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MR. PIYAWAT WONGTHONGCUE : SOME NECESSARY CON-

DITIONS FOR GRAPHS WITH EXTREMAL CONNECTED 2-DOMINAT-

ING SETS. THESIS ADVISOR : ASSISTANT PROFESSOR CHALERMPO-

NG WORAWANNOTAI, Ph.D.

Let G be a graph with no multiple edges or loops. A set S of vertices

of G is a dominating set if every vertex in V (G) \ S is adjacent to at least one

vertex of S. A connected k-dominating set of G is a subset S of vertices in

V (G) such that every vertex in V (G)\S has at least k neighbors in S, and the

subgraph G[S] is connected. The domination number of G is the number of

vertices in a minimum dominating set of G, denoted by γ(G). The connected

k-domination number of G, denoted by γc
k(G), is the minimum cardinality of

a connected k-dominating set of G. For k = 1, we simply write γc(G). For

k = 2, it is known that the bounds γc
2(G) ⩾ γ(G)+1 and γc

2(G) ⩾ γc(G)+1 are

sharp. In this thesis, we study one of the open problems posted by Volkmann

in 2009. In particular, we study graphs with the smallest possible connected

2-domination numbers with respect to domination numbers and connected

domination numbers. We provide a characterization of the connected graphs

G with γ(G) = 1 and γc
2(G) = 2. Moreover, we present necessary conditions of

the connected graphs G with γc
2(G) = γ(G)+1 and γc

2(G) = γc(G)+1, respec-

tively, when γc
2(G) ⩾ 3. Lastly, we present a graph construction that takes
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in any connected graph with k vertices and gives a graph G with γc
2(G) = k,

γc(G) = k − 1 and γ(G) ∈ {k − 1, k − 2}.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Let G = (V (G), E(G)) be a graph with a vertex set V (G) and an

edge set E(G), where each edge of E(G) is associated with an unordered pair

of vertices (not necessary distinct vertices) of V (G). Two vertices are adjacent

and are neighbors if there exists an edge associated with the two vertices; in

this case, we say that the edge joins the two vertices and the vertices are its

end vertices. An edge is called a loop if it joins a vertex to itself. Multiple

edges are edges that join the same pair of vertices. A graph H is a subgraph of

G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset S of V (G), the induced

subgraph G[S] is the subgraph of G whose vertex set is S and whose edge set

consists of all the edges in E(G) that have both endpoints in S. That is, for

any two vertices u, v ∈ S, u and v are adjacent in G[S] if and only if they are

adjacent in G. In this thesis, we only consider simple graphs i.e., graphs with

no multiple edges and loops.

1.2 Domination in graphs

A subset S of the vertex set of a graph G is a dominating set if

every vertex in V (G) \ S is adjacent to at least one vertex of S. The domina-
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tion number of G, denoted by γ(G), is the number of vertices in a minimum

dominating set of G.

Claude Berge [2] introduced the concept of the domination number

of a graph in 1962, where he referred to it as the “co-efficient of external sta-

bility”. The term “dominating set” and “domination number” were originally

coined by Ore [16] in 1962. In 1977, Cockayne and Hedetniemi [5] wrote a

report summarizing what was known at that time about dominating sets in

graphs. In that paper, they introduced the notation γ(G) for the domination

number of a graph, which later became the standard notation used.

Domination on graphs is the focus of many studies. Many re-

searchers are interested in this field because it has many practical applications.

For example, in the context of surveillance cameras [14], a dominating set can

be utilized to determine the minimum number of cameras required to cover a

certain area. This area can be represented by a graph, with each vertex within

the graph indicating a potential camera location, and each edge representing

the visibility between those positions. By finding a minimum dominating set,

the number of necessary cameras can be minimized, thus providing full cov-

erage while reducing costs in a surveillance camera system. Then domination

can be used to solve this kind of resource allocation problem. Refer to [9, 10,

11, 12, 13] for additional information on domination.

Many variations of domination arise from imposing an additional

condition on the dominating set. Here, we are interested in connected domi-

nation, k-domination, and the combination of these two.
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1.3 Connected domination in graphs

A connected dominating set of a connected graph G is a dominating

set S of G such that G[S] is connected. The connected domination number of

G, denoted by γc(G), is the minimum cardinality of a connected dominating

set of G. Any connected dominating set of cardinality γc(G) is called a γc-set

of G. Since connected dominating sets are dominating sets, γ(G) ⩽ γc(G) for

any connected graph G.

The concept of connected domination in graphs was introduced by

Sampathkumar and Walikar [18] in 1979. Various researchers have conducted

extensive analyses to determine upper and lower bounds for the connected

domination number in arbitrary graphs. For instance, Sampathkumar and

Walikar [18] have derived many bounds. Kleitman and West [15] looked into

connected graphs that have spanning trees with many leaves in 1991. The

connected domination number of a tree is the number of vertices that are not

leaf within the tree. Thus, determining the minimum connected dominating

set D is equivalent to find a spanning tree of G with maximum number of

leaves. Kleitman and West [15] provided various bounds for the connected

domination number γc(G). Subsequently, Caro, West, and Yuster [3] presented

an enhanced upper bound, surpassing the results of Kleitman and West, which

is asymptotically sharp.

Example 1.1. Consider the graph C6 in Figure 1.1.

Let S = {a, b, c, d}. Since C6[S] is connected and every vertex in
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C6 :

a

b

c

d

f

e

Figure 1.1: Graph C6 and a connected dominating set of C6 (the set of red
vertices)

the set V (C6) \ S = {e, f} is adjacent to some vertex in S, it implies that S is

a connected dominating set of C6, so γc(C6) ⩽ 4. Notice that any set of three

vertices whose induced subgraph forms a connected subgraph of C6 is not a

connected dominating set of C6. Thus, γc(C6) ⩾ 4. Hence, γc(C6) = 4 and S

is a minimum connected dominating set of C6.

