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Arrowhead matrices are a special type of matrices that have been of
interest and extensively studied due to their nice algebraic structures and wide
applications. In this thesis, the enumeration of arrowhead matrices with prescribed
determinant over the rings Z, and Z,> are studied, where p is a prime number. The
number of n X n arrowhead matrices over Z, of a fixed determinant a is determined
for all positive integers n and for all elements a € Z,. This result is applied in
the enumeration of n x n singular and non-singular arrowhead matrices over Z,:.
Moreover, the number of n.x n non-singular arrowhead matrices over Z,: of a fixed
determinant b is established for all positive integers n and for all units b € Z,.
For singular arrowhead matrices over Z,2, an upper bound for the number of n x n
arrowhead matrices over Z,» with zero determinant and a lower bound for the
number of n x n arrowhead matrices over Z,» with a non-zero determinant are

presented. Some illustrative enumerations are presented as well.
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Chapter 1

Introduction

Determinants of matrices have been known for their nice properties and
wide applications. Classically, determinants appear in the Heron’s formula for the
area of a triangle in [6] and in the caleulation of the cross-product of vectors in R3
in [2]. Moreover, in [2], various applications of determinants are presented such
as the determination of the singularity of matrices, the existence of the solution
of linear systems, and the solution of linear systems using Cramer’s rule. There-
fore, properties of matrices and their determinants have been extensively studied.
Especially, matrices over fields and their determinants are interesting due to their
rich algebraic structures and wide applications. Singularity of matrices is useful in
applications (see, for example, [2] and [10])-

The number of n X n singular (resp., nonsingular) matrices over a finite
field IF, has been determined in [13]. As a generalization of the prime field Z,, the
number of n X n matrices over Z,, of a fixed determinant has been first studied in
[1]. In [8], a different and simpler technique was applied to determine the number of
such matrices over Z,,. Later, the number of n xn matrices over commutative finite
chain rings of a fixed determinant has been completely determined in [3]. Diagonal

matrices are interesting subfamilies of the ones in [3]. As a special case of [3], the



determinants of diagonal matrices over commutative finite chain rings of a fixed
determinant are presented in [4] and applied in the study of the determinants of
some circulant matrices over commutative finite chain rings.

An element a in a commutative ring R with identity 1 is called a unit
if there exists b € R such that ab = 1. A nonzero element a in a commutative
ring R is call a zero-divisor if there exists a nonzero element b € R such that
ab = 0. We note that a commutative finite chain ring is a disjoint union of the
zero, zero-divisors, and units. The results on diagonal matrices over commutative
finite chain rings in [4] and on matrices over commutative finite chain rings in [3] are
established based on the three types of the determinants, i.e., zero, zero-divisors,
and units.

Let R be a commutative ring with identity 1. For a positive integer n,
an n x n arrowhead matriz over R is defined to be a square matrix containing zeros
in all entries except for the first row, first column, and main diagonal. Precisely,

the arrowhead matrix is in the form of

% ookook %k *
* x 0 0 0
* 0 % O 0

A= ,
* 0 0 =% 0
*x 00 0 -+ %

where *s are arbitrary elements in R and they are not necessarily the same. From

the definition, it is easily seen that an arrowhead matrix is a generalization of a



diagonal matrix and it is a special case of a square matrix over R.

Arrowhead matrices are important for the computation of the eigen-
values via divide and conquer approaches in [9] as well as their application. In
[11], applications of the arrowhead matrices of large order, the infinite invertible
arrowhead matrices are given. In [14], a new algorithm for solving an eigenvalue
problem for a real symmetric arrowhead matrix is given. The algorithm computed
all eigenvalues and all components of the corresponding eigenvectors with high rel-
ative accuracy. Their results extended to Hermitian arrowhead matrices and other
forms of arrowhead matrices.

In this thesis, we generalize results on the enumeration of diagonal ma-
trices with prescribed determinant in [4] to arrowhead matrices. Alternatively, this
can be viewed as an interesting subfamily of matrices studied in [3]. The number
of n x n singular arrowhead matrices and the number of n x n non-singular arrow-
head matrices over R are completely determined for all positive integers n. The
complete enumeration is presented for n x n arrowhead matrices over Z,. For n xn
arrowhead matrices over Z,:, the enumeration is given for n x n non-singular ar-
rowhead matrices whose determinant is a fixed unit in Z,.. For singular arrowhead
matrices over Z,2, an upper bound for the number of n x n arrowhead matrices over
Zyy2 with zero determinant and a lower bound for the number of n x n arrowhead
matrices over Z,» with a non-zero determinant are presented.

The thesis is organized as follows. In Chapter 2, definitions, basic con-
cepts, and preliminary results used in this thesis are recalled. The enumeration

of n x n arrowhead matrices of fixed determinant over Z, is presented in Chapter



3. In Chapter 4, the enumeration of n x n singular and non-singular arrowhead
matrices over Z,2 is given together with the number of n X n non-singular arrow-
head matrices over Z,» whose determinant is a fixed unit in Z,.. Subsequently,
bounds for the number of n X n arrowhead matrices over Z,» with a fixed non-unit

determinant are presented. Summary and discussion are given in Chapter 5.



Chapter 2

Preliminaries

In this chapter, basic concepts and elementary results in algebra used in
the thesis are recalled together with some illustrative examples. The reader may

refer to [12] for more details.

2.1 Rings

In this section, some properties of rings are reviewed. Especially, alge-

braic structures of the rings Z, and Z,> are recalled, where p is a prime number.

Definition 2.1. A ring is an algebraic structure composed of a non-empty set R
and two binary operations on R, addition (+)-and multiplication (-), satisfying the

following axioms:
1. Closure under addition [Va,b € R, a + b € R].
2. Associativity of addition [Va,b,c € R, (a+b)+c=a+ (b+¢)].

3. Identity element for addition 3z € RVa € R, z+a=a=a+ z|.

The element z is often denoted by 0 € R.

