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Chapter 1

Introduction

The theory of circulant-matrices over the complex field C has widely been stud-
ied and applied in many branches of Mathematics‘and Engineering. A circulant
matrix is a matrix where each row is rotated-one element to the right relative to

the preceding row [4]. Precisely; an n x n circulant matrix is of the form

20 21 ke Bp—9- Rn=1
“n—=1 20 o Zn—3. Zp<2
Zn—2 " An—1 /.. Rp=4 Zpn=3
21 <9 PR | 20
for some (29, 21,...,2,-1) € C™

In applications, circulant matrices can be applied in solving linear systems
using discrete Fourier tranform and they can be used in the MixColumns step
of the Advanced Encryption Standard in cryptography. In [2], the eigenvalues
of a circulant matrix have been studied. Determinants, norms, and the spread
of circulant matrices with Tribohacci and generalized Lucas numbers have been
studied in [6] and references therein. The probability that the determinant of an
integer circulant n X n matrix is divisible by a prime p (where p does not divide n)

have been studied in [9]. In [4] and [5], the inverse of a circulant matrix is studied.



It is well known [4] that the set of all circulant matrices is isomorphic to the ring
Clx]/ (z™ — 1) . In [8], some groups of circulant matrices have been studied.

Skew polynomials over the complex numbers have been studied in [3]. They
have interesting properties and the set of all skew polynomials over C forms a
non-commutative ring under the addition and multiplication defined in Chapter
2. In [1], some properties of skew polynomials have been studied and applied in
coding theory.

In this thesis, four generalizations of ¢irculant matrices are introduced, namely,
right conjugate-circulant, left- conjugate-cireculant, right conjugate-negacirculant
and left conjugate-negacirculant-matrices.~ The algebraic characterizations and
some properties of such matrices are studied in terms of skew polynomials over
C. These might motivate further study of properties of such matrices such as de-
terminants, norms, diagonalizability-etc. Moreover, applications of such matrices
would be interesting for further studies.

The thesis is organized as-follows. The formal definitions of right conjugate-
circulant matrices, left conjugate-circulant matrices, right conjugate-negacirculant
matrices, left conjugate-negacirculant matrices and skew polynomials over C are
given in Chapter 2 as well as their basic properties. In Chapter 3, group struc-
tures of some subsets of such-matrices are established. In"Chapter 4 Section 4.1,
the characterization of right conjugate-circulant. matrices and their properties are
established. The characterization of right «conjugate-negacirculant matrices and
their properties are given in Section-4.2.~In"Section 4.3, some relations among
right conjugate-circulant matrices and right conjugate-negacirculant matrices are

discussed.



Chapter 2

Preliminaries

In this chapter, some-properties of skew polynomials over the complex field
are discussed. The notions of complex right conjugate-circulant, left conjugate-
circulant, right conjugate-negacirculant matrices and left conjugate-negacirculant

matrices are mentioned.

2.1 Generalization of Circulant Matrices

For each n € N, let M;,(C) denote the set of all. n x n complex matrices and
let GL,(C) = {Ae M, (C) | det(A) #0} . Let £+ C — C denote the complex
conjugate, i.e., £(z) = Z. An n xn.matrix A over C issaid to be right conjugate-
circulant (resp., left conjugate-circulant) if

20 21 Zn—2 Zn—1
§(zn-1)  &(20) o &(zamz)  §(2a—2)

A=1 2(z00) Eaot) oo E(20ca)  E(20-3)

_5"71(21) & N z) . &N zam) € H(20)



&(z1) §(z2) o E(zn1) &(20)
(resp, A= 1 &(z)  €() ... =) =) |

£ (zn—1) M) N & N 2nms) €M (2n2)

for some (29, 21, ..., 2,—1) € C". A right (resp., left) conjugate-circulant matrix of
this form is denoted by rcireon;((20s 21, = 2n—1))-(r€SP., Icireoni (20, 21, - - - 5 Zn-1)))-
In similar fashion, an n-x n _matrix A over C is said to be right conjugate-

negacirculant (resp., left conjugate-negacirculant). if

{28 -7/ | B =Y §(znk2)
A = T A 20) ¥ ()

_5"71(—21) (e P2 end) & («)

5(21) 5(22) f(zn—l) f(—Zo)
(resp, A=1 " &(z)  &(z) ... () &(~z) |

£ Nzno1) €N =20) ... &N —2n-3) & H—2n-2)



for some (zg, 21, . .

Incireon; (( 20, 21, - -

., Zn—1) € C". It is denoted by rncireon;((zo, 21, - -

yZn—1)))-

-y Zn-1)) (resp.,

Such matrices become the classical circulant and negacirculant matrices if £ is

replaced by the identity map.

Since £? is the identity map, we have

ICiTconj((20, 21, - -

28 I

20

Zn—1

Z1

Zn=1

Z9

21

z3

Zn—2

Zn=3

)

Zn=1

Zn—1

Zn—2

“n—3

20

if n is odd,

if n is even,



if n is odd,
>
_is-even







Incireon; (( 20, 21, - -

Example 2.1. The matrices

ICireoni((1,1 —14,2,2+1)) =

. Zn—l)) ==

20

22

Zn—2

)

]

n—2

21

z3

“n—1

24

23

Zn—2 Zp—1
Zn—1 —Z0
—Z0 -2
—Rpn—4 —TRn-3
TRn-3 TRpn—-2
Zn-2 Zp—1
Zn—1 '—55
—20 —21
—Zp-4- —Rp-3
TRp—3 TRp—2
1—1 2 241
1 141 2
241 1 1—2
2 2—1 1

if n is odd,

if n is even.



and

-2+ 1 1+ 2
INCireoni((1,1 —4,2,2 +14)) =

-2 =2— 1 1—1

—1—-7: -2 =247 1

are right conjugate-circulant and right conjugate-negacirculant, respectively. Clearly,
they are neither right circulant nor right-negacirculant.

Denote by RCiry, reonj(C) := {r¢ireoni(2) | 2z € C"} and RNCir, yeoni(C) =
{rncir.oni(2) | 2 € C"} the set-of complex . xn right conjugate-circulant matrices

and the set of complex n'x n'right conjugate-negacirculant matrices, respectively.

