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Let E be an equivalence relation on a finite fence X such that every equivalence
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equivalences on Og(X) are presented as well.



Acknowledgements

I am greatly indebted to my thesis advisor, Assistant Professor Dr.Thanakorn
Prinyasart, for his helpful comments and suggestions in preparing and writing this
thesis. I appreciate every help from him.

I also wish to express my gratitude to my thesis committees, Associate Professor
Dr. Ratana Srithus and Assistant Professor Dr. Watcharintorn Ruksasakchai, for
their comments and suggestions. Moreover, I feel thankful to all of my teachers who
have taught me for my knowledge and skills.

Finally, I would like to express my deep gratitude to my parents for their encour-

agement during the period of study.

Chaleamrach MALANGPOO

vi



Contents

Abstract v
Acknowledgements vi
1 Introduction viii
2 Preliminaries xii
2.1 Fences . . . . . L e xii
2.2 Basic facts on functions .. . . oo L oo Xiii
2.3 Semigroups. . . o u v e Xiv
2.4 Equivalence relations and partitions . . .. . ... ... XVi
2.5 Transformations preserving an equivalence relation . . . . . .. . .. xvii
2.6 Green’s equivalences . . . . ..o o L L xviii
3 The characterization of Green’s equivalences Xix

4 The characterization of Green’s equivalences for regular elements xxv

vil



Chapter 1

Introduction

A semigroup (S, 0) is an algebraic structure which consists of a non-empty
set S and an associative binary operation o on S. A subsemigroup of (S, o) is a non-
empty subset 1" of S which is closed under o. For example, we know that ) # N C Z
and N is closed under +. Then (N, +) is a subsemigroup of (Z, +).

For any non-empty set X, the set of all transformations on X is denoted by
T(X). Consider an ordered set (X;<). We denote the set of all < - preserving

transformations on X by OT(X), that is,
OT(X)={feT(X) :Vz,ye X, <y implies zf <yf}.

An interesting example of an ordered set is-a fence, whose order forms a path with

alternating orientations. In fact, the relations

T STy 23,0, Tom-1 S Tom = Tomyl S -
or
Ty 2 Ty STz, .., Tom—1 2 Tom < Tampl = - -
are the only comparability relations in a fence X = {x1, 2o, ..., 2,,...}. It is easy to

see that T'(X) is a semigroup under the composition of functions defined by

viil



fg:={(z,y) € X x X : (z,2) € fand (z,y) € g for some z € X },

and OT'(X) is a subsemigroup of T'(X).

Algebraic properties of T'(X) and its subsemigroups have been studied by many
researchers. Jendana and Srithus [4] characterized a finite fence X having OT'(X) as a
coregular semigroup and already described coregular elements of OT'(X ). Tanyawong
[5] described all regular semigroups OT'(X) where X is a finite fence. To date, we
know the regularity of OT'(X) where X is a fence. This leads to a more complex
semigroup, which is the semigroup of all transformations preserving a zig-zag order
and an equivalence relation on X.

An equivalence relation is a binary relation that is reflexive, symmetric and tran-

sitive. Let E be an equivalence relation on X. We define
Te(X) ={f e T(X):Y(a,b) € E, (af bf) € E}.

The set of all order-preserving transformations in T (X) forms a subsemigroup of

TE(X) denoted by
Op(X)={fe€Tg(X): Ve,y € X,z <y implies zf <yf}.

Green’s relations are five equivalence ralations that characterize elements of a
semigroup in terms of the ideals they generate. Let S be a semigroup and S* be the
set S with an identity adjoined if S does not contain an identity. For a,b € S, we

define Green’s relations £,R,J, $ and © as follows:
1. afb if and only if Sta = S'b, that is, a, b generate the same left principal ideal;

2. aRb if and only if aS! = bS!, that is, a,b generate the same right principal

ideal;

3. aJb if and only if S'aS! = S'bS!, that is, a,b generate the same two-sided

principal ideal;
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4. a$Hb if and only if a£b and afRb;

5. a®b is the smallest equivalence relation that contains £ and ‘R,

namely, ® = £ o fR.
It is well-known that in a finite semigroup, ® = J in [1].

Definition 1.1. [2] Let S be a semigroup and = € S. We say that z is regular if
there is b € S such that = xzbxr. Moreover, S is regular if every element in S is

regular.

Huisheng and Dingyu [3] described the nature of regular elements in Og(X) and
characterized the Green’s equivalences on Og(X) completely, where X is a finite
chain. For f € T(X), we denote n(f) = {zf7' : @ € Xf} Notice that fx is
a function from 7(f) into Xf defined by Afx = Af for each A € w(f). For each
[ eT(X), welet BE(f) ={Af~1: Ae X/E Af~' # (}. The characterization of

Green’s equivalences for Og(X ), where X is a chain are already described as follows:

Theorem 1.2. [3] Let f,g € Og(X). Then the following statements are equivalent.