4. Inverse elements for addition [Va € R3w € R, a+w =0=w+al.

The inverse of a is often denoted by —a € R.



5. Commutative of addition [Va,b € R, a+ b= b+ al.

6. Closure under multiplication [Va,b € R, a-b € R).

7. Associativity of multiplication [Va,b,c € R, (a-b)-c=a- (b-¢)].

8. Product is distributive over addition

Va,b,ce R,a-(b+c)=a-b+a-cand (b+c)-a=b-a+b-a].

For multiplication, we usually write ab instead of a - b.

A ring R is called a commutative ring if R satisfies the additional axiom
ab = ba for all a,b € R, and it is called a ring with identity if R contains a
multiplicative identity element 1 such that 1ga = a = alg for all a € R. A ring
R is called a commutative ring with identity if it is a commutative ring and it is a

ring with identity.

Example 2.2. Some examples of rings are given as follows.

1. Z,Q,R and C are commutative rings with identity under the usual addition

and multiplication of numbers.

2. For a prime number p, (Z,, +,-) and (Z,2,+,-) are commutative rings with

identity under the addition and multiplication modulo p and p?, respectively.

An element a in a commutative ring R with identity 1 is called a unit
if there exists b € R such that ab = 1. Denote by U(R) = {a € R | a is a unit in

R} the set of units in R.



We mainly focus on the determinant of arrowhead matrices over Z, and

Zy2, where p is a prime number. The set U(Z,) and U(Z,2) are presented in the

following lemma.

Lemma 2.3 ([12, Example 1.2.1 (5)]). Let p be a prime number. Then

U(Z,) = Z,~ {0} and WU(Z,)| =p 1.

Lemma 2.4 ([5, Lemma 2.1]). Let p be a prime number. Then

U(Zyp) ={a€Zyp |pta} and |U(Zy)| =plp—1).

A nonzero element ¢ in a commutative ring R is call a zero-divisor if
there exists a nonzero element b € R such that ab = 0. Denote by ZD(R) = {a €
R | a is a zero-divisor in R} the set of zero-divisors in R.

Clearly, Z, contains no zero-divisor. The zero-divisors in Z,» are pre-

sented in the following lemma.

Lemma 2.5 ([5, Lemma 2.2]). Let p be a prime number. Then

ZD(Z,2) = {a € Zy2 | pla-and a #0} and |ZD(Zy)| =p— 1.

2.2 Matrices, Determinants, and Arrowhead Matrices

In this section, basic concepts and properties of matrices, determinants,

and arrowhead matrices are recalled.



2.2.1 Matrices and Determinants

Let R be a commutative ring and let n be a positive integer. An n x n
matriz over R is an array of elements in R arranged in n rows and n columns. A
diagonal matriz is a square matrix where all the elements are 0 except for those
in the diagonal from the top left corner to the bottom right corner, denoted by
diag(ay, as, as, . .., a,).

A permutation m of n elements is a one-to-one and onto function on the
set {1,2,...,n}.

Let 7 be a permutation on {1,2,...,n}. An inversion pair (i,7) of 7 is
a pair of positive integers i, 7 € {1,...,n} for which i < j but 7(i) > 7(j). Denote
by inv(7) the number of inversion pairs in w. The sign of 7, denoted by sign(m),

is defined by
SigTL(ﬂ') — (_1)inv(7r)
+1, if the number of inversions in m is even

—1,  if the number of inversions in 7 is odd,
We call m an even permutation if sign(m) = +1, whereas 7 is called an odd permu-

tation if sign(m) = —1.

Definition 2.6. Given a square matrix A = [a;;] over R, the determinantof A is

defined to be

det(A) - Z Sign(ﬂ->a177r(1)a2,7r(2)a3,7r(3) o+ Qn r(n),
TESy

where the sum is over all permutations of n elements.



Let A be an n x n matrix over R. The i-j minor of A, denoted it by
M;;, is the determinant of the (n — 1) x (n — 1) matrix which results from deleting
the the i row and the j column of A. The i-j cofactor of A, denoted by C;; is

defined to be
Cij = (=1)™ Mj;.

It is well known (see, for example, [12]) that the determinant of A can be given in

terms of cofactors of A of the form

det(A) = i a;;Cij = i aijCij
i=1 Jj=1

The first formula consists of expanding the determinant along the i** row and the
second expands the determinant along j* column of A.

For an n-xn matrix A over R, an elementary row (resp., column) opera-
tion on A is defined to be any of the following three operations on the rows (resp.,

columns) of A.
1. Switching the ith and jth rows (resp., columns) of A;
denoted by R; <> R; (resp., C; < C}).
2. Multiplying the ith row (resp., column) of A by a nonzero scalar k;

denoted by kR; — R; (resp., kC; — C}).

3. Adding a scalar k£ multiple of the jth (resp., column) of A to the ith row

(resp., column);

denoted by R; + kR; — R; (resp., C; + kC; — C;).
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Useful relations between the determinant and elementary row (resp.,

column) operations of matrices are given in the following theorems.

Theorem 2.7 ([7, Theorem 3.16]). Let A be an n x n matriz over a ring R and let

B be a matriz which results from swiching two rows of A. Then det(B) = — det(A).

Theorem 2.8 ([7, Theorem 3.18]). Let A be an n x n matriz over a ring R and

let B be a matriz which results from multiplying a row of A by a scalar k € R.

Then det(B) = k det(A).

Suppose we were to multiply all n rows of A by k to obtain B, i.e.,

B = kKA. We have the following property:.

Theorem 2.9 ([7, Theorem 3.19]). Let A and B be n x n matrices over a ring R

and k a scalar, such that B =kA. Then det(B) = k™ det(A).

Theorem 2.10 ([7, Theorem 3.21]). Let A be ann x n matriz over a ring R and

let B be a matriz which results from adding a multiple of a row to another row.

Then det(A) = det(B).

The determinant of a diagonal matrix can be easily computed as in the

following theorem.