Example 2.2. The matrices

CiTeoni (1, 1/=17;2,2 #+ 1)) =

and

Incireon;((1,1 —14,2,2414)) =

2—1 -1 —-1—-1 =2

are left conjugate-circulant and left conjugate-negacirculant, respectively.
Denote by LCiry, yeonj(C) = {lciryeoni(2) | 2 € C"} and LNCir,, yeoni(C) =
{Incirconi(2) | z € C"} the set of complex n x n left conjugate-circulant matrices

and the set of complex n x n left conjugate-negacirculant matrices, respectively.
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The set Ciry, reonj(C) := RCiry, yeonj(C) U LCir,, yeonj(C) is called the set of com-
plex n x n conjugate-circulant matrices and an element in Cir,, yconi(C) is called
a conjugate-circulant matriz over C. The set NCir,, yconj(C) := RNCiry, 1conj(C) U
LNCiry, reonj(C) is called the set of complex n x n conjugate-negacirculant matrices
and an element in NCiry, 1coni(C) is called a conjugate-negacirculant matriz over

C. For convenience, the indices of a matrix [c;;] € M, (C) will be written as

nxn

0,1,2,...,n— 1 and the computations'will be done under modulo n.

2.2 Skew Polynemials

Skew polynomials over the complex field are recalled.. Proofs of necessary
properties are given. The readers may refer to [2, Chapter 2] for more details.

The set C [z : conj] = {zo+ 212 +- -~ + z,2"|z; € C and n € Ny} of formal poly-
nomials forms a ring under the usual addition of polynomials and where the mul-
tiplication is defined using the rule 72 =Zz«. The multiplication is extended to all
elements in C [z : ¢onj} by associativity and distributivity: The ring C [z : conj]| is
called the skew polynomial ring over C and an element in"C [z : conj] is called a
skew polynomial. Clearly, the ring C [z : conj] is non-commutative.

Given a ring R, an additive subgroup I.C-R-is called a'left (resp., right) ideal
of Rif ra € I (resp., ar.&l)for all r € R and a-€ . It is said to be two-sided
ideal if I is both a left.ideal and a right-ideal.

For each skew polynomial f(z)-in Clz.: conjl;let (f(x)) := {g(x)f(x) | g(z) €
Clx : conj]} be the left ideal of C|x : conj] generated by f(z). Note that (f(z)) does
not need to be two-sided. A polynomial f(z) is said to be central if f(x)g(z) =
g(x)f(z) for all g(x) € C[z : conj].

Necessary and sufficient conditions for a left ideal (™ £ 1) to be two-sided are

given as follows.

Proposition 2.3. Let n be a positive integer. Then the following statements are

equivalent:

i) 2" £ 1 is central in C[z : conj]
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i) (™ £ 1) is two-sided.
iii) n is even.

Proof. The statement i) implies i7) is clear.

To prove the statement i) implies iii), assume that (z" £ 1) is two-sided.
Suppose that n is odd. Let z € C\R. Then zz"t z=z(z"+1) = (2" ) w =
wz™ + w for some w € C. Comparing the coefficients, we have w = 2z = w, a
contradiction.

Finally, we prove that the statement #44) implies 7). Assume that n is even.

Then
(" +1) =" L= (2" £ Dz and (2" £ 1)z =22"% 2 = 2(z" £ 1)

for all z € C. Consequently, ™ 41 commutes with every skew polynomial in

C[z : conj. O

From Proposition 2.3, it follows-that C[z : conj}/ (2" 4 1) is well defined as a
quotient ring if and only if n is-even: /In this case; the ring Clx : conj]/ (z™ £ 1)
plays an important role in characterizing the right conjugate-circulant and right

conjugate-negacirculant matrices.



Chapter 3

Group structures of Some
Generalizations of Circulant

Matrices

In this chapter, some properties of rightconjugate-circulant matrices, left
conjugate-circulant matrices, righ conjugate-negacireulant matrices and left conju-
gate-negacirculant matrices are discussed.~The group struetures of some subsets

of such matrices are.mentioned.

3.1 Conjugate-Circulant Matrices

In this section, we focus on the group structures of some subsets of conjugate-
circulant matrices.

It is easy to see that (RCir, conj(C),+) and (LCiry, coni(C),+) are groups for
all n € N. Since Ciryconj (C) = C, the structure (Ciryconj(C),+) is a group.
Since Cirg conj(C) = LCirg conj(C) and (LCirg conj(C), +) is a group, the structure
(Cirg,conj(C), +) is a group. If n > 3, then

ICieoni((1,0,...,0)) + lcireoni((0, ..., 0,1)) ¢ RCiry, conj(C)

and

ICileoni((1,0,...,0)) 4+ leireon; ((0, . .., 0,1)) & LCir,, conj(C).

12
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It follows that (Cir, conj(C),+) is not a group under the usual addition with
n > 3. Next, we focus on invertible matrices in RCir,, yconj(C), LCiry, reonj(C) and
Ciry, reoni(C).

The set @mconj (C) := {A € RCiry, conj(C) | det(A) # 0} is the set of invert-
ible complex n x n right conjugate-circulant matrices. The set L/C\irn,conj((C) =
{A € LCiry, coni(C) | det(A) # 0} is the set of invertible complex nxn left conjugate-
circulant matrices. The set (/Zi\rn,conj((C) = {A € Ciry, conj(C) | det(A) # 0} is the
set of invertible complex n x n conjugate-circulant matrices.

The following relations between left and right conjugate-circulant matrices can

be obtained by the direct calculation.

Lemma 3.1. Let n be an even positiveinteger. Let z = (zq, 21, 29, ..., 2,—1) € C™
10
Then Hrcireoni(z) = lcireoni(2), where H = ,
2 141%5
I, 1= adiag (1,1,/.., 1)(n71)x(n71) is‘an antidiagonal matrix and O; = (0,0,...,0).
e
n— copies
Proof. We observe that
1.0 00 20 1 Zpn—2 4 Zn—1
0.0 D gl Zp<l Z_O Zn—3 “Zn—2
0 0 0 Zn—2 “n—1 Zn—4 “n—3
Hrcireoni(2) =
0 0 0 0 2 23 20 21
0 1 00 ) Zn—1 %0




14

20 21 Zn—2 Zn—1
Y Zn-1 %20
z9 z3 20 21
= = lcireon;(2).
Zn—2 “n—1 Zn~4 " Zn—3
Zn—1 Z_O Zn—3- "n—2
Hence, Hrcireoni(2) = leiteon(2). O
Lemma 3.2. Let n be aneven positive integer. Letz = (2, 21, 29,. .., 2,_1) € C™.
Then rcireonj(2)H = lcireoni(7y) Where vy = (20201, Zn—24. - ., 22, 21) and
I~/
H =
[
01 In—l
Proof. We observe that
20 21 Zn—2 “n—1 1.0 200
Zn—1 Z_O Zn—3 “n-=2 0 0 0 1
“n—2 “n—1 “n—4 “n—3 00 1o
ICileoni(2)H =
z9 z3 20 21 0 0 . 0 0
zZ1 ) Zn—1 20 01 .00




20

Zn—1

Zn—2

zZ9

21

21

20

Hence, rcireonj(2) H = leiteon;(7)-

zZ9

20

Z4

21

Zn—1

23

15

= lcireoni (7).