1. (f,g9) € R

2. n(f) =m(g) and E(f) = E(g)-

3. There exists an E*- preserving order isomorphism ¢ : X f — Xg such that

g=Io.

Before we introduce the result of the relation £, we need to introduce some defi-

nition.

Definition 1.3. [3] Let f € Og(X) and ¢ : w(f) — 7w(g). If for every A € X/E, there
is B € X/E such that m4(f)¢ C mp(g), then ¢ is called E-admissible. Moreover, if ¢

is bijective and ¢, ¢! are E- admissible, then ¢ is E*-admissible.

Theorem 1.4. [3] Let f,g € Og(X). Then the following statements are equivalent.



1. (f,g) € L.

2. Xf = Xg and for each A € X/E, there exist B,C € X/E such that Af C
By, AgC CF.

3. There exists an E*- admissible order isomorphism ¢ : w(f) — w(g) such that

[x = ogx.
Theorem 1.5. [3] Let f,g € Og(X). Then the following statements are equivalent.

1. (f,9) €9%.

2. w(f) = n(g), E(f) = E(g9), Xf = Xg and for each A € X/E, there exist
B,C € X/E such that Af C Bg, Ag C C'f.

3. There exists an E*- preserving order isomorphism ¢ : Xf — Xg and E*-

admissible order isomorphism ¢ : w(f) = &(g) such that g = f¢ and fx = g*.
Theorem 1.6. [3] Let f,g9 € Og(X). Then the following statements are equivalent.

1. (f,9) €D.

2. There exist an E*- preserving order isomorphism ¢ : X f — Xg and E*- ad-

missible order isomorphism ¢ : w(f) — ¢(g) such that pgx = f * 1.
Theorem 1.7. [3] Let f, g € Op(X) be reqular elements. Then
1. fL£q if and only if 7(f) = 7(g);
2. fRg if and only if Xf = Xg;

3. [Dg if and only if there exists a bijection ¢ : X f — Xg such that ¢ and ¢~!

are order-preserving and E-preserving.

In this research, we aim to characterize the Green’s equivalence relations on Og(X)
where X is a finite fence and E is an equivalence relation on X such that every

equivalence class in X/E is a subfence of X.
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Chapter 2

Preliminaries

In this chapter, we provide definitions, theorems, lemmas and some examples re-

lated to this research.

2.1 Fences

Definition 2.1. A relation on a set X is-a subset of X x X.

Definition 2.2. For a relation < on a set X and z,y € X, the notation z < y refers

to (z,y) €<, and the notation x > y refers to (y,z) €<.

Definition 2.3. Let A be a set. A relation < on A is a (partial) order if
e for all x € A, x < z, that is, < satisfies reflezivity;
o forallz,y,z € A ifx <yandy < z, then x < z, that is, < satisfies transitivity;
e forallz,y € A,ifr <yandy < z, then x = y, that is, < satisfies antisymmetry.

If < is a partial order on A, the pair (A, <) is called a (partially) ordered set.

When there is no ambiguity, we denote the partially ordered set (A, <) by A.

In this research, we will focus on the ordered sets called fences defined as follows.

xii



Definition 2.4. An ordered set X is called a fence if the order forms a path with

alternating orientation. Indeed, X is in which either

1 STy 23, .., Tom—1 < Lo = Loyl S on
or
Ty 2 T2 S X3y, Tom—1 2 Tom S Toamtl = -
are the only comparability relations in the fence X = {xy,z9,...,2p,...}.

2.2 Basic facts on functions

Definition 2.5. Let A and B be sets. A subset f of A x B is said to be a function
from A into B if
A={a € A:3be Bl(a,b) € f]}.

We denote the function f from A into B by f: A — B. Moreover, for each a € A,

let af donote the unique b € B such that (a,b) € f.

Definition 2.6. Let A, B, C'besets, f : A— B and g : B — C. The composition
of f and g is the function fg: A — " defined by

fg={(a,c) e AxC :(a,b) € f and (bye) € g for some b € B}.

Definition 2.7. Let A, B be sets and f : A — B. For all subset X of A, the

restriction of f to X is the function f|y : X — B defined by

flx ={(zx,b) e f:x e X}.

Definition 2.8. Let A, B be sets and f : A — B. For all subset X of A, the image
of X under f, which is denoted by X f, is defined by

Xf={xf zeX}.