Theorem 2.11 ([7, Theorem 3.13]). Let A be a diagonal matriz over a ring R.

Then det(A) is obtained by taking the product of the entries on the main diagonal.
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2.2.2 Arrowhead Matrices

Let R be a commutative ring with identity 1. For a positive integer n,
an n X n arrowhead matriz over R is defined to be a square matrix containing zeros
in all entries except for the first row, first column, and main diagonal. Precisely,

the arrowhead matrix is of the form

* ok ok % *
* %00 0
* 0 %0 0

A= ,
£ 0 0 % 0
¥*>0-0 0 -

where *s are arbitrary elements in R and they are not necessarily the same. From
the definition, it is easily seen that an arrowhead matrix is a generalization of a
diagonal matrix and it is a special case of a square matrix over R.

We note that for n.€ {1,2}, every n X n matrix over R is an arrowhead
matrix. For n > 3, some examples of n X n arrowhead matrices are given in the

following example.

Example 2.12. Some examples of arrowhead matrices are given as follows.

1. Ay=1|1 1 o] is an arrowhead matrix over Z, with det(A4;) = 0.
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2. Ay = is an arrowhead matrix over Zs with det(A4y) = 2.
20 2 0

1 001

For a positive integer n, let A, (R) denote the set of n x n arrowhead

matrices over R. For each element a € R, let
Ay (R,ya) ={A € A,(R) | det(A) = a}.

be the set of all n x n arrowhead matrices over R whose determinant is a.

Let
TZA,(R)={Ac A, (R)|det(A) €e U(R)}
be the set of all n x n non-singular arrowhead matrices over R. It follows that

TA,(R) = | ) Au(R, ).

a€U(R)

We note that U(Z,) = Z,~ {0} by Lemma 2.3 and U(Z,2) ={b € Z,2 | p{ b} is

given in Lemma 2.4. It follows that

TA(Z,) = | AuZy0) and TA(Zp)= |  AuZp,a)

a€Zp~{0} ae{bEsz | ptb}

From the definitions above, it is not difficult to see that A,(R) is a
group under addition and Z A, (R) is a group under multiplication.
For groups G and H, let ¢ : G — H be a group homomorphism. The

image of ¢ is defined to be the set

im(p) = {v(g) : g € G}.
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The kernel of ¢ is defined to be

ker(p) ={g € G:p(9) =en},

where ey is the identity of H.
The following isomorphism theorem for groups is useful in the enumer-

ation of n x n non-singular arrowhead matrices over Z,2 in Section 4.1.

Theorem 2.13 ([12, Theorem 1.4.2]). Let G and H be groups and let p : G — H

be a group homomorphism. Then G/(kery) = im(p).



Chapter 3
Enumeration of Arrowhead Matrices with Prescribed

Determinant over Z,

In this chapter, the determinants of arrowhead matrices over Z, are
studied together with the determination of the number of arrowhead matrices over
Z, with a fixed determinant.

First, the number of n x n non-singular arrowhead matrices over Z, is
explicitly determined. A recursive formula for the number |Z.A,,(Z,)| is derived in

the following proposition.
Proposition 3.1. Let p be a prime number. Then
[ZAN(Zy)| =p -1
and
IZAL(Zy)| = p*" 2 (p — 1)" + p*(p — DITAw1(Z,)]
for alln > 2.

Proof. Clearly, |ZA,(Z,)| = p — 1. Let n > 2 be an integer and let



a11

Ap—1,1

an1

ai2

22

0

0

a3 A1,n—1
0 0
ass3 0

0 Ap—1,n—1

We consider the following two cases.

15

Q1n

€ ZA.(Zy).

Case 1: a,, # 0. For convenience, for each i € {1,2,...,n}, denote by R; (resp.,

C;) the ith row (resp, ith column) of A. Applying the following elementary row

and column operations, it can be concluded that

—1
Rl — Q1pnQnn Rn — Rl

—1
Cl — Gp1Qnn Cn — Cl

A~

~Y

-1
11 = A1nGn1Gnn

21

a3

Qp—1,1
An1
11 — alnanlannil
a1

a31

Qp—1,1

(12 a3 - A1gp-1 0
agp 0 .- 0 0
0 ass --- 0 0
0 0 p-1np—1 0O
0 0 0 Ann
Gz a13 a1n-1 0
age 0 - 0 0
0 ass --- 0 0
0 0 p-1np-1 0O
0 0 0 Apn




Let

C =

Then
det(A) = det

Let

S11 512
5921 5929
S = S31 0
Sp—1,1 0

ayl — alnanlann_

513

533

det

1

a1

a31

(p—-1,1

0" an,

S1,n—1

Spn—1,n—1

521

531

Sp—1,1

-1
511 — Q1pQnp1Qnn

Q12 Q13

9292 O
0 ass
0 0

a1n—1

Ap—1,n—1

= (=1)""a,, det(C) = a,, det(C).

eA,~(Z,)

S12 513
599 0
O 533
0 0

S1,n—1

Snfl,nfl

£0




It follows that

if and only if

Sp—1,1

-1
511 — Q1nAn1Gnn

521

531

Sn—1,1

S11 512 S1,n—1

521 522 0

531 0
Sn—1,n—-1

S13 7 Sin—1

0
Sag/ f 0
Sn—l,nfl

Hence, the map ¢ § = ZA,-1(Z,) defined by

S11

5921

531

Sp—1,1

is a bijection and it can be concluded that S| = |ZA,,_1(Z,)|.

S12

522

0

513

533

S1,n-1

Sp—1,n—1

-1
511 — Q1nGn1Qnn

5921

531

Sp—1,1

€S

€TA,1(Zy).

512

5929

513

533

17

S1,n—1

Sp—1,n—1
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Since 0 # det(A) = an, det(C) if and only if det(C) # 0, we have

air a2 413 a1n—1
azs  ax 0 0
a31 0 ass 0 €5
an—1,1 0 0 An—1,n—1
which has [S| = |ZA,-1(Z,)| possibilities. Since ay, and a,; can be arbitrary

elements in Z,, the number of choices of a;, and a,; are p?. The number of

choices for a,, is p — 1. In this case; the number of choices of A in ZA,(Z,) is

P(p = DIZA1(Zp)].