O

Next, we focus on the multiplicative group structures of RCir,, conj(C), L/C\irn,conj (C)

and (/]\irnvconj (C).

A necessary and sufficient condition forthe set RCir,, ¢onj(C) of n x n invertible

complex right conjugate-circulant-matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Theorem 3.3. Let n be a-positive integer.  Then ﬁ"nmnj(((:) forms a group

under the usual matriz multiplication if and only if n' =1 orn_is even.

Proof. Supposen # l-and.n is odd. Let a = (24, 1;0;...,0) Then rcireon;(a)

is invertible since det(xciry,,(a)) = (2" + 1)i #0. Let

Then

(i) = (ECiTeoni(@))?.

RN

ol

jen)

—4

—2404--+0+(-2)

= Cp—1,0-
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Hence, (rcireon (a))2 ¢ ﬁ"nvconj(((f). Therefore, Fﬁnﬁcom(C) is not a subgroup of
GL,(C). It follows that Pﬁn,com((ﬁ) is not a group under the usual multiplication
of matrices.

Conversely, assume that n = 1 or n is even. If n = 1, then ﬁC\irmconj (C) =
C\ {0} 2 GL,(C) is a group. Next, we consider the case where n is even.

Let rcireoni((ag, a1, . .., an—1)) and rcireon;((bo, b1, - . ., bp—1)) be elements in
I{C\irnﬁconj (C). Let [cijl, ., = rcireonj((aosa, - - s an_1))rcireoni((bo, b1, - - ., bp—1))-
Then, for each 0 <17,7 <n — 1, we have

[an—i Ap—jtte - - an_i_l] [b] bj—l bj —. . bj+1]T if 7 is evel,
Cij =

[a'n—i ApLit] w- - an_i_l] [bj bj_—l bj 125 m]T if 7 is odd.

Precisely, for each 0 <¢,j <n— 1,'¢;; is-of the form

n—2 n=2
2 2

Cij = E Gy Li 2k D=2 A+ E iy (2k1)Dj— (2h+1)
k=0 k=0
n—2 n—2

\ ‘

3
= n iy 2305 o1, E UnZig (2ht 1) 02 2k 41)
k=0

n—2

2

= Wrlid (2k41) Dj2ok1) + E A it2kbj—2k
k=0

3
|

5
i

4

=
Il
o

= Cit1y54+1

if 7 is even, and

| ‘

n—2
2
Cij = g Un—ipokbj—ok + ) Qn_it@r+1)0j—(2k+1)

k=0 k=0
n—2 n—2
2 2

= > n_itorbj_op + E iy (2k+1)Dj— (20 +1)
k=0 k=0
n—2 n—2

2
= Un—it(2k+1)0j—(2041) + E An— iy 21—k
k=0 k=0

= Cit1,5+1
if 7 is odd. It follows that

ICileonj((@0, @1, - - - 5 Qn—1))TCiTeoni (Do, b1, - - -, be1)) € @n,conj (C).
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Let @ = (ag,ay,...,a,-1) be an element in C" such that

—

A = (rcireonj(@)) € RCiry, conj (C) .

Then there exists a unique B = [b;;] . in GL,(C) such that AB = I,,. We will

nxn

show that B € I{C\irmconj (C). Note that
Alboo bro. . bp_1o] =[10...0".
From the equation above, we have the following system of equations.
aobo,o A= b1 o A agbag + -+ an_1bp_10 = 1,
Qp—1b0,0 A=Goby o+ @1bay + 2+ + Ap2by—10 =0,

Ap—2bo o + ano1b10 + agba ot = - A an=sb,—10 =0,

a1bo g A 20104 @s3bog + - apby, 1,0 = 0.

Move the last equation to the top and-apply the conjugation to all equations, we

conclude that

a'Ol_)n—l,O + algo,o =+ azl_?l,o Ak an—lgn—2,0 =0,

An—1bn 1,0 +agboo + aibro - n=by 20 =1,

an—2l_)n—1,0 B an—ll_)0,0 + 0051,0 + - A an—Sl_)n—Q,O =0,

arbp—1,0 + a2boo+asbi g+ - -Fagbpa o = 0.

Hence,

- - - T
A [bn—l,ﬂ 6070 ce bn—2,0:| - [0 1 O oo O]T .
Continue this process, we have
A_l = B = I"Cil"conj((bgp, Z_)n_l,(), e ,5270,5170)) c @H,COHJ (C) .
Therefore, @mconj (C) is a subgroup of GL,(C) as desired. O
A necessary and sufficient condition for the set L/C\irmom (C) of n x n invertible

complex left conjugate-circulant matrices to be a group under the usual matrix

multiplication is given in the next theorem.
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Theorem 3.4. Let n be a positive integer. Then L/C\irmonj((C) forms a group

under the usual matriz multiplication if and only if n =1 orn = 2.

Proof. Assume that n # 1 and n # 2. If n is odd, we consider the following
2 cases.

Case 1: n =3.Let @ = (4,1, 1). Then Icire(a) € L/C\irnyconj (C) since det(lcir,,,; (a))
= —2i # 0. It follows that

1 —A+2: \1+ 2

(leireon (@))* =11 =i+ 3 12 20| & LCirn,coni(C).

14+29 —1+2 1

Case 2 : n > 5. Let @ = (0,...,0,¢,2i). Then leir.,n(a) € L/C\irnyconj((C) since

det(lcir,, . (a)) = (2" + 1)i'# 0. Let

conj

A ey i (lcirconj(a))2.

Then

Cu20=01 | F0

=(-4)+0+---+0+ (1)

= Cn—1,n—1-

Hence, (lcircom-(a))2 ¢ L/C\irn,conj((C). Therefore, L/C\irnyconj((C) is not a subgroup of
GL,(C). It follows that L/C\irnmm (C) is not a group under the usual multiplication
of matrices.

Next, we consider the case when n is even. Let a = (0,...,0,7,27). Then

Icireonj(@) € L/C\irn,conj((C) because det(lcir,__.(a)) = —2""1 +1 £ 0. Let

conj

(i3] = (cireoni(@))?.
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Then

En_270:0+"'+0
=0
=0

#3
=44+0+-+0+(=1)

= Cp—1n—1-

Hence, (lcircom(a))2 ¢ L/C\irn,conj(C). Therefore, L/C\irn,conj((C) is not a subgroup of
GL,(C). It follows that L/C\irnmnj (C) isnot a group under the usual multiplication
of matrices.