For all subset Y of B, the inverse image of Y under f, which is denoted by Y f~1, is
defined by
Yf'l={zeX af €Y}

xiii



If Y = {b} for some b € B, we denote Y f~! by b~
Remark 2.9. Let A, B be sets and f: A — B. Then, for all X C Aand Y C B,
X C(Xf)f " and (Yf)fCY.
Definition 2.10. Let A, B be setsand f: A — B.
(i) f is surjective if Af = B.
(i) f is injective if for all aj,as € A, a3 = ay whenever a; f = asf.

(iii) f is bijective if f is surjective and injective.

2.3 Semigroups
Definition 2.11. A binary operation on a set X is a function from X x X into X.

If o is a binary operation on X, we denote o((x,y)) by z oy for all x,y € X.

Definition 2.12. Let o be a binary operation on a set X. A subset Y of X is said to
be closed under o if yjoys € Y for all 1y, ys € Y, that is; o]y .y is a binary operation

onY.

Definition 2.13. A binary operation o on a set X is associative if (xoy)oz = xo(yoz)

for all z,y, z € X.

Definition 2.14. A pair (5, 0) is-a semigroup if S is a non-empty set and o is an

associative binary operation on S.

Example 2.15. Let Z be the set of all integers, and + be the usual addition on Z.

Then (Z,+) is a semigroup.

A semigroup (.5, o) is usually denoted as S, without mentioning the operator o, if

there is no ambiguity.

Definition 2.16. Let (S, 0) be a semigroup and T' be a non-empty subset of S. We

call T a subsemigroup of S if (T, o|ryr) is a semigroup.
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Remark 2.17. For any semigroup (S, o) and any subset T of S, T' is a subsemigroup

of S if and only if 7" is closed under o.

Example 2.18. Consider the semigroup (Z, +), where + is the usual addition on Z.
We know that ) # N C Z and N is closed under +. Then N is a subsemigroup of Z.

Definition 2.19. Let X be a non-empty set. A transformation on X is a function

from X to X. Let T'(X) denote the set of all transformations on X.

Remark 2.20. Let X be a non-empty set. Then (7T'(X), o) is a semigroup, where o

is the function composition defined by
fog={(z,y) € X x X :(x,2) € f and (2,y) € g for some z € X}.

From now on, for any transformations f, g on a non-empty set X, the composition

f o g is denoted simply as fg.

Definition 2.21. Let X, Y be two ordered sets and f : X — Y be a function. We
say that f is order-preserving if for all z,;y € X, & <y implies o f < yf. If f is an
order-preserving bijection such that x < y if and only if  f < yf, then we say that f

is an order isomorphism.

Definition 2.22. Let (X, <) be an ordered set. We denote the set of all < - preserving

transformations on X by OT(X). Namely,
OT(X)={feT(X): :Vo,y € X,z <y implies zf < yf}.

Theorem 2.23. Let (X, <) be an ordered set. Then OT(X) is a subsemigroup of
T(X).

Proof. Obviously, § # OT(X) C T(X). Let f,g € OT(X) and x,y € X such that
x <y. Since f € OT(X), xf < yf. Since g € OT(X), x(fg) = (xf)g < (yf)g =
y(fg). Thus, fg € OT(X). It follows that OT(X) is closed under the function

composition. Hence, OT'(X) is a subsemigroup of T'(X). O
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Definition 2.24. Let S be a semigroup and x € S, then x is a regqular element if
there is b € S such that x = xbx. Moreover, S is regular if every element in S is

regular.
Theorem 2.25. Let X be a non-empty set. Then T(X) is reqular.

Proof. Let a € T(X). For each y € Xa, there exists x, such that z,a = y. Since X

is non-empty, there exists xo € X. We define §: X — X by

z, ifye Xo;
yb =

To otherwise.

We want to show that afa = «. We know that dom(afSa) = dom(«). Since aafa =
(ac)fa = (40)a = aa for all @ € X. We have that affa = a. Hence, « is regular.

]

2.4 Equivalence relations and partitions

Recall that, for a relation R on a set X,

e R is said to be reflexive, if (z,2) € R for every « € X;
e R is said to be symmetric, if (y, z) € R whenever (z,y) € R;

e R is said to be transitive if (z,y) € R and (y, z) € R implies (z, z) € R.

Definition 2.26. A relation R is said to be an equivalence relation if the relation R

is reflexive, symmetric and transitive.

Definition 2.27. Let E be an equivalence relation on X, and x € X. We denote the

set of all elements that is E-related to x by [z], that is,
7] ={y e X: (2,y) € E}.