Case 2: a,, = 0. Since det(A) # 0, it follows that ay, # 0 and a,; # 0. Applying

the following elementary row and column operations, we have

R, —apam 'R, — R, A~

0

a12

ai3

a1 n—1

A1n

0
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a1, Q12 13 ajp-1 0
0 ax O 0 0
0 0 asz --- 0 0
Ci+C, ~ = A
0 0 0 nrn1 O
0 o o -- 0 Gn1

Since det(A’) = —det(A) # 0 if and only if ai,, a9, ..., 0n-1n-1,an1 # 0, the
number of matrices diag(ai,, s, ass;. . s n—1n-1;0n1) is (p — 1)", ay; for each
j=1,...,n— 1 has p"~! possibilities, and a;; for each i = 2,...,n — 1 has p"2
possibilities. In this case, the number of A in ZA,(Z,) is p**3(p — 1)".

From both cases, we have
ZANLy) | = p* 3 (p = 1)" + p*(p = DIZA,-1(Z,)]

as desired. O

From the recursive formula of |Z.4,(Z,)| given in Proposition 3.1, an ex-
plicit expression for the number |Z.A;(Z,)| can be derived using the mathematical

induction in the following theorem.

Theorem 3.2. Let p be a prime number. Then

IZANZy)| = p* P (p = 1)"(p+ (n — 1))

for all positive integers n.
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Proof. The proof is given based on the mathematical induction. For n = 1, we

have

[ZA(Zp)| =p =1
= (p -1 p+ (1-1)).
Let £ > 2 be an integer. Assume that
IZA—1(Zy)] = D2 (p = DFHp + ((k = 1) = 1)).

From Proposition 3.1, we have that

IZAK(Z,)| = p* 7 (p = DN +9*(p = DITA-1(Zp)]
=p" P - DA PP P - )+ (k1) - 1))
=p" o= D4 2o~ D (0= D) o+ (k- 2)))
=p* o= D+ — Dt (k— 2))

=p" P p =D+ (k- 1)).
By the mathematical induetion, it can be concluded that
IZAZy)| =p*" =2 (p=1)"(p+ (n — 1))
for all positive integers n. [
The relation between |A,(Z,,1)| and |A,(Z,,a)| for all a € Z, \ {0}

in the following proposition is key to determine the number |A,(Z,, a)| later in

Corollary 3.4.
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Proposition 3.3. Let p be a prime number and let n be a positive integer. Then

for all a € Z, . {0}.

| An(Zp, a)| = [An(Zy, 1)]

Proof. Let a € Z,~ {0} and let f : A,(Z,,1) = A,(Z,,a) be the function defined

by

Let

Then det(A) =1 and

f(A) = diag(a,1,1,...,1)A.

a1

a1

a3y

Gn1

Q12 Q13 Q1n

a9292 0 0

0 agz -~ 0 | €AuZy 1)
0 0 QAnn

f(A) = diag(a,1,1,...,1)A

aaiy adiz-aai3 - adip
a921 929 0 s 0
a3y 0 asz - 0

an1 0 0 R A,

(3.1)
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It follows that f(A) € A,(Z,) and

det(f(A)) = det(diag(a,1,1,...,1)A)
= det(diag(a, 1,1,...,1)) - det(A)

=a-1

Hence, f(A) € A,(Z,, a).

Let A,B € A,(Zy,1) be such that f(A) = f(B). Then diag(a,1,1,...,1)A =
diag(a,1,1,...,1)B. Since diag(a,1,1,...,1) is invertible, we have that A = B.
Hence, f is injective.

Let X € A,(Z,,a). Since a is invertible, let A = diag(a™',1,1,...,1)X. Using
the argument similar to that of (3:1), it can be deduced that A € A, (Z,) and

det(A) = det(diag(a™!,1,1,...,1)X) = a ~a=1. Hence, A € A,(Z,,1) and
f(A) = f(diag(a™',1,1,. .., DX) = diag(a,1,1,. .., 1)diag(a*,1,1,...,1)X = X.

It follows that f is surjective.
All together f is a bijection. Therefore, |A,(Z,,1)| = |A.(Z,,a)| as

desired. [
From Proposition 3.3, it can be deduced that
|An(Zy, a)| = [An(Zy, 1)| = |An(Zy, D)

for all a,b € Z, ~ {0}.

Using Theorem 3.2 and Proposition 3.3, we have the following corollary.
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Corollary 3.4. Let p be a prime number and let n be positive integer. Then
[An(Zp, )] = p* P (p—1)"Hp+ (n— 1))
for all a € Z, . {0}.
Proof. From Proposition 3.3, we have |A,,(Z,,a)| = |A,.(Z,,1)] for all a € Z,~{0}.

Since ZA,(Z,) = | An(Zy,a) is a disjoint union and |Z, ~ {0} =p — 1 by
a€Zp~{0}

Lemma 2.3, it follows that |Z.A,,(Z,)| = |Z, ~ {0}||A.(Z,,1)| = (p—1)|A.(Z,, 1)].

By Theorem 3.2 and and Proposition 3.3, we have

[ An(Zy, a)| = | An(Zp;1)]

 [TA )
p—1
P p=D"p+(n—1)
p—1

=p P (p = " (p+ (n—1))

as desired. O

The number of n x n arrowhead matrices over Z, is |A,(Z,)| = p*" 2

and the number of n x n non-singular arrowhead matrices over Z, is

IZAZ,)] = p*" P (p = D)"(p+ (n — 1))

given in Theorem 3.2. The number |A,,(Z,, 0)| of nxn singular arrowhead matrices

over Z, can be deduced in the following corollary.
Corollary 3.5. Let p be a prime number. Then

|An(Zy, 0)| = |AW(Zy)| — |ZAN(Zy)| = p™ 72 = p P (p = 1)"(p + (n — 1))
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for all positive integers n.