Conversely, assume that n. =1 or n.= 2. We consider 2 cases the following.
Case 1 : n=1. Then L/C\irn,conj(C) = C\ {0} = GL,(C) is a group.
Case 2 : n = 2. Then L/C\irmconj (A I@n,conj (C)is a group by Theorem 3.3.
From Cases 1 and 2, the set L/C\irnvconj((C) forms a group under the usual matrix

multiplication. 0

A necessary and sufficient condition for-the set é\irnﬁconj (C) of n x n invert-
ible complex conjugate-circulant matrices to be a-group under the usual matrix

multiplication is given in the next-theorem.

Theorem 3.5. Let n be a positive integer. Then theset é\irn,conj((C) forms a group

under the usual matriz multiplication if and only if n =1 or n is even.

Proof. Suppose n # 1 and n is odd. Then we consider the following 2 cases.
Case 1 : n = 3. Let @ = (4,4,1). Then lcireoi(a) € L/C\irn,conj((C) C (ii\l"nyconj((C)
because det(lcir,,,;(a)) = —2i # 0. It follows that

1 —14+20 1+

(lCiI‘COHj (a))2 =11=2 3 1—2 §é LCirn,conj (C)

1+20 =142 1
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and

1 142t 142

(Icireoni (@) = |1 — 9 3 1 —2i| ¢ RCiry,coni(C).

1+20 =142 1

Hence, (Icireon;(@))? & RCiTp coni(C) U LCitn.coni(C) = Citp.con; (C).
Case 2 : n > 5. Let @ = (0,...,0,4;2¢). Then lcirni(a) € L/C\irmconj((C) C
6\il"n7conj((C) because det(leit,i(a)) =1(2" +1)i # 0. Let

[€ii) e = (Icirconi(@))

Since

0

I
==
_l_

Cn—2,0

I
ol

I
e

—5

pL

= (F)A0+ e OH(F1)

= Cpn-1n-1,

=04 +0+(-2)
= Cn—1,0,
(lcirconj(a))2 ¢ PTC\irn,mnj((C). Therefore, (lcirconj(a))2 ¢ CAirwonj (C).

From Cases 1 and 2, éi\rn,conj((C) is not a subgroup of GL,(C). It follows that

(/Ji\rnyconj((C) is not a group under the usual multiplication of matrices.
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Y

Conversely, assume that n = 1 or n is even. If n = 1, then (/]i\rmconj((:) &~
C\ {0} 2 GL,(C) is a group. Next, we consider the case where n is even.
Let a = (ag,a1,...,a,_1) and b = (by, by, ...,b,_1) be elements in C". Then
we consider the following 4 cases.
Case 1: rcireonj(@) and rcire,j(b) are elements in PTC\irn,wnj((C).
By Theorem 3.3, rc¢ireon;(@)rcireoni(b) € ﬁmonj (C) C é\irmonj((C).
Case 2: rcirepmj(a) € lﬁmonj((:) and/Icireon;(b) € IJ/C\irn,COHj(C).

By Lemma 3.2, lcire,y;(b) = rcireoni(c)H for some ¢ € C". We have that

I'CiTconj(@)1CITconi (B) = (CiTeonj(@))(rCileoni(€)H)

= (rCiTpon; (@ )TCiEdoni(€)) H € LCity, eini(€) € CiTpconi(C).

Case 3: lcireo(a) € L/C\irnmnj (C) and rcirgomj(b) € ITC\irmonj((C).
By Lemma 3.1, Icirconi(@) = Hreireoqi(@). We have that

lcireon; (@) rcireoni (b). = (HIcireon;(@)) (rciteomn;(b))

= H (rciTeonj(@)rCirconi(b))-€ L/C\irnyconj (C) € (/ji\rnyconj((C).

Case 4: lcireong(@) and leirgn(b) be elements in L/C\irn’conj((C).
By Lemmas 3.2 and 3.1, l¢iregmj(@) = rciteoyi(c)H for some ¢ € C" and

Icireon;(b) = Hrcireani(). It follows that

leireonj(@)1citeani (b) = (r¢irionj(€)H ) (H1cireon;(b))
= TCiTeonj (€) HTCIT o (b)
= I'CiTeonj(€) LI CITconi (D)

= I'Cil¢onj(€)rCiTconi (D).

By Theorem 3.3, Icirconj(@)Icireon;(b) € fﬁn,conj(C) C (/]i\rn,conj(C).
From Cases 14, é\irnjconj((C) is closed under multiplication.
Next, let A be an element in é\irnvconj((C). Then we consider the following 2
cases.
Casel: A € fTC\irmconj((C). Then by Theorem 3.3, A=t € ].:T,C]\irn@onj (C) C @‘n@on‘]’ (C).
Case2: A e L/C\irmconj((C). Then by Lemma 3.1, A = Hrcirep(c) for some ¢ € C".
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We have that

A™! = (Hrcireoi(e)) ™"
= (rcireonj(€)) TH ™
= (rCiTeoni(€)) ' H  ( since H? = I,)

€ LCitp.coni (C) ( since (rciteon;(€)) ™" € RCiTpn.con(C)).

Hence, A_l € L/C\irn,conj ((C) g (/)i\rn,conj ((C>
From Cases 1 and 2, A~' is.an element in (Si\rmconj((C). It follows that the set

(/3i\rn7wnj(C) forms a group under the usual matrix multiplication. O

3.2 Conjugate-Negacirculant Matrices

In this section, we focus on the group: structures of some subsets of conjugate-
negacirculant matrices.

It is easy to see that (RNCIr, reoni(C), +) and (LNCir,,1cni(C), +) are groups
for all n € N. Since NCiry cony (C) = €, the structure (NCiry oni(C), +) is a group.
Since

INCIlconj( (150)) # Incireon;((0,1)) & RNCirg con;(C)

and

IMCILconi((1,0)) + IMeiren;((0;1)) ¢ LNCirs coni(C),

we have that (NCirg conj(C);4).is ot a’group under-the usual addition. If n > 3,
then
INCiTeoni((1,0,...,0)) 4+ Incireon;((0,...,0,1)) € RNCir, conj(C)

and

INCiTeoni((1,0, ..., 0)) 4 Incireon;((0, ..., 0,1)) ¢ LNCiry, conj(C)

It follows that (NCir, conj(C),+) is not a group under the usual addition with
n > 2. Next, we focus on invertible matrices in RNCir,, yconj(C), LNCiry, reoni(C)
and NCiry, reonj(C).