The set [z] is called the equivalence class of x. The set of all equivalence classes is
denoted by X/FE, that is,
X/E ={[a] :a € X}.

xXvi



Definition 2.28. Let X be a set. A nonempty collection C of subsets of X is a
partition of X if |JC = X, and for all A, B € C, AN B =0 if and only if A # B.

Remark 2.29. If F is an equivalence relation on a set X, then X/FE is a partition

of X.

Proposition 2.30. If f is a transformation on a non-empty set X, then w(f) is a

partition of X.

Proof. Define a relation ~ on X by x ~ y if and only if f(x) = f(y) for all z,y € X.
It is easy to see that ~ is an equivalence relation and 7(f) = X/ ~. Hence, 7(f) is

a partition of X. O

Definition 2.31. Let P and Q be partitions of X. We say that P is a refinement of
Q if for any A € P, there is B € Q such that A C B.

Proposition 2.32. Let P and Q be partitions of X. If P is a refinement of Q and
Q is a refinement of P, then P = Q.

Proof. Assume that P is a refinement of Q and Q is a refinement of P. To show that
P C 9, let Aie P. Since P is a refinement of Q, there is B-€ Q such that A C B.
Similarly, since @ is a refinement of P, there is C' € P such that B C C. Since
ACBCC,ANC = A # 1. Since P is a partition and ANC # (), A = C, which

implies that A = B € Q. Similarly, we can conclude that @ C P. Hence, P = Q. [

2.5 Transformations preserving an equivalence re-
lation

Definition 2.33. Let E be an equivalence relation on X, and Y, Z be subsets of
X. Let f be a function from Y to Z. We say that f is E-preserving if for any
a,b € Y,(a,b) € E implies (af,bf) € E. Moreover, if for any a,b € Y, (a,b) €

E if and only if (af,bf) € E, then we say that f is E* — preserving.
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Definition 2.34. Let X be an ordered set and E be an equivalence relation on X.
The set of all E-preserving transformation in OT'(X), denoted by Og(X), is defined
by

Op(X)={fe€OT(X): (zf,yf) € E for all (z,y) € E}.

Lemma 2.35. [3] Let f be E-preserving. Then, for each B € X/E, there exists
B' € X/E such that Bf C B'. Consequently, for any A € X/E, Af~" is either § or

a union of some classes X/ E.

2.6 Green’s equivalences

Definition 2.36. For any semigroup S, let S! be a semigroup with an identity
adjoined if S has no identity, and let S' = S if S contains an identity. For a,b € S,

we define the Green’s relation £, R, J, 9 and ® as follows:

1. a£b if and only if S'a = S'b. Namely, a£b if and only if a = zb and b = ya for

some x,y € S*;

2. aRb if and only if a.St = bSt. Namely, aRb if and only if @ = bx and b = ay for

some z,y € S’

3. aJb if and only if StaS' = S'bS'. Namely, aJb if and only if a = zby and

b = uav for some z,y,u,v € S!;
4. a$Hb if and only if a£b and afRb;

5. a®b is the smallest equivalence relation that contains £ and ‘R,

namely, © = £ o fA.

It is well-known that in a finite semigroup, ® = J. Therefore, to characterize all
Green’s equivalences on OT'(X), where X is a finite fence, it is enough to consider

only £ ‘R, $H and ©.
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Chapter 3

The characterization of Green’s

equivalences

For the rest of this research, let E' be an equivalence relation on a finite fence X
such that every equivalence class in X/ E is a subfence in X.
We begin this section with the characterization of £ and R, which will be useful

for the characterization of £ and ® later.

Theorem 3.1. Let f,g € Op(X). Then (f,q9) € R if and only if n(f) = w(g) and

Proof. Assume that (f,g) € R. Then there are h,k € Og (X) such that fh = g
and gk = f. Let P € 7 (f).-We have that Pfhis a singleton , which implies that
P C (Pg)g~' = (Pfh)g~' € w(g). Thus, 7(f) is a refinement of 7(g). Similarly,
we also have that 7(g) is a refinement of 7(f). Hence, 7 (f) = 7 (g). Next, we will
show that E (f) = E(g). Let U € E(f). Then there exists A € X/FE such that
ANXf # Pand U= Af~'. Since h is E- preserving, there exists B € X/F such
that Ah C B. Then Ug=Ufh = Af"'fh C Ah C B. Hence, U C Ugg~' C Bg~.
Similarly, since B¢~ € E (g), we can also have that Bg~! C V for some V € E (f).
Thus, U C V and U,V € E(f). Since E(f) is a partition of X, we have U = V.
So, U = Bg™' € E(g). Hence, E(f) C E(g). Similarly, we can also have that
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E(g) € E(f). Thus, E(f) = E(g).