We note that |A,(Z,)| = p**~2 and the numbers |ZA,(Z,)|, |A.(Z,, a)|
for all elements a € Z, ~ {0}, and |A,,(Z,,0)| are given in Theorem 3.2, Corollary
3.4, and Corollary 3.5, respectively. Some illustrative calculations are presented in

Table 3.1.

Table 3.1: Number of Arrowhead Matrices over Z,

AZp)| | [TAZy)| | |AW(Zp, a)|, a € Zy ~ {0} | |An(Zy, 0)]
128 32 32 96

1,024 160 160 864

8,192 768 768 7,424
65,536 3,584 3,584 61,952
2,187 1,080 540 1107
59,049 23,328 11,664 35,721
1,594, 323 489, 838 244,944 | 1,104,435
43,046,721 | 10,077, 696 5,038,848 | 32,969,025
78,125 56, 000 14,000 22,125
9,765,625 | 6,400,000 1,600,000 | 3,365,625
1,220,703,125 | 720,000,000 180,000,000 | 500,703,125
823,543 666, 792 111,132 156, 751
282,475,249 | 217,818,720 36,303,120 | 64,656,529




Chapter 4
Enumeration of Arrowhead Matrices with Prescribed

Determinant over e

In this chapter, the enumeration of n x n arrowhead matrices with pre-

scribed determinant over Z,2 is focused on. The number of n X n non-singular

P
(resp., singular) arrowhead matrices over Z,2 is presented. For non-singular ar-
rowhead matrices, the number of n x n-arrowhead matrices over Z,» with a given
unit determinant is given. For singular arrowhead matrices, bounds on the number

of n x n arrowhead matrices with a fixed determinant over Z,: are presented.

p

4.1 Non-Singular Arrowhead Matrices over Z,

In this section, the number of m X n non-singular arrowhead matrices
over Z,: is presented together with the number of n x n arrowhead matrices over
Zy» whose determinant is a fixed unit in Z,..

An explicit formula for the number |ZA,(Z,2)| of n x n non-singular

matrices is given in the following theorem.

Theorem 4.1. Let p be a prime number. Then

IZA.(Zy2)| =p”" P (p—1)"(p+ (n — 1))
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for all positive integers n.

Proof. By considering the two sets A, (Z,2) and A,(Z,) as additive groups, let

¢ An(Zy2) — An(Zy) be the group homomorphism defined by
A = [ai;] = ai;  (mod p)].

For each X € A,(Z,), by abuse of notation, we have X + pl, € A,(Z,) and
o(X + pl,) = X. It follows that ¢ is a surjective homomorphism. By the First

Isomorphism Theorem for groups (see Theorem 2.13), it follows that A, (Z,) =

A, (Z,2)/ ker(¢). Hence,

S ’An(Zp2)| y p2(3n_2) 3n—2

Sl R AT

For A € A,(Z,2), we have det(¢(A)) = det(A) (mod p) since the congruence
modulo p is a ring-homomorphism from Z,» onto Z,. By Lemma 2.4, it follows
that det(A) is a unit in Z,» if and only if det(¢p(A)) # 0 in Z,. Hence, A is
invertible over Z, if and only if ¢(A) is invertible. It follows that the restriction

map @|za,z,2) : LAn(Zy2) = TAn(Zy) is surjective. From Theorem 3.2, we have
ZAZ,)] =P (p=1)"(p + (n — 1)).
Hence,
[ ZAW(Zy2)| = [ ker(0)[|ZAn(Zy)|
=" L ANZ,)]

=p" " P p—1)"(p+ (n—1))

=" (p—1)"(p+ (n—1))
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as desired. O

Since the number of n x n arrowhead matrices over Z,: is p?®"=2)| the

next corollary follows immediately from Theorem 4.1.

Corollary 4.2. Let p be a prime number. Then the number of n X n singular

arrowhead matrices over Z,: 1s

P (" = (o~ D) (p+ (n - 1))
for all positive integers n.

For cach a € U(Z,2), the relation between | A, (Z,2,1)| and |A,(Z,2, a)|
in the following proposition is key to determined the number |A,,(Z,2, a)| in Corol-

lary 4.4.

Proposition 4.3. Let p be a prime number-and let n be a positive integer. Then
[An(Zy2, @) = [Au(Zy2, 1)

for all a € U(Z,2).

Proof. Let a € U(Z,2) and let ¢ : A, (Zy2,1) = A,(Zy2,a) be the map defined by

p(A) = diag(a,1,1,...,1)A.

Using arguments similar to those in the proof of Proposition 3.3, it can
be concluded that ¢ is a bijection from A, (Z,,1) onto A, (Z,2,a). Therefore,

|An(Zy2, 1)| = |An(Zy2, a)| as desired. O
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From Proposition 4.3, it can be deduced that | A, (Z2, a)| = |An(Z,2,1)| =
| A, (Zy2,b)| for all units a,b € U(Z,?2).
For a fixed unit a € Z,2, the number of n x n arrowhead matrices over

Zy» whose determinant is a will be given in Corollary 4.4.

Corollary 4.4. Let p be a prime number and let n be a positive integer. Then
[ An(Zy2,a)| = p™(p—1)"(p+ (n — 1))

for all a € U(Z,2).

Proof. First, we note that Z.A,,(Z,) is disjoint union of A, (Z,2,a) for all a €
U(Z,2). Precisely,

TANZp) = | AuZp,a)

GEM(ZPQ )

is a disjoint union. By Proposition 4.3, A, (Z,2, @) has the same number of elements
as An(Zy2, 1), and hence,

[ TAL(Zy2)] = U Ai(Zy2; a)

CLGZ/I(ZP2 )

= > Mal(Zy2,0)

aGZ/{(ZPQ)

= Y Mi(Zp,1)

(ZEZ/{(ZPQ)

= [U(Z2)|| An(Zp2, 1)].