1.4 k-domination in graphs

A k-dominating set of a graph G is a subset S of the vertex set

V (G) such that every vertex in V (G) \ S has at least k neighbors in S. The

k-domination number of G, denoted by γk(G), is the minimum cardinality of

a k-dominating set of G. Any k-dominating set of cardinality γk(G) is called

a γk-set of G.

The k-domination in graphs was introduced by Fink and Jacobson

[6] in 1985. In addition, several researchers have studied the bounds of k-

domination in graphs. In 1985, Cockayne, Gamble, and Shepherd [4] proved

that for a graph G with a minimum degree δ and an integer k satisfying δ ⩾ k,
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the k-domination number γk(G) ⩽ k|V (G)|
|V (G)|+ 1

. Rautenbach and Volkmann

[17] later relaxed the minimum degree requirement significantly and introduced

an upper bound on the k-domination number γk(G) in 2007. Hansberg and

Volkmann [8] presented two new upper bounds for the k-domination number

γk(G) for a graph G, which are better than the previous bounds in 2009.

Example 1.2. Consider the graph C6 in Figure 1.2.

C6 :

a

b

c

d

f

e

Figure 1.2: Graph C6 and a 2-dominating set of C6 (the set of red vertices)

Let S = {b, d, f}. Since every vertex in the set V (C6) \S = {a, c, e}

has 2 neighbors in S, it follows that S is a 2-dominating set of C6, so γ2(C6) ⩽ 3.

Note that any 2-dominating set in a graph with at least two vertices must

contain at least two members. From Figure 1.2, we observe that all dominating

sets of size 2 in C6 are {a, d}, {b, e}, and {c, f}. However, these sets are not

2-dominating sets. Therefore, C6 has no 2-dominating sets of size 2. It follows

that a 2-dominating set in C6 must contain at least three members. Thus,

γ2(C6) ⩾ 3. Consequently, γ2(C6) = 3, and S is a minimum 2-dominating set

of C6.
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1.5 Connected k-domination in graph

A connected k-dominating set of a graph G is a subset S of the vertex

set V (G) such that every vertex in V (G) \ S has at least k neighbors in S and

the subgraph G[S] is connected. The connected k-domination number of G,

denoted by γc
k(G), is the minimum cardinality of a connected k-dominating set

of G. Any connected k-dominating set of cardinality γc
k(G) is called a γc

k-set

of G.

In 2009, Volkmann [19] introduced the connected k-dominating in

graphs. In the paper, he characterized connected graphs G with γc
k(G) =

|V (G)|. For δ(G) ⩾ k ⩾ 2, he also characterized connected graphs G with

γc
k(G) = |V (G)| − 1. Moreover, he presented various bounds of γc

k(G) and

proposed some open problems.

The bound γk(G) ⩾ γ(G)+k−2 for any graph G with δ(G) ⩾ k ⩾ 2

was given by Fink and Jacobson in [6]. In 2010, Hansberg [7] presented a

bound similar to Fink and Jacobson for the connected case, that is γc
k(G) ⩾

γc(G) + k − 2 where δ(G) ⩾ k ⩾ 2. Moreover, they established various sharp

bounds on the connected k-domination number and the k-domination number.

For k = 2, Volkmann [19] established the sharp bound γc
2(G) ⩾ γc(G)+1. This

implies that γc
2(G) ⩾ γ(G) + 1.

In 2013, Karima and Mustapha [1] gave some properties of con-

nected graphs G with γc
k(G) = |V (G)| − 2. Then they provided a complete

characterization of connected cubic graphs G with γc
2(G) = |V (G)| − 2 and
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connected 4-regular claw-free graphs G with γc
3(G) = |V (G)| − 2.

Example 1.3. Consider the graph C6 in Figure 1.3.

C6 :

a

b

c

d

f

e

Figure 1.3: Graph C6 and a connected 2-dominating set of C6 (the set of red
vertices)

Let S = {a, b, c, d, e}. Since G[S] is connected and f has 2 neighbors

in S, it implies that S is a connected 2-dominating set of C6, so γc
2(C6) ⩽

5. Notice that any set S ′ of four vertices whose induced subgraph forms a

connected subgraph of C6 is not a connected 2-dominating set of C6 because

each of the remaining vertices has only one neighbor in S ′. Thus, γc
2(C6) ⩾ 5.

Hence, γc
2(C6) = 5 and S is a minimum connected 2-dominating set of C6.

In this thesis, we study two of the open problems posted by Volk-

mann [19] in 2009. In particular, we study graphs with the smallest possible

connected 2-domination numbers with respect to domination numbers and con-

nected domination numbers. In Chapter 2, we recall necessary definitions and

relevant results. In Chapter 3, we provide a characterization of the connected

graphs G with γ(G) = 1 and γc
2(G) = 2. Moreover, we present a necessary

condition of the connected graphs G with γc
2(G) = γ(G) + 1 and a necessary

condition of the connected graphs G with γc
2(G) = γc(G)+ 1, when γc

2(G) ⩾ 3.
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Lastly, we present a graph construction that takes in any connected graph

with k vertices and gives a graph G with γc
2(G) = k, γc(G) = k − 1 and

γ(G) ∈ {k − 1, k − 2}.



 

CHAPTER 2

PRELIMINARIES

In this chapter, we introduce fundamental definitions and relevant

known results. Regarding graph theory in general, we follow the notations used

in West’s book [20].

Definition 2.1. The open neighborhood NG(v) of vertex v in a graph G is

the set of vertices adjacent to v, and the closed neighborhood of v is NG[v] :=

NG(v) ∪ {v}. For X ⊆ V (G), its open neighborhood is the set NG(X) :=∪
v∈X NG(v), and its closed neighborhood is the set NG[X] := NG(X) ∪X.

Definition 2.2. The degree of a vertex v in a graph G, written as degG(v), is

the number of edges that are connected to v. A vertex v of G is said to be an

isolated vertex if degG(v) = 0. A vertex v of G is said to be a leaf or a pendant

if degG(v) = 1. The vertex that is adjacent to a pendant is its support vertex.

Definition 2.3. The order of a graph G is the number of vertices in G.