Conversely, assume that 7 (f) = 7 (¢) and E (f) = FE (g). Without loss of gener-
ality, we may assume that X = {x1,2o,..., 5}, 21 <29 > 23 < ...> 21 < x; and
ran(g) = {z;, zi41,...,2;}, where 1 <7 < j <[. Define y: X — X by

.
af ;x = ag for some a € X;

ry=9Nuyf ;x=x for some k <1i and y;g = x; for some y; € X;

\yjf ;& = xy, for some k > j and y;g = x; for some y; € X.

Thus, v is well-defined since 7 (f) = 7 (g). Next, we will show that v € Op (X).
First, we need to show that 7 is order-preserving. Let x,,,z, € X with z,, < x,.

Case 1 : x,, x, € ran(g). Then there exist a,b € X such that a < b, ag = z,,, and
bg = x,. Thus, z,,v = af and x,y = bf. Since a < b and f is order-preserving, we
have z,,v = af < bf = x,7.

Case 2 : z,, ¢ ran(g) or =, ¢ ran(g). Since ,, and z, are comparable, m,n < i
or m,n > j. If myn < i, then x,,v = y;,f = x,7. Similarly, if m,n > 7, then
T = Yif = Tn7.

Thus, v € OT(X). Finally, we will show that 7 is F-preserving. Let (x,y) € E.

Case 1: x,y € ran (g). Then there are ay,a; € X such that a;g = = and asg = v.
Thus, we have 2y = ayf and yy = aof. Since ay, a0 € [x]g7' € E(g) = E(f), we
have (a1 f,asf) € E implying (x7y,yy) € E.

Case 2 : x € ran(g) but y ¢ ran(g). Let F' be a subfence of X such that x
and y are both ends of F. Then z; € F' or z; € F. Without loss of generality, we
may assume that z; € F. Then yy = ;7. Since every equivalence class in X/F is
a subfence of X, I C A for some A € X/E. So, (z,z;) € E. By the previous case,
(v, x;v) € E. Hence, (z7,yy) € E.

Case 3 : x,y ¢ ran(g). Let F be a subfence of X such that z and y are both ends
of F. Then ran(g) N F = () or ran(g) C F. If ran(g) N F = (), then xy = y7, which
implies that (z,yvy) € E. Now, assume that ran(g) C F. Then zv,yy € {z;7,z;7}.

Moreover, since every equivalence class in X/F is a subfence of X, F' C A for some



A € X/E. Then (z;,z;) € E. By Case 1, we have that (z;v,2,;7) € E. Since
xvy,yy € {x;y, z;v} and (z;y,z;7) € E, we can conclude that (z7,yy) € E.
Thus, v € Og (X). Moreover, it is easy to see from the definition of v that gy = f.

Similarly, we can also show that g = f0 for some 6 € Og (X). Hence, (f,g) € .

For f € Op(X), let
Xf = {th the OE(X> and hf = f}
The following lemma will be useful for the characterization of £.

Lemma 3.2. Let f € Og(X) and Yf,Yf/- be minimal subfences in Xy. Then there

exists a function in Og(X) that bijectively map'Yy onto Yy. Consequently, |Yy| = |Y;|.

Proof. Assume that f € Og(X). Since Xy = {imh : h € Og(X) and hf = f},
and Y; and YJZ are minimal subfences in X, there exist g,h € Og(X) such that
img=Yy, gf = f, imh= Yjﬁ and hf = f. We will show that there exists a bijective
function hly, : Yy — Y]Z. Notice that imgh C imh = Y}Z and ghf = f, and YJZ is
minimal in X;. Then we have imhly, = Y;h = imgh = YJZ implying hly, is onto.
Consequently, we have |Yy| > |YJ2| On the other hand, we can find an onto function
Wy, : Y; — Yy, then |Y;| > |Yy| which implies |Y;| = |Y;|. Since hly, is onto,
Yy| = |Y;| and Y}, Y are finite, we have that hly, is-injective and we can conclude

that hly, is a bijective function from Y to Y;. O

Theorem 3.3. For f,g € Op(X), let Yy and Y, be minimal subfences in Xy and X,
respectively. Then (f,g) € £ if and only if fly, = hg for some E*-preserving order

isomorphism h:Y; — Y.