From Lemma 2.4, we have [U(Z,2)| = p(p — 1). By Proposition 4.3, it can be
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deduced that

|An(Zp2a a)| = |~An(Zp27 1)

_ [TAL(Z)]
|U(Zp2 |
PP p—1D"(p+(n—1))
plp—1)

TOp—1)""p+ (n—1)).

=P
The proof is completed. O
The numbers |ZA,,(Z,2)| and A, (Z,2,a)| for all a € Z, . {0} are given

in Theorem 4.1 and Corollary 4.4, respectively. Some illustrative calculations are

presented in Table 4.1.

Table 4.1: Number of Arrowhead Matrices over Z,:

pln LA Zp2)| | WU (Zi2)| | | AnlZi2; @), 0 € U(Zy2)
213 4,006 2 2,048
2|4 163,840 2 81,920
2|5 6,291,456 2 3,145,728
26| 234,881,024 2 117,440, 512
303 2,361,960 6 393, 660
3| 4| 1,377,495,072 6 229,582, 512

4.2 Singular Arrowhead Matrices over Z,

In this section, the number of n x n singular arrowhead matrices with

prescribed determinant over Z,: are studied. Unlike the previous section, only
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bounds on the number of n X n arrowhead matrices over Z,. with prescribed non-
unit determinant are given. Precisely, a lower bound on the number of n x n
arrowhead matrices with zero determinant over Z,» and an upper bound on the
number of n x n arrowhead matrices over Z,» with a fixed non-zero determinant
are presented.

From Corollary 4.2, the number of n x n singular arrowhead matrices

over Zy is
PR = =1)"(p+(n—1)))

for all positive integers n. Lower and upper bounds on the number of n xn singular
arrowhead matrices over Z,> with prescribed determinant are given in the following

subsections.

4.2.1 Singular Arrowhead Matrices over Z,» with Zero De-
terminant

In this subsection, a lower bound on the number of n X n singular

arrowhead matrices over Z,» with zero determinant is derived.

Proposition 4.5. Let p be a prime number. Then |Ay(Z,2,0)| =1 and

|An(Zy2, 0)] = p°(p = 1) An—1(Zy2, 0)] + p™3(p* +p — 1)

—p" P —-1D)"p*+ (p+ 1)n—2)

for allmn > 2.



Proof. Clearly, |A1(Z,2,0)| = 1. Let n > 2 be an integer and let

a1 12 aiz -+ QAip-1 Q1n
as;1 Qo 0 - 0 0
asi 0 asz --- 0 0
A= € An(Z,2,0).
ap-11 0O 0 p-1n-1 0O
n1 0 0 0 Ann

Consider the following two cases.
Case 1: a1, € U(Zy2) Oy € U(Zy2).

Case 1.1: ay, € U(Z,2). Using elementary row operations, we have that

aii Q12 A13 - A1 p—1 A1n
a1 929 0 N 0 0
., asy 0 asz - - - 0 0
nn Ry =R, A~
Ap=1,1 0 0~ . w Ap—1,n—1 0
Anilpn - 0 0 - 0 1
a1l — Q1plnilpn * a1z Q13 - a1n—1
921 929 0 cee 0
as 0 asz --- 0
Rl — alan — R1 ~
Ap—1,1 0 0 Tt Qp—1n-1
1 G " 0 o --- 0

o
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Let
a11 — A1pQn1lnn ' @12 Q13 a1,mn—1
a921 9292 0 cee 0
C= as 0 ass 0
an—1,1 0 0 .- Ap—1,n—1
Then
0
C
det(A) = det = (—1)""™(1) det(C) = det(C). (4.1)
0
1 Gy 0 1
Let
(
ti1 ti2 i3 b1 1
lor - tag 0 0
T= ts1 0 ta3 0 € AiilZy2)
th—1qp 0 O bn—1n-1
\
t11 — pama,, tia tis t1in-1
det t31 0 ts3 0 =0
b1, 0 0 tn—1n—1




Since

if and only if

t11 ti2 ti3

tor  taa O

tsr 0 33

th—1n 0 O

t11 — Q1paniag,  tia ti3
to1 tog 0

l31 0 a3

tn-11 00

b1 pn—1

tn—l,n—l

b1 n-

Z€n~1,n‘1

The map ¢ : T'— A, _1(Z,2,0) be defined by

11 1o
ta1  tao
t31 0
tn—1q1 O

t13

0

133

0

tin—1

0

tnfl,nfl

1
b — a1nap1ay,,
la1

t31

th—1,1

eTl

€ Ay1(Zy2,0).

t1g ti3

too 0

0 t33

0 0

b1 -1

tnfl,nfl

33

is a bijection. It follows that |T| = [A,-1(Zy2,0)|. From (4.1), det(A) = 0 ( mod p?)

if and only if det(C') = 0 ( mod p*). The number of matrices C' with determi-

nant 0 is || = |A,-1(Z,2,0)]. The number of choices for ai,,a, is p*. The

number of choices for a,, is p(p — 1) by Lemma 2.4.

p°(p — 1)|Ays—1(Z,2, 0)| possibilities for A.

In this case, there are



Case 1.2: ay, ¢ U(Z,2) and a1, € U(Z,2). We note that

det(A) =(—1)""ay, det

+ (=1)"" "Gy, det

a1

a3

:(—1)1+”a1n(—1)"+1an1 det,

+ ay,, det

@17 Q12
21 22
asy 0
Ap—1,1 0

22

ais

ass3

0 0
ass 0
0 Ap—1,n-1
0 0
Q12 413 A1,n—1
Aoy 0 0
0 ass 0
0 0 (p—1n—1
as - 0 0
0 ass 0
0 0 Ap—1n—1
a1n—1
0
0

Ap—1,n—1

34
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929 0 0
0 as3 0
=a1,0n det
0 0 Tt Qp—1n-1
a1 Q12 apz - A1,n—1
921 929 0 tee O
+ Apn, det asy 0 ass e O
ap—1.1 0 0 v Ap—1n—1
If a,; =0 and
a1 Q12 @13 - Q1p—1
a21 922 0 R - 0
det A ONtAL - -\ 0 ¢EU(Z,y2)
Ap—1,1 0 0o - Ap=1n-1

which has p?©"=5) —|ZA,, 1(Z,)| choices, then det(A) = 0. The number of choices
for ay,, is p(p — 1) by Lemma 2.4. The number of choices for a,; is 1. The number

of choices for a,,, is p? — p(p — 1) by Lemma 2.5. In this case, there are at least

P(p— D(@*® ) — |TA, 1 (Z2)))

possibilities for A.