The set R/Narn,conj(((:) = {A € RNCiry, conj(C) | det(A) # 0} is the set of in-

vertible complex nxn right conjugate-negacirculant matrices. The set INC\irnvconj (C)
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= {A € LNCir,, conj(C) | det(A) # 0} is the set of invertible complex n x n left

conjugate-negacirculant matrices. The set @n,com(m = {A € NCiry, coni (C) |

det(A) # 0} is the set of invertible complex nxn conjugate-negacirculant matrices.
The following relations between left and right conjugate-negacirculant matrices

can be obtained by the direct calculation.

Lemma 3.6. Let n be an even positive integer. Let z = (2o, 21, 29, ..., 2,_1) € C™.
1 O,
Then Hrncireon;(2) = Incireoni(z) where H =
- SO
01 —in—1
Proof. We observe that,
1 0 0 0 20 21 Zn—2 Zn—1
0 0 0 N —Zn—-1 20 Zn—3 Zn—2
0 0 . . ~—=1"90 =2 N N Zp—4 Zn—3
Hrncireoni(2) =
0 0 0 0 ~Zs — 23 20 21
7 " 0 0 —Zi” %% —Zn—-1 20
20 1 Ce Zpn—=9 Zn—1
Z1 2 Zn—1 —Z0
Z9 z3 .. —20 —2Z21
= = Incireoni(2).
Zn—2 Zn—1 —RZpn—4 TZn-3
Zn-1 —Z0 —Zn—-3 Tin-—2

Hence, Hrnciren;(z) = Incireon;(2). O
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Lemma 3.7. Let n be an even positive integer. Let z = (20, 21, 29, ..., 2,_1) € C".
Then rncireon;(2)H = Incireoni(v) where v = (20, —2n—1, —2n—2, ..., —22, —21) and
1 O,
H =
. ~
01 —in-—-1
Proof. It can be seen that
20 21 -4 Zn—2 Zn—1 1 0 . 0 0
—Zn—1 Z0 e =3 Zn—2 0 0 ce 0 -1
—Zn—2 —Rp—1L . =4 Zn—3 0 0 | 0
INCIiTeoni(2)H =
—Z2 7R3 20 21 0 0 0 0
~Z1 =Z5 —Zn i/ 70 (1 mgt® 0 0
20 SZhAMN - L 2N —21
) V2 ¥7 .\ el - _Z_O
“An~2 T Ap-3 .- TR0 An—1
= = Incirgeni ().
—Z9 —Z1 . Z4 z3
—Z1 —Z0 Z3 2
Hence, rncireen;(2)H = Incireon; (7). O

Next, we focus on the multiplicative group structures of R/I\IErMOHj(C),
LNCiTp coni (C) and NCiry coni (C)

A necessary and sufficient condition for the set R/Nﬁrnyconj (C) of nxn invertible
complex right conjugate-negacirculant matrices to be a group under the usual

matrix multiplication is given in the next theorem.
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Theorem 3.8. Let n be a positive integer. Then R/Nﬁrn,conj((C) forms a group

under the usual matriz multiplication if and only if n =1 or n is even.

Proof. Suppose n # 1 and n is odd. Let @ = (2i,4,0,...,0). Then rncir..i(a)
(@)) = (2" —1)i #0. Let

is invertible since det(rneir,,,;

[Cij]n = (riCiTeoni(@))”.

Then

#4
= 2% 047 +0+2

—Cn—1,0-

Hence, (rncireon(a@))? ¢ R/Nﬁrn,conj (€)! Therefore, mrmonj(@) is not a sub-
group of GL,(C). It follows that R/NErn’conj (C).is-not a-group under the usual
multiplication of matrices.

Conversely; assume that n =.1 or.n is-even.—If n =1, then mrmonj (C) =
C\ {0} = GL,(C)is a group:. Next, we consider the case where n is even.

Let @ = (ag, a1, ..., ap=1), b ="(bg, b1,...5b,_1) €C" be such that rncire.;(a)

and rnciren;(b) are in R/Nﬁrn,conj((C). Let [ci;] ‘= I'NCirconj(@)rncir(b). There-

nxn

fore, we need to show that
i) Gj =cit1541 forall 0<i<n—3 and i<j<n-3,
ii) —Cin1=cr10 0<i<n—2,

iii) &; = cip1 41 forall 1<i<n—2 and 0<j<i—1.
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From Cases 1 and 2, rncireonj(@)rncireon;(b) € P{T\Tﬁrmcom (C).

Let a = (ag, a1, ...,a,-1) be an element in C" be such that
A= (rCitegnj(@)) € RNCity, con (C) -

Then there exists a unique B = [b;;] . in GL,(C) such that AB = I,,. We will

show that B € R/I\IErmconj (C). Note that
Alboo big.. . bnsgl =[10...0".
From the equation above, we have the following system of equations.

aobo o A aibig + asbog 4 -+ @by =1,
—Qn—1bo0 + Gob1o + @1bag - - - A Gpiobpiio =0,

—Qp—2bg0 — @n—101,0+ apbao 4+ -+ an—3b,—10 = 0,

~Q1bg g = Goby o — @3boy.~ -+ ~+agby—10 = 0.

Multiply the last eqution with —1-and move it to the top and take the conjugate

to every equation, we have

_a()l—)n—l,O + GIEO,O i Cl2l_71,0 g an—ll_?n—2,o = 0

an-1bn—1,0 + apboo + a1bio + A ap_2b,_90 = 1,

Ap—2bp—1,0 — an=1bog + agbip + -4 Gp_3b, 20 = 0,

a1by,—1,0 — azboo — asbio — - -+ 4+ agbp—20 = 0.

Hence,

A =bn10Bog- - bu20] =[010...0]".

Continue this process, we have
Ail = B = I']flCiI'Conj((bo’o7 —Enfl,o, —bn,270, ceey —b270, —1_91’())) € RNCiI‘n’COHj (C) .

Therefore, R/Nﬁrmonj (C) is a subgroup of GL,(C) as desired. O
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A necessary and sufficient condition for the set LNCir,, conj (C) of nxn invertible
complex left conjugate-negacirculant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Theorem 3.9. Let n be a positive integer. Then LT\TC\irmonj (C) forms a group

under the usual matriz multiplication if and only if n = 1.