Proof. Assume that (f,g) € £. Then there are o, € Opg(X) such that af =
gand fg = f. Since Y; and Y, are minimal elements in X; and X, there are
7,72 € Op(X), such that im~y; = Yy, f = f, and im~y, = Yy, 729 = g. Let h :=
153 |yf’72. Since 3,72 € Op(X), we have that h is order and E-preserving. Notice that
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N1 b7 € Op(X) and im 1 8yea = Yiha, and v18vaf = 118729 = 1By =nf = f.
Thus, Yrha € X;. Next, we will show that h := 6|yf72 is injective. Suppose that
Bly,;72 is not injective. Then |Y;B7v,| < |Yy| which contradicts to the fact that Y}
is a minimal subfence in X;. Therefore, h := |y, 7, is an injective function. Since
h := Bly,72 injectively maps Y; into Y, we have |Y;| < [Yy|. Similarly, we can
prove that |Y;| < |Yf|. Then |Y;| = |Y,|. Consequently, h is a bijection. Similarly,
there exists an order and E-preserving bijection hy that maps Y, onto Y;. Since
Y; is finite, by Lagrange’s theorem, (hhs)™ is the identity function on Y} for some
n, so (hhy)™ = h(haoh)" 'hy. Then (hgoh)" 'hy is the inverse function of h. Since
(hah)"1hy is order and E-preserving, h is an E*-preserving order isomorphism. No-
tice that hg = Bly;729 = Bly;9 = fly,. Hence, there is an E*-preserving order
isomorphism h : Y; — Y, such that f|y, = hg. Conversely, assume that f|y, = hg
for some E*-preserving order isomorphism h : Y; = Y,. Since Y} is a element in X/,
there is v € Og(X) such that im~; =Y, and 1 f = f. Let 5 := y1h € Op(X). Then
Bg = mhg = nf = f. Thus, we have 8 := 7 h € Og(X) such that f = Sg. Since
fly; = hg and h'is an bijection, there exists an E*-preserving order isomorphism
h=! Y, — Y} such that h='f = h-'hg = g|y,. Similarly, there is 3’ € Og(X) such
that g = 'f. Therefore, (f,g) € £. O

Theorem 3.4. Let f,g € Op(X), Y; and Yy be minimal subfences in Xy and X,
respectively. Then (f,g) € $ if and only if 7(f) = w(g) and E(f) = E(g), and

fly; = hg for some E*-preserving order isomorphism h:Y; — Y.
The following lemmas will be useful to proof the next theorem.

Lemma 3.5. Let f € Og(X), Y be a subfence of X and let y1,y2 € Y f with y; < ys.

Then there are x1,x9 € Y such that x1f = y1, xof = yo and 1 < x».

Proof. Assume that y; < yo, Y = {x1,20,..., 2} and Y f = {21, 29, ..., 21}, where
X1 < Ty >x3<-->xyand 2y < 29 > 23 <o+ > 2z, We choose 4,5 € {1,2,...,m}

such that i < j, {x;f,;f} = {v1, 92} and j—i = min{|r—s| : {z, f, 2 f} = {v1, 92} }.
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Now, we are going to show that j —¢ = 1 by supposing that 7 — ¢ > 2. Then there
exists a subfence {z;1f, xisaf, ..., z;_1f} which is disjoint from {y;,y2}. Now, we

let {y1,y2} = {2p, 2p11} for some p € {1,2,...,k — 1}. Then we have
{x’i+1f7 xi+2f7 ce 7xj71f} - {zla Ry e 7Zp71} or

. , . C
) =
(i fomiaf, 210 [} C{zpr2, Zpas, - - s 21}

Thus, z;11f and x; f are not comparable or z;_; f and z; f are not comparable, which
is a contradiction. Then we have j —¢ = 1 implying x;, z; are comparable. Since
y1 < yo and f € Og(X), if 2;f =y and z;f = yo, we have z; < z;, similarly for

z;f =y and x;f = yo, we have z; < @;. m

Lemma 3.6. Let f,g € Og(X). If n(f) = n(g) and E(f) = E(g), then there exists

an E*- preserving order isomorphism ¢ : Xg — X f such that f = g1.

Proof. Assume that n(f) = m(g). Since for each y € Xg, there is z, € X such
that z,g = vy, we can define A+ Xg — X by yh = x,. Then, for all x € X,
rghg = x,,9 = xg implying ghg = g. Since 7(f) = 7(g), we have f = ghf. Now,
we are going to prove that Af is an E*- preserving order isomorphism that f = ghf.
First, let ag,bg € Xg, where a,b € X, such that aghf = bghf. Since w(f) = 7 (g),
we have aghg = bghg. Thus, ag = bg. Hence, hf is injective. Now, we let y € X f.
Then there is + € X such that «f = y. Since xghg = xg and 7(f) = 7(g), we
have that xzghf = xf, then there is #¢g € Xg such that xghf = zf = y. Hence,
hf is onto. Next, we will show that hf is order preserving. Let ag,bg € Xg, where
a,b € X, with ag < bg. Since ghg = g, we have aghg = ag < bg = bghg. By lemma
3.5, there are o', € X such that o' < ¥, a’g = (agh)g and b'g = (bgh)g. Since
w(f) = n(g) and f € OT(X), aghf = df <V f = bghf. Finally, we are going to
show that hf is E* - preserving. Let z1, 22 € Xg. Then x1h = z,, and z2h = z,,. So,
Ty, € [11]g7 and z,, € [x2)g™". Since (z1,x3) € F, [11] = [12], 80 T4, € [21]g™". Since
E(f) = E(9), T4y, Ts, € [y]f" for some x,, € X/E. Hence, z1h, xoh € [x,)f .