Case 2: a,, ¢ U(Z,2) and ay,, ¢ U(Z,2). Then the elements in the last column

are divisible by p. Let B = [b;;] be the matrix in A,,(Z,2) be defined by by,, = %

Y
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bpn = 22, and bj; = a;; forall i =1,...,nand j =1,...,n — 1. Let C' = [ci5]

be the matrix in A, (Z,) defined by ¢;; = b;; (mod p). We note that det(A4) =
pdet(B) € Z,». Then det(A) = 0 € Z,2 if and only if det(B) = 0(mod p) which
is equivalent to det(C') = 0 € Z,. For each matrix C' € A,(Z,,0), there are p>"~*
corresponding matrices B € A, (Z,2,0). Since the number of possible matrices C
is |A,(Zy,0)| and the matrix A is uniquely determined by B by multiplying the
last column by p, A has p**~*|A4,,(Z,,0)| possibilities.

Summarizing the two cases above, it can be concluded that

A(Zy2, 0)] =P (p — D) Au s 0)[ 4 P20 < 1) (P9 — [TA,1(Z,0)))

+ pgn_4|An(Zpa 0)].
From Theorem 4.1 and Corollary 3.5, we have
ITA 1 (Zy2) = P (= 1) p + (0 = 2))

and

|An(Z,y, 0) = p™ 2 =p>" 2 (p= )*(p+ (n—1)).

A lower bound for |A,,(Z,,0)| can be summarized in the following recursive form

A (Zy2, 0)] >p°(p — 1) Ap_i1(Zy2, 0)| + p™ 2 (p* +p — 1)

=" = 1)"(0" + (p+ n - 2).
This completes the proof. O

The above recursive lower bound for |A,,(Z,2, 0)| is key to determine an

explicit lower bound in the next corollary.
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Corollary 4.6. Let p be a prime number. Then |A,(Z,2,0)| =1 and

|An(Z,y2,0)] > (p°(p = D))"+ (0° +p — 1) (Zp )" ”)

= P = 1) (0= D+ (0% + 0= 2)p+ 5 — 30+ 2)

2

for alln > 2.

Proof. The statement will be proved by the mathematical induction. For n = 2,

we have

| Ao (Zy2,0)| = p*(p — 1)| AL(Zy2; 0)| + p°P 20" + p— 1)
Sp=1)P*+ (p+1)(2)—2)
=p’(p—1) +p (P +p—1)=p’(p= 1@ + 2p)

=’ (p = 4 PP p - (Zp )7 2)

PO =1 (@A 5 (22 2= 2+ S(2 — 3(2) +2))

by Proposition 4.5.

Let £ > 3 be an integer. Assume that

A(Zy2,0)] > (0°(p — 1) +p™ (" +p — (Zp )E- ”)

— B (p— (k- 1D)p*+ = (k;2 +k—2)p+ ;(k:z — 3k +2)).
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By Proposition 4.5 and the induction hypothesis, it can be deduced that

\Ajes1(Zy2,0)| > p°(p — 1) Ak(Zy2, 0)] + pPEFD=8(p? +p — 1)

— p? DB (p — DE(p? 4 (p+ 1) (k + 1) — 2)

k—2

>p°(p— (P — 1)+ (P +p—1) (Zpi(p - 1)’“”)

i=0

_ 1
—p* B - 1) (k- Dp* + 5 (lf2 + k= 2)p+ 5 (K
+p6(k+1)78(p2 +p— 1)

— pPEED=8 (s R (2 (ke Dp (k41— 2))

=P (p - 1)+ 0P+~ Do <Zp

~ 1
— 3 = D)F (k= 1)p* + 2 (k2+k 2p + 5 (K

— 3k +2)))

kz2>

— 3k +2))

+ %2 (p? +p— 1) —p3p — 1)FMLp® + (k+ Dp+ (k+1-2))

=P =1+ "0+ = 1) (Zp

-p

+ P2+ (k+Lp+(k+1—2)))
=@ (=) 4" +p—1) (Zp 1)k 1)

P = DR (R + (8 + 3k + 58 — K))

(k+1)—2

1=0

PR3 p = 1R (k= 1)p + 5(k:2 +k—2)p+ %(k2

k i—2> +pk—1)

— 3k +2))

_ (pS(p _ 1)>(k+1)—1 +p5(k+1)—6(p2 +p— 1) ( Z pi<p _ 1)(k+1)i2)

— pP DB (p — DE (ke + 1) — 1)p* + - ((k +1)%+

+ %((k; +1)2 —=3(k+1) +2)).

(k+1)—2)p
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By the mathematical induction, it follows that
Ak (Zy2,0)| > (p°(p = )"+ (0 +p = 1) (Zp )E 2)
— B (p— D)*((k — 1)p* + 2(k2 +k—2)p+ ;(k2 — 3k +2))
for all n > 2. O]

Ilustrative computation of lower bounds for |A,(Z,2,0)| is presented in

Table 4.2.

Table 4.2: Lower Bounds for | A, (Z,2,0)|

p | n | Lower Bounds for |A,,(Z,2,0)]
213 6,272
214 471,040
215 33,816,576
313 723,897
314 629,757, 585

4.2.2 Singular Arrowhead Matrices over Z,» with Non-Zero

Determinant

In this subsection, an upper bound on the number of n x n singular
arrowhead matrices over Z,» with a fixed non-zero determinant are presented.