Definition 2.4. A universal vertex in a graph G is a vertex that is adjacent

to all other vertices of G.

Definition 2.5. An independent set in a graph is a set of pairwise nonadjacent

vertices.

Definition 2.6. A graph G is connected if each pair of vertices in G belongs

to a path; otherwise, G is disconnected.
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Definition 2.7. A path Pn is a graph whose vertices can be listed in the order

v1, v2, . . . , vn such that vi and vi+1 are adjacent where i = 1, 2, . . . , n − 1. A

cycle Cn is a connected graph of order n such that every vertex has degree 2.

Definition 2.8. An isomorphism from a simple graph G to a simple graph

H is a bijection f : V (G) → V (H) such that uv ∈ E(G) if and only if

f(u)f(v) ∈ E(H). We say G is isomorphic to H, written G ∼= H, if there is

an isomorphism from G to H.

Definition 2.9. A complete graph is a graph whose vertices are pairwise ad-

jacent. A complete graph with n vertices is denoted by Kn.

K6
K3K2

Figure 2.1: Graphs K2, K3, and K6, respectively

Definition 2.10. A graph with no cycles is acyclic. A tree is a connected

acyclic graph. A spanning subgraph of a graph G is a subgraph of G with

vertex set V (G). A spanning tree is a spanning subgraph that is a tree.

Lemma 2.11. [20] Every tree with at least two vertices has at least two leaves.

Lemma 2.12. [20] Every connected graph contains a spanning tree.
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Definition 2.13. The graph obtained by taking the union of disjoint graphs

G and H is the disjoint union or sum of G and H, written G+H.

G1 G2 G1 +G2

Figure 2.2: Graphs G1, G2, and G1 +G2, respectively

Definition 2.14. The join of disjoint graphs G and H, written G ∨H, is the

graph obtained from the disjoint union G +H by adding the edges {xy | x ∈

V (G), y ∈ V (H)}.

a a

b b

x x

y y

z z

P2 P3 P2 ∨ P3

Figure 2.3: Graphs P2, P3, and P2 ∨ P3, respectively

Definition 2.15. A star graph Sn of order n is a tree consisting of one vertex

adjacent to all other n− 1 vertices.

S8Figure 2.4: Graph S9



 

CHAPTER 3

MAIN RESULTS

In this chapter, we find a necessary condition for a connected graph

G to have γc
2(G) = γ(G)+1 and a necessary condition for a connected graph G

to have γc
2(G) = γc(G)+1. First we provide a characterization of the connected

graphs G with γ(G) = γc(G) = 1 and γc
2(G) = 2.

3.1 Graphs G with γc
2(G) = 2 and γ(G) = γc(G) = 1

Observation 3.1. Let G be a connected graph with γc
2(G) = 2. Let D be

a γc
2-set of G. Then each vertex in D is a universal vertex. In particular,

γ(G) = γc(G) = 1.

Theorem 3.2. Let G be a connected graph of order at least 2. Then the

following are equivalent.

(i) γc
2(G) = 2,

(ii) G ∼= K2 ∨H for some graph H.

Proof. (i) ⇒ (ii) Assume that γc
2(G) = 2. Let {x, y} be a γc

2-set of G. Then

x and y are universal vertices of G. Hence, G = G[{x, y}] ∨G[V (G) \ {x, y}].

Observe that G[{x, y}] ∼= K2.

(ii) ⇒ (i) Assume that G ∼= K2 ∨ H for some graph H. Then the

vertex set of K2 is a γc
2-set of G. Thus, γc

2(G) ⩽ 2. Clearly, for graphs of order
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at least 2, a connected 2-dominating set have at least two vertices. Hence,

γc
2(G) ⩾ 2. Therefore, γc

2(G) = 2.

From now on, we only consider connected graphs whose connected

2-domination numbers are at least 3.

3.2 Necessary condition for graphs G with

γc
2(G) = γ(G) + 1

We begin by showing the existence of vertices x and y in a γc
2-set D

of a graph G such that x, y ∈ NG(D \ {x, y}), which shows that the coming

necessary conditions are not null.

Lemma 3.3. Let G be a connected graph with γc
2(G) ⩾ 3. Let D be a γc

2-set of

G. Then there exist distinct vertices x, y ∈ D such that x, y ∈ NG(D \ {x, y}).

Moreover, x, y can be chosen so that G[D \ {x, y}] is connected.

Proof. Since G[D] is connected, by Lemma 2.12, there exists a spanning tree

T of G[D]. Since T is a tree of order greater than 2, it has at least two leaves.

Let x and y be two distinct leaves in T . Then x, y ∈ NG(D \ {x, y}) and

G[D \ {x, y}] is connected.

From Figure 3.1, we observe that G has a connected 2-domination

number of at least 3. Let D = {t, u, x, y}. Then D is a connected 2-dominating

set of G. Note that G[D] is a connected graph. Moreover, upon considering

a spanning tree T of G[D], we notice that there exist distinct vertices x and

y in D such that both x and y are neighbors of D \ {x, y} in G. Notice that
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G G[D] T

w

v

x

u

y z
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y
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x
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Figure 3.1: Graphs G, G[D], and a spanning tree T of G[D]

G[D \ {x, y}] = G[{t, u}] and G[{t, u}] ∼= P2. It implies that G[{t, u}] forms a

connected graph.

The following result provides a necessary condition of a connected

graph G with γc
2(G) = γ(G) + 1.

Theorem 3.4. Let G be a connected graph with γc
2(G) ⩾ 3 and γc

2(G) =

γ(G) + 1. Let D be a γc
2-set of G. Then NG(x) ∩NG(y) ⊈ NG(D \ {x, y}) for

every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}).

Proof. Let x and y be two distinct vertices in D such that x, y ∈ NG(D \

{x, y}). Suppose that NG(x) ∩ NG(y) ⊆ NG(D \ {x, y}). So, the vertices in

NG(x) ∩NG(y) are dominated by D \ {x, y}. Since x, y ∈ NG(D \ {x, y}), the

vertices x and y are also dominated by D \ {x, y}. Let v be a vertex of G not

in D∪ (NG(x)∩NG(y)). Then v is adjacent to at least one vertex in D\{x, y}.