Thus, z1hf,xohf € [x,,] implying (z1hf, x2hf) € E. Conversely, we assume that
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(x1hf,zohf) € E. Let Ay € X/E such that zihf, xohf € Ag. Then x1h,zoh €

Aof~t. Since E(f) = E(g), we have z1h,z5h € A,,g~" for some A,, € X/E. So,

Ty Ty € Amg™t. Then z,,9,7,,9 € A, implying z1, o € A,,. Thus (z1,7,) € E.
]

Lemma 3.7. Let f,g € Op(X). Assume that w(f) = w(g). Then X; = X,. In

particular, a subset of X is minimal in Xy if and only if it is minimal in X,.

Proof. To show that X; C X, let Y € X;. Then Y = Xh for some h € Op(X) with
hf = f. Thus, for any x € X, since n(f) = 7(g) and (zh)f = zf, we have that
(xh)g = xg. Consequently, hg = g, which implies that Y = Xh € X,. So, Xy C X,.

Similarly, we obtain that X, C X;. Hence, X; = X,. O]

Theorem 3.8. Let f,g € Op(X) and let Yy and Y, be minimal subsets in Xy and
X, respectively. Then (f,q) € © if and only if there exist E*-preserving order
isomorphism h: Yy — Yy and ¢ X f— Xg such-that gly, = hfi.

Proof. Assume that (f,g) € ©. There is 7 € Og(X) such that (f,7) € £ and
(7,9) € R. Since (y,g9) € R, by Theorem 3.1, m(y) =7(g). By Lemma 3.7, Y, is a
minimal subfence in X,. Since (f,7) € £, by Theorem 3.3, there is an E*-preserving
order isomorphism h : ¥y — ¥} such that 7|y, = hf. Since (v, g) € R, by Theorem
3.1 and Lemma 3.6, there is an E*-preserving order isomorphism 1 : Xy — X g such
that g = y1. Since (f,7) € £, it is easy to see that Xy = X f, so the domain of 1 is
X f. Notice that gy, = v|y,% = hf.

Conversely, assume that there exist E*-preserving order isomorphisms o : Y, — Y}
and 1 : X f — Xg such that g|y, = hfy. Let v := f1p € Og(X). Since v = f1) and
vt = f, (v,f) € R. By Theorem 3.1 and Lemma 3.7, Y} is a minimal subfence
in X,. Since gly, = hfi = hy, we have that (g,7) € £ by Theorem 3.3. Hence,

(f,9) €D.
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Chapter 4

The characterization of Green’s

equivalences for regular elements

In chapter 4, we focus on the characterization of Green’s equivalences on the semi-
group Op(X) for regular elements. The definition of regular element has been intro-

duced in chapter 2. We start this section with the relation £.
Theorem 4.1. Let f,g € Op(X) be reqular. Then (f,g) € £ if and only if X f = Xg.

Proof. Assume that (f,g) € £. Then there exist h,k € Og (X) such that hf = g
and kg = f. Thus, Xf C Xhf = Xg and Xg C Xkg = Xf. Then Xg = X/f.
Conversely, assume that X f = Xg¢. Since g is regular, there exists h € Og (X) such
that ¢ = ghg. We define v+ X — X by 2y = v, where y € ran(gh) and yg = = f.
First, we will show that ~ is well-defined, that is, we will show that for each x € X,
there exists a unique y € ran (gh) such that yg = xf. Since X f = Xg = (Xgh) g,
the existence is clear. Next, let y;,y, € ran(gh) be such that y;9 = yag. Since
y1,Y2 € ran(gh), there exist aj,as € X such that y; = a;gh and yo = asgh. Then
Y1 = a1gh = ayghgh = y1gh = ysgh = asghgh = asgh = y,. Similarly, for any
1,29 € X and y,y2 € ran(gh) such that y19 = x1f and yog = zof, we also
have that z; < xo implies y; < 4o, and (x1,22) € E implies (y1,y2) € E. Hence,

v € Og (X). Moreover, it is easy to see that yg = f. Similarly, we can also show
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that ¢ = Jf for some § € Og (X). Therefore, (f,g) € £. O

The immediate consequence of the Theorem 3.1 and Theroem 4.1 is the charac-

terization of £). Since ) = LN R, we get the following theorem.