The following proposition, a relation between |A,,(Z,2, p)| and |A,,(Z,2,b)|
is given for all b € ZD(Z,2). This relation is key to determine the upper bound

for | A,(Z,2,b)| in Corollary 4.8.
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Proposition 4.7. Let p be a prime number and let n be a positive integer. Then

|An(Zy2,b)| = | An(Zy2, p)|

for allb € ZD(Z,2).

Proof. Let b € ZD(Z,2). Then b = ap for some 1 < a < p. Let ¢ : A,(Z2,p) —

A, (Zy2, ap) be the function defined by

P(A) = diag(a, 1,1,...,1)A.

Let
@11 @12 A3 Qi
a91 A92 0 ~ 1} 0
A=1a3 0 ag -+ 0 | €A(Zp, D)
An1 0 O st Qpn

Then det(A) = p and

P(A) = diag(a, 1,1,...,1)A

aaiy adiz-aai3 - aAdip
921 929 0 s 0
— asy 0 ass N 0 . (42)

an1 0 0 R A,
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It follows that 1/(A) is an n x n arrowhead matrix over Z,» and
det(y(A)) = det(diag(a,1,1,...,1)A)
= det(diag(a, 1,1,...,1)) - det(A)
=a-p
= ap.

Hence, ¥(A) € A,(Z,2, ap).

Let A, B € A, (Z2,p) be such that (A) = ¢ (B). Then
diag(a, 1,1,...,1)A =diag(a, 1,1,...,1)B.

Since diag(a, 1,1,...,1) is invertible, we have A = B. Hence, v is injective.
Let X € A,(Z,2,ap). Then det(X) = ap. Since a is a unit, diag(a™,1,1,...,1)
is the inverse of diag(a,1,1,...,1). Let A ='diag(a™*,1,1,...,1)X. Using the

argument similar to that of (4.2), A€ A,(Z,2) and
det(A) = det(diag(a ', 1,1,...,1)X) =a ' ap = p.
It follows that A € A, (%2, p) and
Y(A) = Y(diag(a™,1,1,...,1)X) = diag(a, 1, 1,...,1diag(a"*,1,1,..., )X = X.

Hence, v is surjective.
All together, it can be concluded that v is a bijection from A, (Z,2, p)

onto A, (Zy2, ap). Therefore, | A, (Z,2,p)| = | An(Z,2,b)| as desired. O

An upper bound for n x n singular arrowhead matrices over Z,> with

non-zero determinant is shown in the next corollary.
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Corollary 4.8. Let p be a prime number and let n be a positive integer. Then

6n—4
AnZ, O <7 = 7o '+ (0= 1))
(P°(p—1)""  p"o(p? +p —1) yo-ic2
- +
p—1 p— Zp

S — 1P (- P+ (0 - 2)p+ %(RQ —3n+2))

2

for allb € ZD(Z,2).

Proof. Let ZDA,(Z,2) denote the set of n x n singular arrowhead matrices over
Z,» with non-zero determinant. We note that ZDA, (Z,2) is disjoint union of
A (Zy2,b) for all b € ZD(Z,2). Precisely,

ZDAWZp) =) AuZy,b)

bGZ'D Z 2)
which is a disjoint union. By Proposition 4.7, A, (Z,2,b) and A, (Z,2,p) have the
same cardinality, and hence,

|ZDA, (Zp)| = | | Au(Z,2:0)

bEu(sz)

= > [AnlZ,2,0)

beu(Zpg )

= Y [ AZep)]

beu(Zpg )

= [ZD(Zy)|| An(Zy2, p)|-

From Lemma 2.5, we have |ZD(Z,2)| = p — 1. By Corollary 4.2, Proposition 4.5,
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and Proposition 4.7, it can be concluded that

|An(Zy2, b)| = [ An(Zy2, )|

_ |ZD.An(Zp2)|
|ZD(ZP2)|
_ |An<Zp2)‘ - |I~An<Zp2)‘ - |An<Zp2vO)’
= b1
pot 1
< o1 P =1)" (4 (n - 1))

(p(p—-1))""  p 6(29 +p—1 yni-2
- (o)

P -1 (= Dt Ln? — 30+ 2)).

1
—(n2+n—2)p+2

2

The proof is completed. [

Ilustrative computation of upper bounds for |A,(Z,, b)| is presented,

where b € ZD(Z,2), in Table 4.3.

Table 4.3: Upper Bounds for | A, (Z,2,b)|, where b € ZD(Z,2)

p | n | Upper Bounds for |A;,(Z,,b)|
213 6,016
2[4 413,696
215 97.000, 832
216 1,719, 664, 640
313 848, 556
314 739,765,872




Chapter 5

Conclusion and Remarks

In this thesis, the enumeration of arrowhead matrices with prescribed
determinant over Z, and Z,> has been studied. The number of n x n non-singular
(resp., singular) arrowhead matrices over Z,, has been determined together with the
number of n X n arrowhead matrices over Z, whose determinant is a for all positive
integers n and a € Z,. Subsequently, the enumeration of n x n non-singular (resp.,
singular) arrowhead matrices over Z,» has been given. The number of n x n non-
singular arrowhead matrices over Z,> whose determinant is @ has been determined
for all positive integers n and for all @ € U(Zy2). For n'xn singular arrowhead
matrices over Z,2, bounds on the number of n X n singular arrowhead matrices
have been presented. An upper bound for the number of n X n singular arrowhead
matrices over Z,> with zero determinant has been derived as well as a lower bound
for the number of n X n singular arrowhead matrices over Z,> with a zero-divisor
determinant.

It is interesting to studied the n x n arrowhead matrices over Z,> whose
determinant is a zero-divisor in Z,2. In general, the study of n x n arrowhead ma-

trices with prescribed determinant over other rings is another interesting problem.
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