Therefore, D \ {x, y} is a dominating set of G of size |D| − 2 = γ(G) − 1, a

contradiction. Consequently, NG(x) ∩NG(y) ⊈ NG(D \ {x, y}).
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3.3 Necessary condition for graphs G with

γc
2(G) = γc(G) + 1

Similarly, we obtain a necessary condition of a connected graph G

with γc
2(G) = γc(G) + 1.

Theorem 3.5. Let G be a connected graph with γc
2(G) ⩾ 3 and γc

2(G) =

γc(G) + 1. Let D be a γc
2-set of G. Then NG(x)∩NG(y) ⊈ NG(D \ {x, y}) for

every pair of distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y})

and G[D \ {x, y}] is connected.

Proof. Let x and y be two distinct vertices in D such that x, y ∈ NG(D\{x, y})

and G[D\{x, y}] is connected. Suppose that NG(x)∩NG(y) ⊆ NG(D\{x, y}).

So the vertices in NG(x) ∩ NG(y) are dominated by D \ {x, y}. Since x, y ∈

NG(D \{x, y}), the vertices x and y are also dominated by D \{x, y}. Let v be

a vertex of G not in D ∪ (NG(x) ∩NG(y)). Then v is adjacent to at least one

vertex in D \ {x, y}. Since G[D \ {x, y}] is connected, it follows that D \ {x, y}

is a connected dominating set of size |D| − 2 = γc(G) − 1, a contradiction.

Consequently, NG(x) ∩NG(y) ⊈ NG(D \ {x, y}).

Graph K2,4 in Figure 3.2 is an example of a connected graph where

γc
2(K2,4) = 3 and γ(K2,4) = γc(K2,4) = 2, satisfying the condition γc

2(K2,4) =

γ(K2,4) + 1 and γc
2(K2,4) = γc(K2,4) + 1. Let D = {x1, x2, y2}. Then D is a

γc
2-set of K2,4. If we consider each pair of distinct vertices in D except for the

pair of x1 and x2, we observe that there exists one vertex among them that
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x1

x2

y1

y2

y3

y4

Figure 3.2: Graph K2,4

is not a neighbor of the remaining vertices in D. Next, we consider a pair of

distinct vertices x1 and x2 in D. We observe that both x1 and x2 are adjacent

to y2 and y2 is the only common neighbor of x1 and x2 in D. Notice that

D \ {x1, x2} = {y2} and its induced subgraph is a connected graph. Clearly,

NK2,4(x1)∩NK2,4(x2) = {y1, y2, y3, y4} and NK2,4(D\{x1, x2}) = NK2,4({y2}) =

{x1, x2}. It implies that NK2,4(x) ∩NK2,4(y) ⊈ NK2,4(D \ {x, y}).

After obtaining the necessary conditions, we discover that graphs

with such conditions have no universal vertices, as shown in the following

propositions.

Proposition 3.6. Let G be a connected graph with γc
2(G) ⩾ 3. For every

γc
2-set D of G, assume that NG(x) ∩NG(y) ⊈ NG(D \ {x, y}) for every pair of

distinct vertices x and y in D such that x, y ∈ NG(D \ {x, y}). Then G has no

universal vertices.

Proof. Let x and y be two distinct vertices in a γc
2-set D of G such that x, y ∈

NG(D \ {x, y}). So, NG(x) ∩NG(y) ⊈ NG(D \ {x, y}). Suppose that G has a

universal vertex u. There are two possibilities.
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▷ Case 1: u ∈ D. Since NG(x) ∩ NG(y) ⊈ NG(D \ {x, y}), there is a

vertex z such that z ∈ NG(x)∩NG(y), but z /∈ NG(D \ {x, y}). Suppose

that u ∈ D \ {x, y}. Since u is a universal vertex, it is adjacent to z.

So, z ∈ NG(D \ {x, y}), which is a contradiction. Thus, u ∈ {x, y}.

Without loss of generality, we assume that u = x. Then x is adjacent to

all vertices in D \ {x, y}. Since |D| ⩾ 3, we have D \ {x, y} ̸= ϕ. Let

w be a vertex in D \ {x, y}. Since x is a universal vertex, the vertices

w, y ∈ NG[x] ⊆ NG(D \ {w, y}). By the assumption, NG(w) ∩ NG(y) ⊈

NG(D \ {w, y}). However, NG(w)∩NG(y) ⊆ NG[x] ⊆ NG(D \ {w, y}), a

contradiction. Therefore, this case cannot happen.

▷ Case 2: u /∈ D. Then u is adjacent to every vertex in D. Since |D| ⩾ 3,

the set D \ {x, y} ̸= ϕ. Let w be a neighbor of x in D \ {x, y}. Let

D
′
= (D \ {w}) ∪ {u}. Since u is a universal vertex, the set D

′ is a

connected 2-dominating set of G. Since |D′ | = |D|, the set D
′ is also a

γc
2-set of G. However, u ∈ D

′ . Just as in Case 1, this cannot happen.

From both cases, we conclude that G has no universal vertices.

Proposition 3.7. Let G be a connected graph with γc
2(G) ⩾ 3. For every

γc
2-set D of G, assume that NG(x) ∩NG(y) ⊈ NG(D \ {x, y}) for every pair of

distinct vertices x and y in D such that x, y ∈ NG(D\{x, y}) and G[D\{x, y}]

is connected. Then G has no universal vertices.

Proof. Similar to the proof of Proposition 3.6.
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3.4 Construction of graphs G with γc
2(G) = γc(G) + 1

In this section, we use the necessary condition to construct an infi-

nite family of graphs G that satisfy γc
2(G) = γc(G) + 1. Note that the condi-

tion NG(x) ∩ NG(y) ⊈ NG(D \ {x, y}) in Theorems 3.4 and 3.5 implies that

NG(x) ∩NG(y) must contain a vertex outside of NG(D \ {x, y}).