Proof. Assume that n # 1. If n is odd, we consider 2 cases.
Case 1: n = 3. Let @ = (i,4,1). Then Incir.mi(a) € mmconj (C) since

det(Incir_ .(a)) = —2 # 0. It follows that

conj

s Um A’ ¢

(Incireonj(@))® = L a:Vh ¢Imn,conj(c)-

=1 -1 1

Case 2 : n > 5. Let @ =(0,:.+,0;4,27). Then Incir.;(a) € IT\TC\irnvconj (C) since

det(Incir,_ .(a)) =(2" —1)i % 0. Let

conj
CARIEE (lncirconj(a))2.

Then

=(—4)+0+---+(-1)
= Cp—1,n—1-
Hence, (lrmirconj(a))2 ¢ IEC\irmom(C). Therefore, IEC\irn,mnj((C) is not a sub-

group of GL,(C). It follows that INC\irmonj (C) is not a group under the usual

multiplication of matrices.
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Next, we consider the case when n is even. Then we have 2 cases to consider.
Case 1: n = 2. Let @ = (1 —i,1). Then Incir.j(a) € IKC\irnyconj (C) because
det(Incir,, ;(a)) = =3 # 0. It follows that

-2t —2 o
(thil"C(mj (CL))2 = ¢ LNCirn,conj (C) .

-2t .2
Case 2: n > 4. Let a = (0, . ...,0,1,2¢). Then lucirc.(a) € IT\TC\irn,mnj (C) because
det(Incir (@) = —(2" +1)i# 0. Let

il A (lncirconj(a))2.

Then

*%

=4 H0 4 FO+(=1)

= Cp=1n—1-
Hence, (Incirgoni(a))” ¢ Imn,conj(((:). Therefore, Immnj((:) is not a sub-
group of GL,(C). It follows that Immonj((f) is not a group under the usual

multiplication of matrices.

Conversely, assume that n = 1. Then
LNCiTp con(C) 2 C \ {0} 2 GL,(C)
is a group under the usual matrix multiplication. O

A necessary and sufficient condition for the set NCiry, conj(C) of n x n invertible
complex conjugate-negacirculant matrices to be a group under the usual matrix

multiplication is given in the next theorem.
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Theorem 3.10. Let n be a positive integer. Then the set N/@MOHJ- (C) forms a

group under the usual matriz multiplication if and only if n =1 or n is even.

Proof. Suppose n # 1 and n is odd. Then we consider the following 2 cases.
Case1l: n = 3.Let a = (7,4,1). Then Incircoyi(a) € LT\TC\irn’COm-((C) C @Monj (C)
because det(Incir (@) = —2 # 0. It follows that

1 /A 1

(lncirconj(a))zz 155\ §ZIT\IC\il“n,conj(C)-

and

(lncirconj (a,))2 — 1 3 1 ﬁé mrn,conj (C)

~ /1

Hence, (Incireon(a))*¢ R/Nﬁrn,conj(((:) §] INC\iI"n,COHj(C) N N/@n,conj((@).
Case 2 : n > 5. Let a=(0,.7+,0,i)2i). Thei Incitey(a) € LNCir, con(C) C
@nﬁconj(((:) because det(Incir (@) = (2" —1)i+# 0. Let

¥l € 2= (lncirconj(a))z.

Since

=(—4)+0+---+0+(-1)

= Cp—1,n—1,
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(lncirconj(a))2 ¢ Imn,conj(c)-

Since

£ 04042

= Cn—1,0,

(InCireon;(@))? ¢ RNCir,, ton;(C). Therefore; (Inciteon;(@))? ¢ NCiry con; (C).
From Cases 1 and 2, N/CE",L,CODJ-((C) is'not a subgroup of GL,(C). It follows that
BTC\irn,mnj((C) is not a group under the usual multiplication of matrices.
Conversely, assume thatn = 1 or n is even. If n= 1, then I@n,conj (C) =

C\ {0} = GL,(C) is a group.Next, we consider the case where n is even.
Let a = (ag,a1,:. ¢ an-y)and b= (by, b1, .., bp—1) be elements in C". Then we
consider the following 4 cases.
Case 1: rncireonj(@) and rneireq;(b) are elements in R/Narn <oni(C)-

By Theorem 3.8, rnciron;(@)rncireon;(b)-€ RNClrnvconj(C) C NCirn,Conj((C).
Case 2: rncirepj(a) € R/Nﬁrn,mm((ﬁ) and Inciree,; (b) € Imn,conj((C).

By Lemma 3.7, Incircen;(b) = rncire;(c)H for some.€ € C". We have that

I'NCITconi (@) INCiTconi (b) = (rncireoni(@))(rncireoni(c) H)

—

— (ICiTeon; (@)NCiTeoni (€)) H € ENCityconi(C) € NCirp coni (C).

Case 3: Incirepi(a) € Immonj(((:) and rnciren;(b) € R/l\IErmconj((C).
By Lemma 3.6, Incireonj(a) = Hrncirep;(a). We have that

INCIreonj (@) INCITeonj () = (Hrncireonj(@))(rncireon;(b))

— H (e eon; (@)INCiTeon; (b)) € ENCityconi(C) € NCirp coni (C).

Case 4: Incirgoni(a) and Incireni(b) be elements in IT\IC\irn,mnj (C).

By Lemmas 3.7 and 3.6, Inciregj(@) = rnciren;(c)H for some ¢ € C* and
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Incireon;(b) = Hrnciren;(b). It follows that

Incireonj(@)Incireon;(b) = (rncireon;(c) H) (Hrnciren;(b))
= INCiTeoni(€) H 2rncirconj (b)
= IMCiTeoni(€) ], INCITconi (D)

= I'NCiT¢onj (€)INCITon; (D).

By Theorem 3.8, Inciromj(a)Inciréy,;(b) € R/Nﬁrmonj (C) C 1\TC\irn,mnj((C).

From Cases 1-4, @n,conj (C)\is closed under multiplication.

Next, let A be an element in @n,conj(c)- Then we consider the following 2
cases.
Case 1: A ¢ R/Narmconj((C). Then by Theorem 3.8, A~ € R/Nﬁrn,conj((C) C
NCity cong(C).
Case 2: A € Iﬁc\irn,conj(((:). Then'by Lemma 3.6;. A= Hrncirepmi(c) for some
c € C". We have that

A= (H I'TICT gon] e))!
lH—

N
) LH ( since H? =1,)

= (rncireen;(c

(
= (rnciteon(c)
)
(

e INCir, 2oni (G) (‘since (rneirgi(c)) " € R/NErn,mnj((C)).