Theorem 4.2. Let f,g € Op(X) be reqular. Then (f,g) € $ if and only if X f =
Xg,m(f) = (g) and E(f) = E(g).

Finally, we present the characterization of ® - equivalence for two regular elements

in the following theorem.

Theorem 4.3. Let f,g € Og (X) be regular. Then (f,g) € D if and only if there
exists ¢ : Xg — X f such that, for all x,y € Xg, the following conditions hold :

1. x <y if and only if v < yo;
2. (x,y) € E if and only if (x¢,yp) € E.

Proof. Assume that (f,g) € ©. Then there exists h € Og (X) such that (f,h) € £
and (h,g) € R. Since (h,g) € R, there is v € Op(X) such that h = gv. Since
(f,h) € £, we have X f = Xh, 0 tan (Y|ran(y) € Xh = Xf. We will show that
Ylran(g) 18 @ bijection satisfying conditions (1) and (2). Since h = g7, we have |Xh| =
| X gv| <|Xg|. Since X f = Xh, we get that | X f| <|Xg|. Similarly, since (g, f) € D,
we have that | Xg| < |X f|. Hence, | Xg| = |X f|. Since X f = Xh = Xg7|ran(g), We
have that ”y]ran(g) is surjective, which also implies that 'y]ran(g) is bijective. Next, we
will show that v|.an(g) satisfies condition (1). For a subset S of X x X, let < NS =
{(a,b) € Sla < b}. Notice that since |san(g) is an order-preserving bijection, we can
define an injective map v, :< N(Xg x Xg) = < N(Xf x Xf) by i(z,y) = 2y, yy
forall z,y € <N (Xg x Xg). Since Xg and X f are subfences of X and |Xg| = | X f|,
we have that [< N (Xg x Xg)| = |<N(Xf x Xf)|. Therefore, v, is bijective, which
implies that ~ satisfies condition (1). Finally, we will show that v|.an() satisfies
condition (2). We know that 7|ian() is E- preserving. Now, let 1,25 € ran(g) be

such that (z17,227) € E. Since 7 = a1g and x5 = agg for some ay,ay € X, we have
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(a197,a297) € E. Then (ajh,ash) € E. Note that E(h) = Ah™'|A € X/E, Ah= # ().
Let ajh,azh € Ag for some Ay € X/E. Then ay,ay € Agh™' € E(h). Since E(h) =
E(g), There exists A; € X/F such that a;,as € Ajg~'. Then a,9,a29 € A;. Hence,
(a19,a29) € E implying (x1,22) € E. Therefore, |;an(q) satisfies condition (2).

Conversely, let ¢ : Xg — X f be a bijective function satisfying conditions (1) and
(2). Let h = g¢. Since ¢ satisfies condition (1), h is order-preserving. Moreover,
since ¢ satisfies condition (2), h € Og (X) and E (h) = E (g). Since ¢ is a bijection,
we have that 7 (h) = 7 (g) and Xh = X f. Hence, by Theorem 3.1 and Theorem
4.1, we have that (h,g) € R and (h, f) € £, which implies that (f,g) € D.

XXVil



References

1]

Gracinda M. S. Gomes, Jean-eric Pin, Pedro V. Silva. (2002). Semigroups, Algo-

rithms, Automata and Languages. World Scientific, 94.

Green, J. A. (1951). On the structure of semigroups. Annals of Mathematics,
54(1), 163-172.

Huisheng, P., Dingyu, Z. (2005). Green’s equivalences on semigroups of transfor-
mations preserving order and an equivalence relation. Semigroup Forum, 71(2),

241-251.

Jendana, K., Srithus, R. (2015). Coregularity of order-preserving self-mapping
semigroups of fences. Communications of the Korean Mathematical Society, 30(4),

349-361.

Tanyawong, R., Srithus, R., Chinram, R. (2016). Regular subsemigroups of the
semigroups of transformations preserving a fence. Asian-European Journal of

Mathematics, 9(1), 1650003.

XXViil



Biography

Name MISTER Chaleamrach Malangpoo
Address 288/1 No. 5, Nongchang Sub-district,
Nongchang District, Uthai Thani, 61110.

Date of Birth 5 December 1996
Education
2018 Bachelor of Science in Mathematics,

Srinakharinwirot University.
2021 Master of Science in Mathematics,

Slipakorn University.

XX1X