Definition 3.8. For a connected graph H of order at least 3, we let g(H) be

the connected graph obtained from H by adding new vertices in the following

way. For every pair of distinct vertices x and y in V (H) such that x, y ∈

NH(V (H) \ {x, y}), we add one new vertex and join it to x and y.

Observation 3.9. For any connected graph H, its vertex set V (H) is a con-

nected 2-dominating set of g(H).

P4

g(P4)

v w x y v w x y

a

b

c d

Figure 3.3: Graphs P4 and g(P4)

For example, let H = P4. The connected graph g(P4) is obtained

from P4 by adding the red vertices, as illustrated in Figure 3.3. Note that

v /∈ NH(V (H) \ {v, w}), so no new vertex was created for the pair v, w. In this
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case, we say v and w do not create a new vertex in G. Similarly, x and y do

not create a new vertex in G. We also note that each new vertex has degree 2.

Next, we discuss some properties of graphs g(H).

Lemma 3.10. Let H be a connected graph of order k where k ⩾ 3 and let

G = g(H). The vertices x and y in H do not create a new vertex in G if and

only if x and y are adjacent and one of the two vertices has degree 1 in H.

Proof. We will prove the forward direction by the contrapositive method. As-

sume that x and y are not adjacent or both x and y have degree at least 2 in

H. Since H is a connected graph, it implies that x, y ∈ NH(V (H) \ {x, y}).

By construction, x and y create a new vertex in G.

Conversely, assume that x and y are adjacent and one of the two

vertices has degree 1 in H. Without loss of generality, let degH(x) = 1. Then

x /∈ NH(V (H) \ {x, y}). It follows that x and y do not create a new vertex in

G.

Lemma 3.11. Let H be a connected graph of order k where k ⩾ 3 and let

G = g(H). Then among any three vertices of V (H), there exist two vertices

that create a new vertex in G.

Proof. Let x, y, z ∈ V (H). Suppose there are no pairs of vertices among x, y

and z that create a new vertex in G. By Lemma 3.10 and since x and y do

not create a new vertex in G, the vertices x and y are adjacent and one of the

two vertices has degree 1 in H, say y. Similarly, since x and z do not create a

new vertex in G, the vertices x and z are adjacent and z has degree 1 in H.
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Note that y and z are not adjacent in H. By Lemma 3.10, the vertices y and

z create a new vertex in G, a contradiction. Hence, there exist two vertices

among x, y and z that create a new vertex in G.

Lemma 3.12. Let H be a connected graph of order k where k ⩾ 3 and let l be

the number of pendants in H. Then |V (g(H))| = k +
(
k
2

)
− l.

Proof. Let G = g(H). If every pair of vertices in H creates a new vertex in G,

then the number of new vertices in G is
(
k
2

)
. By Lemma 3.10, the number of

new vertices in G is
(
k
2

)
− l. By Definition 3.8, |V (G)| = |V (H)|+

(
k
2

)
− l.

We proceed to find the connected 2-domination numbers of the

graphs g(H). We begin by proving two useful lemmas.

Lemma 3.13. Let H be a connected graph of order k where k ⩾ 3. Let D be

a connected 2-dominating set of g(H). If V (H) \ D contains a vertex u that

does not create new vertices with any vertices in D ∩ V (H), then D ∩ V (H) is

an independent set and u is adjacent to every vertex in D ∩ V (H).

Proof. Assume that V (H) \ D contains a vertex u that does not create new

vertices with any vertices in D ∩ V (H). By Lemma 3.10, each vertex in D ∩

V (H) is adjacent to the vertex u. If |D ∩ V (H)| = 1, then we are done.

Otherwise, we have degH(u) ⩾ 2 so each vertex in D ∩ V (H) has degree 1 in

H. Hence, D ∩ V (H) is an independent set.

Lemma 3.14. Let H be a connected graph of order 3 and let G = g(H).

Suppose that D is a connected 2-dominating set of G of size 2 such that D ⊈
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V (H). If there exist two vertices in V (H) \D that do not create a new vertex

in G, then |D ∩ V (H)| = 1.

Proof. Let V (H) = {x, y, z}. Assume that x, y ∈ V (H) \ D and they do not

create a new vertex in G. By Lemma 3.10, x and y are adjacent and one of the

two has degree 1 in H, say y. Then y and z create a new vertex v in G. Next,

we will show that v ∈ D. Suppose that v /∈ D. Since D is a 2-dominating set

and v is only adjacent to z and y, we have y, z ∈ D. This is a contradiction

to y ∈ V (H) \D. It follows that v ∈ D. Suppose that D ∩ V (H) = ϕ. Since

|D| = 2, there exists a vertex w ∈ D \ {v}. Since NG(v) = {y, z}, the vertex w

is not adjacent to v. This is a contradiction to G[D] being a connected graph.

Hence, |D ∩ V (H)| = 1.

Theorem 3.15. Let H be a connected graph of order k where k ⩾ 3 and let

G = g(H). Then V (H) is a γc
2-set of G. In particular, γc

2(G) = k.

Proof. By construction, V (H) is a connected 2-dominating set of G of size

k. Suppose that there exists a connected 2-dominating set D of G of size

k − 1 ⩾ 2. Suppose that D ⊆ V (H). Let u be the single vertex in V (H) \D.

If u does not create new vertices with any vertices in D, then by Lemma 3.13,

the set D is independent. This contradicts G[D] being a connected graph.

Consequently, u creates a new vertex v ∈ G \ H with some vertex w in D.

Since u /∈ D and NG(v) = {u,w}, it follows that D is not a 2-dominating set

of G, a contradiction. Hence, D ⊈ V (H). Then there is at least one vertex in

D that does not belong to V (H). So, |D∩V (H)| ⩽ k−2. It implies that there

exist at least two vertices x and y in V (H) \D. There are two possibilities.
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▷ Case 1: x and y create a new vertex z in G. Suppose that z ∈ D.