Hence, A™! € IT\IC\iI‘n,COHj(C) c N/C;"n,conj((C).
From Cases 1 and 2, A~! is an element in @mconj(((:). It follows that the set

BTC\irnyconj((C) forms a group under the usual matrix multiplication. O



Chapter 4

Characterizations

4.1 Characterization of Right Conjugate-Circulant
Matrices

From Section 3.1, LCity, conj(€) is not a.group under the usual multiplication of
matrices and Ciry, ¢on;i (€) isnot a 'group under the usual addition of matrices with
n > 3. It follows that LCir, conj (C) and Ciry, conj(C) can not-be rings. To study the
ring structures of such matrices, it is therefore sufficient to consider RCir,, conj (C).

In this section, the algebraic structure of RCir,, ceoni (C)is studied. The char-

acterization of RCiry, ¢on; (€)is given in terms of skew polynomials.

Proposition 4.1. Let n be a-positive integer.: ThenRCir,, con; (C) is a vector space

over C under the usual addition and the scalar multiplication defined by
@ - TCiTeonj ((20, 21, - - - Zn—1)) = ICileonj ((a, 0, ..., 0)) rcireoni ((20, 215 - - -, Zn—1))
for all a € C and (29,21, ..,2n-1) € C™

Proof. Clearly, the sum of two right conjugate-circulant matrices is a right

conjugate-circulant. Since
ICileoni ((@,0, ..., 0)) rcireonj ((20, 21, - - -, Zn—1)) = ICileonj((a2o, az1, ..., az,—1))

for all a € C and (2o, 21, - .., 2n—1) € C", the proposition follows. O

35
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Corollary 4.2. Let n be a positive integer. Then RCiry, conj (C) is a vector space

over R under the usual addition and the scalar multiplication.

Proof. Note that rcireon; ((@,0,...,0)) = al, for all a« € R. By Proposition
4.1, the result follows. U

A necessary and sufficient condition for RCiry, conj (C) to be a ring is given in
the next theorem.
Theorem 4.3. Let n be a positive integer... Then RCir, conj (C) is a subring of
M, (C) if and only if n = 1 or n is-even.

Proof. Suppose n # 1 and n isodd.-Let a € C be such-that a # @ and let

[Cij], v = TCikeonj ((ara, [ 5 a)) reitesn; ((a,a, . . ., a)).
Then
n+1 n—1
2 D)
G o7
=i w1

Hence, rcireoni((a, a, . .., a))rcireoni((a, a, . .., a)) ¢ RCiry, conj (C) . Therefore,
RCiry, conj (C) is not a subring of M,, (C).
Conversely, assume that n =1 or n is even. If n = 1, then RCir,, con; (C) =
C = M, (C) is a ring. Next, we consider the case where n is even. Let
ICiTeonj((@0, @1, - - - an—1)) and rcireoni((bo, b1, - . . , by—1)) be elements in RCiry, ¢onj (C) -
Then

l"Circonj((am aty .-, an—l)) - rCirconj((b[)y bl; ) bn—l))
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= I'Cil'conj((a,o — b07 a; — bl, ey Qp_1 — bn—l)) - RCirn,conj ((C)

Using the arguments similar to those in the proof of Theorem 3.3,
I"Cil"conj((ao, A1y ..., anl))r(}irconj((bo, bl, e bn,1>> € RCirnyconj ((C) .
Therefore, RCiry, conj (C) is a subring of M, (C) as desired. O

In the case where n is even, there is a-direct link between the ring RCir,, conj (C)

and the quotient ring of skew polynomials C[z, conj]/ (" — 1) .

Theorem 4.4. Letn be an even positive integer. Then RCir, conj (C) is isomorphic

to Clx,conj]/ (" — 1) as rings.

Proof. Let T : RCiry,coni (C) — Clz,conj|/ (zF = 1) be defined by

—_

T (vcitepni((Z0d 21, 3 s Zne1))) = Y Ziwtd (2" —1).

i

Il
=)

Let z = (20, 21, - .+ 2n1)-and w = (Wy, w1, .+ s Wy—1).be vectors in C" . Then

T (I"Cil”conj (Z) + 1"Circonj (’QU)) 5 V)

—~

ICileon;i (20 + Wo, 24 WL~ 4 Znm1 + Wn—1)))

S
—_

(zi )z’ A {a=1)

30 =
il
- O

(zix’ +we )+ (2" =1)

1 n—1
< g™ 1) ) + <Zwixi+<$"—1>>
=0 =0
=T

(rciveoni(2)) + T (rcireon(w)) -

i
?o

Let [ci;] = I'Cilconj(2)ICiTeonj(w). By Theorem 4.3, we have [¢;;] .~ € RCiry, conj (C)

nxn

and hence,

T (I‘Cil‘conj (Z ) I'Circonj (’UJ) ) =

) CO,n—l))

—~
=
@]
—
=

Q
o

E.

—
e

(=)
o
Q
(=)
—
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n—2 n—2
2 2

Z ZopW; ok + Z Zop1Wi—rpn) | @'+ (2" — 1)
=0 =0

i
L

i
L

Z Zojwy, + Z 22j+1w_;€ ot (2" — 1)

i=2j+k i=(2j4+1)+

Z (zj2wpa®) + (a" — 1)

1=0 i=j+k(mod n)

(”_ zkxk—i- (" —1> (Zwkx + (z" —1>)
T

k
(rCireon;(2)) T (reiteen; (w))-

™

&
o
-~ -

~
Il
o

i
L

Then T is a ring homomorphism.

To show that 7" is injective, let reiron;((20; 21, - vv s 2n—1))-€ ker(T). Then

.Z_: zix' + (2" — 1) = T (veiteoni( (20,215 o , 20—1))) = (2" — 1).

n—1 n—1
It follows that Z 2T {a™="1) ~Since deg Z 2’| < m—1, we have z; = 0
i=0 i=0
for all i = 0,1,...,n~ 1. Hence, ker(T) = (™ — 1) and T is injective.
n—1
For each f(z)+(z™ —1)-€ C[x, conj]/ {x™ — 1), there exists Z ziz' € Clz, conj]
i=0
such that
f (D) (™01 Zzlx—l— = 1)
by the division algorithm. Then
n—1
T (rciteoni((20, 21, - -, 20m1))) = 3 22" + (@ = 1) = f(x) + (a" = 1).
=0

Hence, T is surjective. Therefore, T is a ring isomorphism and RCir,, con;(C) is

isomorphic to Clx, conj|/ (z" — 1) as rings. O

4.2 Characterization of Right Conjugate-
Negacirculant Matrices

From Section 3.2, LNCir,, ¢onj(C) is not a group under the usual multiplication

of matrices and NCiry, conj(C) is not a group under the usual addition of matrices
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with n > 2. It follows that LNCiry, ¢onj(C) and NCir,, conj(C) can not be rings.
To study the ring structures of such matrices, it is therefore sufficient to consider
RNCir,, conj (C).

