | Ct(GOlI) | actin (Ratio to
Ref-gene)

MRP8- 1 100.82 | 7.20
overexpressed 6.86 11.70 109.13
2 7.17 11.53 96.33
3 7.39 12.24 97.00

Parental cells 1 12.20 10.17 0.009 0.013 | 0.009
2 12.83 10.60 0.010
3 10.86 9.11 0.010




8. Chromatogram of tenofovir and methotrexate in transport assay and
uptake assay.
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Figure A.6 The example of tenofovir LC-MS chromatogram (m/z = 208) in standard

solution.
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Figure A.7 The example of tenofovir LC-MS chromatogram (m/z = 208) in transport

assay.
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Figure A.8 The example of tenofovir LC-MS chromatogram (m/z = 208) in uptake
assay.
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Figure A.9 The example of methotrexate LC-MS chromatogram (m/z = 455) in
standard solution.
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Figure A.10 The example of methotrexate LC-MS chromatogram (m/z = 455) in
transport assay.
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Figure A.11 The example of methotrexate LC-MS chromatogram (m/z = 455) in

uptake assay.
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