Since NG(z) = {x, y}, the graph G[D] is disconnected, a contradiction.

Thus, z /∈ D. Then the new vertex z is not dominated by D. This is a

contradiction to D being a 2-dominating set of G.

▷ Case 2: x and y do not create a new vertex in G. By Lemma 3.10,

the two vertices are adjacent and one of the two has degree 1 in H,

say y. Note that |V (H) \ {x, y}| = |V (H)| − 2 = k − 2. Let V (H) \

{x, y} = {u1, u2, . . . , uk−2}. Since H is a connected graph and y is

adjacent to x in V (H) \ D, for each i ∈ {1, ..., k − 2}, we have that

ui, y ∈ NH(V (H) \ {ui, y}) so ui and y create a new vertex vi in G.

Let S = {v1, v2, . . . , vk−2}. Next, we will show that S ⊆ D. Suppose

that there exists an i ∈ {1, ..., k − 2} such that vi /∈ D. Since D is a

2-dominating set and NG(vi) = {ui, y}, the vertices ui and y are in D.

This is a contradiction to y ∈ V (H) \ D. It implies that vi ∈ D for all

i ∈ {1, ..., k − 2}. So, S ⊆ D.

If k = 3, then |S| = 1 and |D| = 2. Thus, S = {v1}. By

Lemma 3.14, |D ∩ V (H)| = 1. Since V (H) = {x, y, u1} and x, y /∈ D, we

have D∩V (H) = {u1}. Since S ⊆ D, the vertex v1 belongs to D\V (H).

Thus, D = {u1, v1}. Since y is a pendant with x as its support, y is

not adjacent to u1. It follows that D is not a 2-dominating set of G, a

contradiction. Thus, k ̸= 3.

Now suppose k ⩾ 4 so there exist at least 2 vertices in S. By

construction, S is an independent set. Since each vertex vi in S is created
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by joining it to y and ui ∈ V (H) \ {x, y}, the vertices in S have only

one common neighbor, namely y. But y is not in D. Since S ⊆ D and

|D \S| = 1, the induced subgraph G[D] is disconnected, a contradiction.

We conclude from the above two cases that a connected 2-dominating

set of G has at least k members. Therefore, V (H) is a γc
2-set of G and

γc
2(G) = k.

Let H be a path P3 and let G = g(H). Then G is isomorphic to a

cycle C4. Moreover, any three vertices in C4 form a γc
2-set of C4. Hence, any

three vertices in G form a γc
2-set of G. It implies that the γc

2-set of G is not

unique.

The next following result shows that V (H) is the unique γc
2-set of

G, where H is a connected graph of order k ⩾ 3 not isomorphic to a path P3

and G = g(H).

Theorem 3.16. Let H be a connected graph of order k ⩾ 3 not isomorphic to

a path on 3 vertices and let G = g(H). Then V (H) is the unique γc
2-set of G.

Proof. By Theorem 3.15, we have that V (H) is a γc
2-set of G. If k = 3, then

H is a cycle on 3 vertices and it is easy to check that V (H) is the only γc
2-set

of G. It remains to consider k ⩾ 4. Suppose that there exists a γc
2-set D of

G such that D ̸= V (H). So, |D| = |V (H)| and |V (H) \ D| = |D \ V (H)|.

Consider the following 3 cases.

▷ Case 1: |V (H) \ D| = |D \ V (H)| = 1. Let u be the unique vertex in

V (H)\D. Suppose that u does not create new vertices with any vertices
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in D∩V (H). By Lemma 3.13, the set D∩V (H) is independent and u is

adjacent to every vertex in D∩V (H). Since D∩V (H) is an independent

set of size at least 3 and the unique vertex in D \V (H) has degree 2, the

graph G[D] is disconnected, a contradiction. Therefore, u creates new

vertices with some vertices in D ∩ V (H). Suppose u creates exactly one

new vertex. Let a be the vertex in D∩V (H) that creates the new vertex

with u. Since k ⩾ 4 and |V (H)\D| = 1, we have |(D∩V (H))\{a}| ⩾ 2.

By Lemma 3.10, every vertex in (D∩V (H))\{a} is adjacent to u and has

degree 1 in H. Then a is not adjacent to any vertex in (D∩V (H))\{a}.

Thus, NH(a) ⊆ {u}. By this and Lemma 3.10, the vertices u and a are

not adjacent. Therefore, a is not adjacent to any vertices in V (H) \ {a}.

Consequently, H is disconnected, a contradiction. Thus, u creates at least

two new vertices with some vertices in D∩V (H). Since |D \V (H)| = 1,

at least one of the new vertices above is not in D and is not 2-dominated

by D, a contradiction.

▷ Case 2: |V (H)\D| = |D \V (H)| = 2. Let V (H)\D = {x, y}. Suppose

that x and y create a new vertex z in G. Suppose that z ∈ D. Since

degG(z) = 2, the graph G[D] is disconnected, a contradiction. So, z /∈ D.

Thus, D is not a dominating set of G, a contradiction. Therefore, x and

y do not create a new vertex in G. By Lemma 3.10, the vertices x and y

are adjacent and one of the two has degree 1 in H, say y.

Now, suppose x does not create new vertices with any vertices

in D∩V (H). By Lemma 3.13, the set D∩V (H) is independent and x is
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adjacent to every vertex in D∩V (H). Since D∩V (H) is an independent

set of size at least 2, the graph H is a star with at least 3 pendants.

By Lemma 3.11, there exist at least |D ∩ V (H)| new vertices in G that

are created by joining them to y and D ∩ V (H). If |D ∩ V (H)| > 2,

then at least one of the new vertices above is not in D and so it is not

2-dominated by D, a contradiction. Thus, |D ∩ V (H)| = 2 and H is a

star of order 4. By Lemma 3.12, the number of new vertices in g(H) is

three. Suppose that two new vertices in g(H) that are created by joining

them to y and D∩V (H) belong to D \V (H). Since both of the two new

vertices have degree two and D ∩ V (H) is an independent set, the graph

G[D] is disconnected, a contradiction. Hence, at least one of the two new

vertices in g(H) that is created by joining them to y and D∩V (H) does

not belong to D, and so it is not 2-dominated by D, a contradiction.