In this section, the algebraic structure of RNCir,, conj (C) is studied. The char-

acterization of RNCir,, conj (C) is given in terms of skew polynomials.

Proposition 4.5. Let n be a positive integer. Then RNCiry, conj (C) is a vector

space over C under the usual addition and_the scalar-multiplication defined by
@ - 0Cireoni ((20, 215 - -+ Zn1)) = TRCTon; (@50, ., 0)) rncireon; ((20, 21, - - -, Zn—1))
for all a € C and (2o, 215wty zper )€ CM

Proof. Clearly, the sum of two right conjugate-negacirculant matrices is a right

conjugate-negacirculant. Sinee rcirees; ((a40, .. ., 0))rncireon; ((20, 21, - - -, 2n-1)) =
INCiTeonj ((a20, @21, . o yazpey)) for all a € C and (29,245 .. , 2,21) € C”, the propo-
sition follows. O

Corollary 4.6. Let n be a positive integer. Then RNCiry, conj (C) is.a real vector

space under the usual addition and the scalar-multiplication.

Proof. Note that ricireonj((a,0, . ..,0)) = aly for all a.€ R. By Proposition
4.5, the result follows. U

A necessary and sufficient condition for RNCir,, ¢onj (C) to be a ring is given in

the next theorem.

Theorem 4.7. Let n be a positive integer. Then RNCir,, conj (C) is a subring of
M, (C) if and only if n =1 or n is even.

Proof. Suppose n # 1 and n is odd. Let a € C be such that a # @ and let

[Cijl, v = TCiTeonj ((a, @, ..., a)) I0CiTconj ((a,a, ..., a)).
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Then
n—1 n—1
2 2
m:aQ—g a-a—g a?
i=1 i=1
n—1 n—1
2 2
=q? — E a-a— E a?
=1 1=
n+1 n
2 2
#+a? — E a-a— E a?
i=1 i=1
= Cu1,

Hence, rncireon;((a, a, . . ., a))incireni((a, a, . .-, a)) ¢ RNCir, onj (C) . Therefore,
RNCir,, conj (C) is not a subring of M, (C).

Conversely, assume that = 1 or n is even. If n =1, then RNCir,, con; (C) =
C =2 M, (C) is a ring. Next, we focus on the case where n is even. Let a =

(ag, a1, ... an_1), b="boyby;...,b,-1)-€ C". Tt is not-difficult to see that
I'NICIT ¢oni (@) — Theiteoni(b). = rnCireoni(a@ =b) '€ RNCir, con;(C)
Using the arguments similar to.those in the proof of Theorem 3.8,
I'MCT o5 (@ )INCIT o (B) € R/Narn,conj (C).

Therefore, RNCiry, conj (€) is7a subring of M, (C) . O

In the case where.n is even; the ring RNCir,, oz (C) can be characterized using

the quotient skew polynomial.ring C[z, conj]/ (z™ +1).

Theorem 4.8. Let n be an even positive integer. Then RNCiry, conj (C) is isomor-
phic to Clz, conj|/ (2" 4+ 1) as rings.

Proof. Let S : RNCiry, conj (C) — Clz, conj]/ (2™ 4+ 1) be defined by

n—1
S (rnciteoni (20, 21, - - -5 2n-1))) = Z zix' + {z" 4+ 1) .
i=0

Let z = (z0,21,...,2n-1) and w = (wg, w1, ..., w,_1) be vectors in C" . Similar

to Theorem 4.4, S is an additive group isomorphism. Let

[Cij],p = TNCITeonj(2)INCITconi (W).
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S (rncireonj (2)ncireonj(w)) = S ([¢ijlnxn)

= S (rncireonj(€0,0, 0,15 - - 5 Con—1))
n—1
= Z Co,ixl + <In + 1>
ST am) S 2 wm)s
=0 i=2j+k =0 i=(2j+1)+k
n—1 n—1
B RS U, N S ) D SRR Pt
=0 \1=2j5+k(mod n) =0 \i=(2j+1)+k(mod n)
+ ("4 1)
n—1 n—1
L5 SN JEAE) (S o)«
=0\ 1=2j+k i=0"\i=(25+1)+k
2n—2 2n—2
) 4 Z Z zojw | &+ Z Z Z2j41Wg | T
i=n .\ i=2j+k(mod-n) i=n  \i=(2j+1)+k(mod n)
4+ (al')4+1)
n—1 2n=2
o z7xjwk3: Z Z (zgzlwipa®) + (z" + 1)
k=01i=j k=0-i=j+k
—1 n—1
:< Lobh T +1><Zwkxk+<x"+l)>
k=0

S (reireonj(z)) S (rncireonj(w)) .

Using the statement similar to those in the proof of Theorem 4.4, S is a
bijection. Hence, S is aring isomorphism:. Therefore, RNCir,, conj (C) is isomorphic

to C[z, conj]/ (z" + 1) ) as rings. O

4.3 Isomorphisms

From the previous two sections, the algebraic structures of RCir,, conj (C) and
RNCiry, conj (C) are studied. They are complex vector spaces. In addition, if n is
even, they are also rings. In this section, some relations among them are discussed.

The vector spaces RCir,, conj (C) and RNCir,, conj (C) are isomorphic.

Theorem 4.9. Letn be a positive integer. Then RCir, conj (C) and RNCir,, con; (C)
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are isomorphic as complex vector spaces, where the scalar multiplication defined

in Propositions 4.1 and 4.5.

Proof It isnot difficult to verify that a map ¢ : RCir,, conj (C) — RNCiry, conj (C)
defined by

Y (rciteonj((20, 215 - - -, Zn—1))) = INCiTeon;((20, 215 - - -, Zn—1))-
is a linear isomorphism. 0]

From [7, Theorem 3.6], the set Cir,, (C) of n xn complex circulant matrices and
the set NCir,, (C) of n x n.complex negacirculant matrices are isomorphic as rings.
Hence, it would be possible that RCir,, ¢oni (C) and RNCir,, conj (€) are isomorphic.
However, the idea proof of [7, Theorem-3.6] canmot be applied. Therefore, we

propose this problem as a conjecture.

Conjecture 4.10. Let n-be an even positive integer. Then the rings RCiry, con; (C)

and RNCiry, con; (C)| are isomorphic.
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