Therefore, x creates new vertices with some vertices in D ∩ V (H).

Since y is a pendant with x as its support, by Lemma 3.14 the

vertex y creates a new vertex with each vertex in D ∩ V (H). It follows

that there exist at least |D ∩ V (H)| + 1 ⩾ 3 new vertices in G that are

adjacent to x or y. Since |D \V (H)| = 2, at least one of the new vertices

above is not in D and is not 2-dominated by D, a contradiction.

▷ Case 3: |V (H) \D| ⩾ 3. Let x, y, z ∈ V (H) \D. By Lemma 3.11, there

exist two vertices in {x, y, z} that create a new vertex in G. Without loss

of generality, let x and y create a new vertex v in G. Suppose that v ∈ D.

Since degG(v) = 2, the graph G[D] is disconnected, a contradiction. So,
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v /∈ D. Thus, D is not a dominating set of G, a contradiction.

From the above three cases, we conclude that V (H) is the unique

γc
2-set of G.

Now, we find the connected domination numbers of the graphs g(H)

and show how they are related to the connected 2-domination numbers.

Theorem 3.17. Let H be a connected graph of order k where k ⩾ 3 and let

G = g(H). Then γc(G) = k − 1.

Proof. Let S be a subset of V (H) such that |S| = k−1 and G[S] is connected.

Since V (H) is a 2-dominating set of G, the set S is a connected dominating set

of G. Thus, γc(G) ⩽ k − 1. Suppose that there exists a connected dominating

set D of G of size k − 2. Suppose that D ⊆ V (H). Then there exist u, v ∈

V (H) \D. We consider the vertices u and v in V (H) \D in two cases.

▷ Case 1: u and v create a new vertex in G. Then the new vertex is not

dominated by D. This is a contradiction to D being a dominating set.

▷ Case 2: u and v do not create a new vertex in G. By Lemma 3.10, u

and v are adjacent and one of the two has degree 1 in V (H), say v. Then

v is not dominated by D, a contradiction.

From the two cases, we conclude that D ⊈ V (H). Then at least

one vertex in D does not belong to V (H). So, |D ∩ V (H)| ⩽ k − 3. It implies

that there exist at least 3 vertices in V (H) \ D. Let x, y, z ∈ V (H) \ D. By

Lemma 3.11, there exist two vertices in V (H) \D that create a new vertex in



 
27

G. Without loss of generality, let x and y create a new vertex t in G. Suppose

that t ∈ D. Since NG(t) = {x, y}, we have that t /∈ NG(D), a contradiction.

So, t /∈ D. It follows that the new vertex t in G is not dominated by D,

a contradiction. Hence, a connected dominating set of G has at least k − 1

members. Therefore, γc(G) = k − 1.

Corollary 3.18. Let H be a connected graph of order k where k ⩾ 3 and let

G = g(H). Then γc
2(G) = γc(G) + 1.

3.5 γc
2(g(H)) = γ(g(H)) + 1 or γc

2(g(H)) = γ(g(H)) + 2

In this section, we show that for any connected graph H of order at

least 3, the graphs g(H) satisfies either γc
2(g(H)) = γ(g(H))+1 or γc

2(g(H)) =

γ(g(H)) + 2.

Firstly, let’s begin by determining the domination number of g(H)

for any connected graph H of order 3.

P3

g(P3)

C3

g(C3)

Figure 3.4: Graphs P3, g(P3), C3 and g(C3)

Theorem 3.19. Let H be a connected graph of order 3 and let G = g(H).

Then γ(G) = 2.

Proof. Since H is a connected graph of order 3, it follows that H is either a
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path P3 or a cycle C3 of order 3. Since g(P3) is a cycle of order 4, it implies

that γ(g(P3)) = 2. From the graph g(C3) in Figure 3.4, it is easy to see that

γ(g(C3)) = 2.

Next, we determine the domination number of g(H) for any con-

nected graph H of order at least 4.

Lemma 3.20. Let H be a connected graph of order k where k ⩾ 4 and let

G = g(H). Then γ(G) ⩾ k − 2.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Let X = V (G) \ V (H). Then X

consists of the new vertices. Suppose there exists D ⊆ V (G) such that |D| =

k−3 and D dominates X. If D contains a new vertex x in X, then x was created

by some vertices u and v in H. Since NG[x] ∩X ⊆ NG[u] ∩X, we can use the

vertex u in H to dominate new vertices in X instead of the vertex x. Hence,

it is sufficient to consider that the vertices in D are from V (H). Without loss

of generality, let D = {v1, v2, v3, . . . , vk−3}. We divide the argument into two

cases according to the number of pendants in {vk−2, vk−1, vk}.

▷ Case 1: {vk−2, vk−1, vk} contains at most one pendant. Without loss

of generality, assume vk−1 and vk are not pendants. By Lemma 3.10,

vk−1 and vk create a new vertex in G which is not dominated by D, a

contradiction.

▷ Case 2: {vk−2, vk−1, vk} contains at least two pendants. Without loss of

generality, assume vk−1 and vk are the two pendants. By Lemma 3.10,
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vk−1 and vk create a new vertex in G which is not dominated by D, a

contradiction.

We conclude from the above two cases that at least k − 2 vertices

are required to dominate X. Thus, γ(G) ⩾ k − 2.

Theorem 3.21. Let H be a connected graph of order k where k ⩾ 4 and let

G = g(H). If H contains two pendants that share a support vertex in H, then

γ(G) = k − 2.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Assume that H contains 2 pendants

that share a support vertex in H. For i ̸= j, when vi and vj create a new vertex

in G, we let vij denote the new vertex. Since |V (H)| = k ⩾ 4, no two pendants

are adjacent. Without loss of generality, let vk−1 and vk be two pendants of H

with the common support vertex vk−2. Let D = {v1, v2, v3, . . . , vk−3}∪{vk−1,k}.

By Lemma 3.10, vk−2 does not create a new vertex with either vk−1 or vk. Since

H is connected, the vertex vk−2 is adjacent to some vertex in {v1, v2, . . . , vk−3}.

By construction, all vertices in G except vk−1, vk and vk−1,k are dominated by

{v1, v2, v3, . . . , vk−3} but vk−1, vk and vk−1,k are dominated by vk−1,k. Hence, D

dominates all vertices in G. Since |D| = k− 2, we have that γ(G) ⩽ k− 2. By

Lemma 3.20, we have γ(G) = k − 2.

Theorem 3.22. Let H be a connected graph of order k such that k ⩾ 4 and

no two pendants share a support vertex. Let G = g(H). Then γ(G) = k − 1.

Proof. Let V (H) = {v1, v2, v3, . . . , vk}. Let X = V (G) \ V (H). For i ̸= j,

when vi and vj create a new vertex in G, we let vij denote the new vertex.
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Suppose there exists D ⊆ V (G) such that |D| = k − 2 and D dominates X.

Similar to the proof of Theorem 3.19, we can assume that D ⊆ V (H) and

let D = {v1, v2, v3, . . . , vk−2}. Let α be the number of vertices in X that are

dominated by D. Let l be the number of pendants in H. By Lemma 3.12, we

have α = |X| =
(
k
2

)
− l. We will also compute α by counting the number of

additional vertices that are dominated by each vi for 1 ⩽ i ⩽ k−2. By Lemma

3.10, for each v ∈ D, if v is a pendant or a support of a pendant, then v is

adjacent to k− 2 vertices in X; otherwise, v is adjacent to k− 1 vertices in X.

First, suppose both vk−1 and vk are not pendants in H. Then all l

pendants are in D so α = (k − 1) + (k − 2) + · · · + 2− l =
(
k
2

)
− 1− l. Thus,

α < |X|, a contradiction.

Suppose both vk−1 and vk are pendants in H. Then the support

vertices of vk−1 and vk are distinct and are in D. It implies that α = (k− 1)+

(k − 2) + · · ·+ 2− l =
(
k
2

)
− 1− l. Thus, α < |X|, a contradiction.

Therefore, exactly one vertex in {vk−1, vk} is a pendant in H. Then

D contains l − 1 pendants. Without loss of generality, let vk be a pendant.

First, suppose that the support vertex of vk is in D. It follows that α =

(k − 1) + (k − 2) + · · · + 2 − l =
(
k
2

)
− 1 − l. Thus, α < |X|, a contradiction.

Thus, the support vertex of vk is not in D, i.e. vk−1 is the support vertex of

vk. Then α = (k− 1) + (k− 2) + · · ·+ 2− (l− 1) =
(
k
2

)
− l. It follows that we

need at least k − 2 vertices to dominate every vertex in X. Each vertex vi in

D dominates at least 2 additional vertices vi,k−1 and vik. Each vertex vij in X

can only dominate one vertex (itself) in X. So, to use exactly k− 2 vertices to
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dominate X, we cannot use any vertex from X. Since the pendant vk and its

support vertex vk−1 are not in D, the vertex vk is not dominated by D. Thus,

we must use one more vertex to dominate vk. Then a dominating set of G has

at least k − 1 members. So, γ(G) ⩾ k − 1.

Let D
′
= {v1, v2, v3, . . . , vk−1}. Clearly, D′ dominate all vertices in

G. Since |D′ | = k−1, we have that γ(G) ⩽ k−1. Therefore, γ(G) = k−1.

S5 g(S5)

Figure 3.5: Graphs S5 and g(S5)

Remark 3.23. Theorem 3.15 and 3.21 imply that our necessary condition for

graphs G with γc
2(G) = γ(G) + 1 is not a sufficient condition.

Lastly, we apply Theorems 3.15, 3.17, 3.19, 3.21, and 3.22 to stars,

paths and cycles.

Corollary 3.24. For k ⩾ 4, let G = g(Sk). Then γc
2(G) = k, γc(G) = k − 1

and γ(G) = k − 2.

Corollary 3.25. For k ⩾ 3, let G = g(Pk). Then γc
2(G) = k, γc(G) = k − 1

and γ(G) = k − 1.

Corollary 3.26. For k ⩾ 3, let G = g(Ck). Then γc
2(G) = k, γc(G) = k − 1

and γ(G) = k − 1.



 

CHAPTER 4

CONCLUSIONS

In this chapter, we present a summary resulting from this thesis.

This thesis determines some necessary conditions for graphs with

extremal connected 2-dominating sets in Chapter 3. Firstly, we examine graphs

that have the smallest possible connected 2-domination numbers with respect

to domination numbers and connected domination numbers. In Section 3.1,

the connected graphs G with γ(G) = 1 and γc
2(G) = 2 are characterized.

Particularly, in Section 3.2, for the connected graphs G with γc
2(G) ⩾

3 and γc
2(G) = γ(G) + 1, the necessary condition of the connected graphs G

with γc
2(G) = γ(G) + 1 is presented. Similarly, in Section 3.3, the necessary

condition of the connected graphs G with γc
2(G) = γc(G) + 1 is also presented.

In Section 3.4, we utilize the necessary condition to construct an

infinite family of graphs G that satisfy γc
2(G) = γc(G) + 1. Additionally, for

a connected graph H of order k ⩾ 3, let G = g(H). Theorems 3.15 and 3.16

state that γc
2(G) = k. Moreover, V (H) is the unique γc

2-set of G if H is not

a path on 3 vertices. Subsequently, we show that our graph construction that

takes any connected graph with k vertices and gives a graph G with γc
2(G) = k,

γc(G) = k − 1.

Finally, in Section 3.5, we show that γ(G) = k − 1 if H does not

contain 2 pendants that share a support vertex; otherwise γ(G) = k − 2.
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Furthermore, by Theorems 3.15 and 3.21, our necessary condition for graphs

G with γc
2(G) = γ(G) + 1 is not a sufficient condition.
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